Journal of Marine Science and Application 2008 no. 3
HASSAN Ghassemi SU Yu-min
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

A combination of methods was developed that can determine hydrodynamic forces on a planing hull in steady motion. Firstly, a potential-based boundary-element method was used to calculate the hydrodynamic pressure, induced resistance and lift. Then the frictional resistance component was determined by the viscous boundary layer theory. Finally, a particular empirical technique was applied to determine the region of upwash geometry and determine spray resistance. Case studies involving four models of Series 62 planing craft were run. These showed that the suggested method is efficient and capable, with results that are in good agreement with experimental measurements over a wide range of volumetric Froude numbers.

XU Yu-ru GUO Bing-jie LI Yue-ming
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

Fuzzy neural networks (FNN) based on Gaussian membership functions can effectively control the motion of underwater vehicles. However, their operating processes and training algorithms are complicated, placing great demands on embedded hardware. This paper presents an advanced FNN with an S membership function matching the motion characteristics of mini underwater vehicles with wings. A learning algorithm was then developed. Simulation results showed that the modified FNN is a simpler algorithm with faster calculations and improves responsiveness, compared with a Gaussian membership function-based FNN. It is applicable for mini underwater vehicles that don’t need accurate positioning but must have good maneuverability.

WANG Yan-ying
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

In order to respond the discredit on the design wave standard and to recommend new consideration on design wave parameters, based on the long-term distribution of statistic characteristics of waves and the short-term probability properties of sea state defined by giving the return period, the calculation of the return period, the height, the period, and the oceanic wave parameters of the design wave and the forecasting methods are discussed in this paper. To provide references for the operation reliability of floating structures in the extreme sea state, the method of determining the design wave parameters is resurveyed. A proposal is recommended that the design wave, which can be either significant wave with 500-year of the return period, or the maximum wave with 1/N of exceeding probability, 100-year of the return period, can be applied in the engineering design practice.

XU Xiao-ka SANG En-fang QIAO Gang WANG Ji-sheng
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profiling sonar. The system was designed for seabed petroleum pipeline detection and orientation, and can receive echo signals and process the data in real time, refreshing the display 10 times per second. Every node of the chirp sonar connects with data processing nodes through TCP/IP.Merely by adding nodes, the system’s processing ability can be increased proportionately without changing the software. System debugging and experimental testing proved the system to be practical and stable. This design provides a new method for high speed active sonar.

CHEN Kang HUANG De-bo LI Yun-bo
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

As a new type of hull form, trimaran has remarkable excellent performances and has drawn more and more attention. When the viscous CFD technology now available is applied to the research of resistance performance of trimaran, the spatial discretization would usually result in the grid error and uncertainty, and thus the considerable discrepancy between the numerical results and the experimental data. In order to ascertain how much the grid would affect the calculation, the grid convergence should be studied. A mathematical trimaran was chosen as an example, with the commercial code CFX for the simulation, VOF for surface treatment, and the grid study was carried out based on two different turbulence models. It was concluded that carrying out grid study is helpful in estimating the grid error and uncertainty, and indicating the direction of improving the credibility of the numerical calculation,and, in addition to grid errors and uncertainties, the turbulence modeling errors and uncertainties contribute to the simulation errors.

JIA Xiao-jun FAN Shi-dong
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

A ship’s tail shaft has serious flexural vibration due to the cantilevered nature of the propeller’s blades. Analysis of the nature frequency of flexural vibration is vital to be able to provide effective shock absorption for a ship’s tail shaft. A mathematic model of tail shaft flexural vibrations was built using the transfer matrix method. The nature frequency of flexural vibration for an electrically propelled ship’s tail shaft was then analyzed, and an effective method for calculating it was proposed: a genetic algorithm (GA), which calculates the nature frequency of vibration of a system. Sample calculations, with comparisons by the Prohl method under conditions bearing isotropic support, showed this method to be practical. It should have significant impact on engineering design theory.

PAN Xu-jie ZHANG Huai-xin LU Yun-tao
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

A meshless numerical simulation method, the moving-particle semi-implicit method (MPS) is presented in this paper to study the sloshing phenomenon in ocean and naval engineering. As a meshless method, MPS uses panicles to replace the mesh in traditional methods, the governing equations are discretized by virtue of the relationship of panicles, and the Poisson equation of pressure is solved by incomplete Cholesky conjugate gradient method (ICCG), the free surface is tracked by the change of numerical density. A numerical experiment of viscous liquid sloshing tank was presented and compared with the result got by the difference method with the VOF, and an additional modification step was added to make the simulation more stable. The results show that the MPS method is suitable for the simulation of viscous liquid sloshing, with the advantage in arranging the particles easily, especially on some complex curved surface.

