Home >> High-impact papers list
M. R. Akbari1, D. D. Ganji, A. K. Rostami2 and M. Nimafar
Journal of Marine Science and Application,2015(No. 1): 30-38
+Show Abstract -Hide Abstract

In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji’s method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure. Therefore, AGM can be considered as a significant progress in nonlinear sciences.

Hassan Moussa Nahim, Rafic Younes, Chadi Nohra and Mustapha Ouladsine
Journal of Marine Science and Application,2015(No. 1): 93-104
+Show Abstract -Hide Abstract

This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine’s output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

S. Palraj, M. Selvaraj, K. Maruthan and M. Natesan
Journal of Marine Science and Application,2015(No. 1): 105-112
+Show Abstract -Hide Abstract

In continuation of the extensive studies carried out to update the corrosion map of India, in this study, the degradation of mild steel by air pollutants was studied at 16 different locations from Nagore to Ammanichatram along the east coast of Tamilnadu, India over a period of two years. The weight loss study showed that the mild steel corrosion was more at Nagapattinam site, when compared to Ammanichatram and Maravakadu sites. A linear regression analysis of the experimental data was attempted to predict the mechanism of the corrosion. The composition of the corrosion products formed on the mild steel surfaces was identified by XRD technique. The corrosion rate values obtained are discussed in the light of the weathering parameters, atmospheric pollutants such as salt content & SO2 levels in the atmosphere, corrosion products formed on the mild steel surfaces.

Guoqing Feng1, Dongsheng Wang1, Yordan Garbatov2, C. Guedes Soares2
Journal of Marine Science and Application,2015(No. 4): 389-398
+Show Abstract -Hide Abstract

A method of reliability analysis based on a direct strength calculation employing the von Mises stress failure criterion is presented here. The short term strain distributions of ship hull structural components are identified through the statistical analysis of the wave-induced strain history and the long term distributions by the weighted summation of the short term strain distributions. The wave-induced long term strain distribution is combined with the still water strain. The extreme strain distribution of the response strain is obtained by statistical analysis of the combined strains. The limit state function of the reliability analysis is based on the von Mises stress failure criterion, including the related uncertainties due to the quality of the material and model uncertainty. The reliability index is calculated using FORM and sensitivity analysis of each variable that has effects on the reliability is also discussed.

Mohamed Abdelkader Djebli, Benameur Hamoudi, Omar Imine, Lahouari Adjlout
Journal of Marine Science and Application,2015(No. 4): 406-412
+Show Abstract -Hide Abstract

The inclining experiment is the only regulatory tool to assess ship stability. This experiment is a time consuming process for both real-life tests and ship model experiments. The difficulty is mainly due to a bias in the measurement of heel angle. Nowadays, digital inclinometers are available, but they are expensive. In this study, the use of a smartphone application is presented for ship inclination and rolling-period tests. The idea consists of using accelerometer and gyroscope sensors built into the current smartphones for the measurements. Therefore, some experiments are carried out on an example trawler model to exhibit the uses and advantages of this method. The obtained results are in good agreement with those provided from the pendulum method and natural roll-period test. This application is new, easy, and more accurately assesses metacentric height during the inclining and rolling-period tests.

Deddy Chrismianto1, Ahmad Fauzan Zakki1, Berlian Arswendo1, Dong Joon Kim2
Journal of Marine Science and Application,2015(No. 4): 399-405
+Show Abstract -Hide Abstract

Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio (L/H). Application program interface (API) scripting is also used to write code in the ANSYS DesignModeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient (Ct). The minimum Ct was obtained. The calculated difference in Ct values between the initial submarine and the optimum submarine is around 0.26%, with the Ct of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius (rn) and higher L/H than those of the initial submarine shape, while the radius of the tail (rt) is smaller than that of the initial shape.

Khac Duc Do
Journal of Marine Science and Application,2015(No. 4): 343-354
+Show Abstract -Hide Abstract

This paper presents a constructive design of new controllers that force underactuated ships under constant or slow time-varying sea loads to asymptotically track a parameterized reference path, that guarantees the distance from the ship to the reference path always be within a specified value. The control design is based on a global exponential disturbance observer, a transformation of the ship dynamics to an almost spherical form, an interpretation of the tracking errors in an earth-fixed frame, an introduction of dynamic variables to compensate for relaxation of the reference path generation, p-times differentiable step functions, and backstepping and Lyapunov’s direct methods. The effectiveness of the proposed results is illustrated through simulations.

Paramita Maiti1, Puspendu Rakshit2, Sudeshna Banerjea1
Journal of Marine Science and Application,2015(No. 4): 355-365
+Show Abstract -Hide Abstract

In this paper we study the problem of generation of surface waves produced due to a) rolling of the plate and b) presence of a line source in front of a fixed vertical plate. The amplitudes of radiated waves at large distance from the plate, in both cases, are obtained by a suitable application of Green’s integral theorem. These are then studied graphically for various values of the ice cover parameter.

Hadi Mirab, Reza Fathi, Vahid Jahangiri, Mir Mohammad Ettefagh, Reza Hassannejad
Journal of Marine Science and Application,2015(No. 4): 440-449
+Show Abstract -Hide Abstract

One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple Airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.

Ziqi Song1,2,3, Hongyu Bian1,2, Adam Zielinski3
Journal of Marine Science and Application,2015(No. 4): 425-433
+Show Abstract -Hide Abstract

Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map. This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge corner pixels are then defined and used to construct an edge corner histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.

Yuehai Zhou, Xiuling Cao, Feng Tong
Journal of Marine Science and Application,2015(No. 4): 434-439
+Show Abstract -Hide Abstract

Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple-input multiple-output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

Arpita Mondal, R. Gayen
Journal of Marine Science and Application,2015(No. 4): 366-375
+Show Abstract -Hide Abstract

In this paper we have investigated the reflection and the transmission of a system of two symmetric circular-arc-shaped thin porous plates submerged in deep water within the context of linear theory. The hypersingular integral equation technique has been used to analyze the problem mathematically. The integral equations are formulated by applying Green’s integral theorem to the fundamental potential function and the scattered potential function into a suitable fluid region, and then using the boundary condition on the porous plate surface. These are solved approximately using an expansion-cum-collocation method where the behaviour of the potential functions at the tips of the plates have been used. This method ultimately produces a very good numerical approximation for the reflection and the transmission coefficients and hydrodynamic force components. The numerical results are depicted graphically against the wave number for a variety of layouts of the arc. Some results are compared with known results for similar configurations of dual rigid plate systems available in the literature with good agreement.

Parviz Ghadimi1, Alireza Bolghasi1, Mohammad A. Feizi Chekab1, Rahim Zamanian2
Journal of Marine Science and Application,2015(No. 4): 413-424
+Show Abstract -Hide Abstract

The main goal of this paper is to investigate sound scattering from the sea surface, by Kuo’s small perturbation method (SPM), in the Persian Gulf’s environmental conditions. Accordingly, the SPM method is reviewed, then it is demonstrated how it can accurately model sound scattering from the sea surface. Since in Kuo’s approach, the effects of surface roughness and sub-surface bubble plumes on incident sounds can be studied separately, it is possible to investigate the importance of each mechanism in various scattering regimes. To conduct this study, wind and wave information reported by Arzanah station as well as some numerical atmospheric models for the Persian Gulf are presented and applied to examine sound scattering from the sea surface in the Persian Gulf region. Plots of scattering strength by Kuo’s SPM method versus grazing angle for various frequencies, wave heights, and wind speeds are presented. The calculated scattering strength by the SPM method for various frequencies and wind speeds are compared against the results of critical sea tests 7 (CST-7). The favorable agreement achieved for sound scattering in the Persian Gulf region is indicative of the fact that the SPM method can quite accurately model and predict sound scattering from the sea surface.

Omdehghiasi Hamed, Mojtahedi Alireza, Lotfollahi-Yaghin Mohammad Ali
Journal of Marine Science and Application,2015(No. 4): 376-388
+Show Abstract -Hide Abstract