MA Ling-kun HUANG Jian-guo ZHANG Li-jie
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

In a flank array on an unmanned underwater vehicle (UUV), self-generated noise which has broadband and colored spectrum property in frequency and spatial domain is the main factor affecting the performance of weak signal detection, so the technique of adaptive noise cancellation (ANC) as well as physical denoising and active noise cancellation are often used in practice. Because ANC is based on correlations, improvements in performance come from better correlation between reference signals and primary signals. Taking full advantage of the characteristics of flank arrays and the characteristics of information obtained from hydrophones, a new method for reference signal acquisition for adaptive noisecancellation is proposed, in which the multi-channel reference signals are obtained by accurate delaying for a given direction of arrival (DOA) and differencing between adjacent outputs of array elements. The validity of the proposed method was verified through system modeling simulations and lake experiments which showed good performance with little additional computational burden.

SUN Guo-cang HUI Jun-ying CHEN Yang
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

An acoustic vector sensor (AVS) can capture more information than a conventional acoustic pressure sensor (APS). As a result, more output channels are required when multiple AVS are formed into arrays, making processing the data stream computationally intense. This paper proposes a new algorithm based on the propagator method for wideband coherent sources that eliminates eigen-decomposition in order to reduce the computational burden. Data from simulations and lake trials showed that the new algorithm is valid: it resolves coherent sources, breaks left/right ambiguity, and allows inter element spacing to exceed a half-wavelength.

JIN Yong-xing WANG Ze-sheng CHEN Jin-biao BUPing
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

Container vessels navigate among the world’s ports, frequently passing through narrow and congested waters. Due to the many layers of containers on a container vessel’s decks, it is difficult for the crew to be aware of all fishing vessels and other obstacles in a container vessel’s radar observation blind zone. This greatly increases the risk of collisions and other accidents. Given such great challenges to safe navigation and safety management with container vessels, their security risks are severe. An effective visual monitoring system can improve the safety of the water area surrounding container vessel by eliminating a vessel’s observation blind zone, providing an effective safety measure for vessels navigating fishing zones and other troublesome areas. The system has other functions, such as accident recording, ship security, and monitoring of loading and unloading operations, thus ensuring the ship operates safely. Six months’ trial operation showed that the system facilitates safe navigation of container vessels.

FAN Hui ZHANGYu-wen LI Wen-zhe
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next,steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.

QIU Zhi-qiang ZOU Hai SUN Jian-hua
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps,a mathematical model of marine steam generator feedwater control system was developed which includes mathematical models of two steam generators and parallel turbine-driven feed pumps as well as mathematical models of feedwater pipes and feed regulating valves. The operating condition points of the parallel turbine-driven feed pumps were calculated by the Chebyshev curve fit method. A water level controller for the steam generator and a rotary speed controller for the turbine-driven feed pumps were also included in the model. The accuracy of the mathematical models and their controllers was verified by comparing their results with those from a simulator.

WU Xiang-guo HAN Sang-mook
Journal of Marine Science and Application,2008(No. 3): 0
DOI:[HTML]
+Show Abstract -Hide Abstract

Fracture behavior is one of the most important, yet still little understood properties of ultra-high performance cementitious composites (UHPCC), a new marine structural engineering material.Research on the fracture and direct tension behavior of UHPCC was carried out. The constitution law of UHPCC was divided into three phases: pre-partial debonding, partial debonding, and pullout phases. A direct tension constitution law was constructed based on the proposed fiber reinforcing parameter as a function of fiber volume fraction, fiber diameter and length, and fiber bonding strength. With the definition of linear crack shape, the energy release rate of UHPCC was derived and the R-curve equation was calculated from this. Loading tests of UHPCC using a three-point bending beam with an initial notch were carried out. The predictions from the proposed R-curve were in good agreement with the test results,indicating that the proposed R-curve accurately describes the fracture resistance of UHPCC. Introductionof a fiber reinforcement parameter bridges the fracture property R-curve and micro-composites mechanics parameters together. This has laid the foundation for further research into fracture properties based on micro-mechanics. The proposed tension constitution law and R-curve can be references for future UHPCC fracture evaluation.