Groins are employed to prevent nearshore areas from erosion and to control the direction of flow. However, the groin structure and its associated flow characteristics are the main causes of local erosion. In this study, we investigate the flow patterns around refractive and right-angle groins. In particular, we analytically compare the flow characteristics around a refractive groin and study the degree of accuracy that can be achieved by using a right-angle groin of various projected lengths. To compare the flow characteristics, we replaced the right-angle groin with an approximation of a refractive groin. This replacement had the least effect on the maximum velocity of flow in the channel. Moreover, we investigated the distribution of the density variables of temperature and salinity, and their effects on the flow characteristics around the right-angle groin. A comparison of the flow analysis results in baroclinic and barotropic conditions reveals that the flow characteristic values are very similar for both the refractive and right-angle groins. The geometry of the groin, i.e., right-angle or refractive, has little effect on the maximum speed to relative average speed. Apart from the angular separation, the arm length of the groin in downstream refractive groins has less effect on other flow characteristics than do upstream refractive groins. We also correlated a number of non-dimensional variables with respect to various flow characteristics and groin geometry. These comparisons indicate that the correlation between the thalweg height and width of the channel and groin arm’s length to projection length have been approximated using linear and nonlinear formulas regardless of inner velocity in the subcritical flow.

Ojo Sunday Isaac Fayomi1,2, Malik Abdulwahab1,3, Abimbola Patricia Idowu Popoola1, Ferdinand Asuke1,3
Journal of Marine Science and Application,2015(No. 4): 459-462
+Show Abstract -Hide Abstract

The present work focused on corrosion inhibition of AA6063 type Al-Mg-Si alloy in sodium chloride (NaCl) solution with a silicon carbide inhibitor, using the potentiodynamic electrochemical method. The aluminium alloy surface morphology was examined, in the as-received and as-corroded in the un-inhibited state, with scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS). The results obtained via linear polarization indicated a high corrosion potential for the unprotected as-received alloy. Equally, inhibition efficiency as high as 98.82% at 10.0 g/v silicon carbide addition was obtained with increased polarization resistance (Rp), while the current density reduced significantly for inhibited samples compared to the un-inhibited aluminium alloy. The adsorption mechanism of the inhibitor aluminium alloy follows the Langmuir adsorption isotherm. This shows that the corrosion rate of aluminium alloy with silicon carbide in NaCl environment decreased significantly with addition of the inhibitor.

Amit Kumar, Mangey Ram
Journal of Marine Science and Application,2015(No. 4): 450-458
+Show Abstract -Hide Abstract

Power generation is one of the most essential functions of any plant for continuous functioning without any interruption. A marine power plant (MPP) is the same section. In the present paper, the authors have tried to find the various reliability characteristics of an MPP. A marine power plant which is a composition of two generators and in which one of them is located at the stern and another at the bow, both associated to the main switchboard (MSB). The distribution switchboards (DSB) receive power from the MSB through cables and their respective junctions. Given that arrangement, a working based transition state diagram has been generated. With the help of the Markov process, a number of intro-differential equations are formed and solved by Laplace transform. Various reliability characteristics are calculated and discussed with the help of graphs.

Sandip Paul and Soumen De
Journal of Marine Science and Application,2014(No. 4): 355-361
+Show Abstract -Hide Abstract

The scattering of plane surface waves by bottom undulations in channel flow consisting of two layers is investigated by assuming that the bed of the channel is composed of porous material. The upper surface of the fluid is bounded by a rigid lid and the channel is unbounded in the horizontal directions. There exists only one wave mode corresponding to an internal wave. For small undulations, a simplified perturbation analysis is used to obtain first order reflection and transmission coefficients in terms of integrals involving the shape function describing the bottom. For sinusoidal bottom undulations and exponentially decaying bottom topography, the first order coefficients are computed. In the case of sinusoidal bottom the first order transmission coefficient is found to vanish identically. The numerical results are depicted graphically in a number of figures.

Norman Del Puppo
Journal of Marine Science and Application,2014(No. 4): 377-387
+Show Abstract -Hide Abstract

The numerical simulation of wake and free-surface flow around ships is a complex topic that involves multiple tasks: the generation of an optimal computational grid and the development of numerical algorithms capable to predict the flow field around a hull. In this paper, a numerical framework is developed aimed at high-resolution CFD simulations of turbulent, free-surface flows around ship hulls. The framework consists in the concatenation of “tools”, partly available in the open-source finite volume library OpenFOAM?. A novel, flexible mesh-generation algorithm is presented, capable of producing high-quality computational grids for free-surface ship hydrodynamics. The numerical frame work is used to solve some benchmark problems, providing results that are in excellent agreement with the experimental measures.

Vahid Vahidpour, Amir Rastegarnia, Azam Khalili
Journal of Marine Science and Application,2015(No. 3): 327-333
+Show Abstract -Hide Abstract

This paper proposes a new method for ship recognition and classification using sound produced and radiated underwater. To do so, a three-step procedure is proposed. First, the preprocessing operations are utilized to reduce noise effects and provide signal for feature extraction. Second, a binary image, made from frequency spectrum of signal segmentation, is formed to extract effective features. Third, a neural classifier is designed to classify the signals. Two approaches, the proposed method and the fractal-based method are compared and tested on real data. The comparative results indicated better recognition ability and more robust performance of the proposed method than the fractal-based method. Therefore, the proposed method could improve the recognition accuracy of underwater acoustic targets.

Hassan Bagheri and Hassan Ghassemi
Journal of Marine Science and Application,2014(No. 4): 422-429
+Show Abstract -Hide Abstract

The research performed in this paper was carried out to investigate the computational procedure to design seakeeping optimized ship hull form. To reach the optimized hull form, four stages should be done, which consists of: generate alternative hull form, seakeeping calculations, objective functions and optimization techniques. There are many parameters that may be determined in ship hull form optimization. This paper deals with developed strip theory for determining the seakeeping performance, genetic algorithm (GA) as optimization method, high order equations for curve fitting of the hull form and finally reaching to the minimum bow vertical motion in regular head waves. The Wigley hull is selected as an initial hull and carried to be optimized. Two cases are considered. For the first case, the only form coefficients of the hull (CB, CM, CW, CP) are changed and main dimensions (L, B, T) are fixed. In the second case both hull form and main dimensions are varied simultaneously. Finally, optimized hull form and its seakeeping performances are presented. The results of optimization procedure demonstrate that the optimized hull forms yield a reduction in vertical motion and acceleration.

Yan Lin, Yanyun Yu and Guan Guan
Journal of Marine Science and Application,2014(No. 4): 430-436
+Show Abstract -Hide Abstract

This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters—fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers’ reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.

Liping Sun, Youwei Kang
Journal of Marine Science and Application,2015(No. 3): 316-326
+Show Abstract -Hide Abstract

A subsea flowline jumper (FJ) is a basic connected component for the wet oil tree, subsea pipeline and riser base, and it plays an irreplaceable role in the subsea production system. During the installation of FJ, collisions often happen between FJ and other equipment, which may cause serious damage. Besides, as the operating water depth increases, the demand for the installation equipments, such as the crane and winch, will increase. The research of deepwater FJ installation in China is still in the primary stage, thus an installation method for the deepwater FJ is proposed in this paper. Finite element models of a typical M-shaped FJ installation system are built to simulate the installation procedures. Analysis results show that the installation steps designed are feasible and valid for the deepwater FJ. In order to ensure the safety of the installation process, the collision-sensitive analysis for the FJ is conducted, and results show that it is necessary to set the pick up speed at a proper value, in order to avoid collision in the installation process. Besides, the mechanical characteristics of FJ during the installation are investigated under a range of environmental conditions and it is found that the maximum stress of the FJ always happens at its central position. The basic requirements for the installation equipment are also obtained through the analysis of the main installation steps.

Yong Zhao, Tianlin Wang and Zhi Zong
Journal of Marine Science and Application,2014(No. 4): 388-393
+Show Abstract -Hide Abstract

As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows’ simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition’s behavior.

Zhaobing Jiang1, Luzhong Shao2, Fei Shao1
Journal of Marine Science and Application,2015(No. 3): 290-301
+Show Abstract -Hide Abstract

To simulate the dynamic responses of the multibody system with a floating base when the upper parts spread with a certain sequence and relative speed, the homogeneous matrix method is employed to model and simulate a four-body system with a floating base and the motions are analyzed when the upper parts are spread sequentially or synchronously. The rolling, swaying and heaving temporal variations are obtained when the multibody system is under the conditions of the static water along with the wave loads and the mean wind loads or the single pulse wind loads, respectively. The moment variations of each joint under the single pulse wind load are also gained. The numerical results showed that the swaying of the floating base is almost not influenced by the spreading time or form when the upper parts spread sequentially or synchronously, while the rolling and the heaving mainly depend on the spreading time and forms. The swaying and heaving motions are influenced significantly by the mean wind loads. The single pulse wind load also has influences on the dynamic responses. The torque of joint 3 and joint 4 in the single pulse wind environment may be twice that in the windless environment when the system spreads with 60 s duration.

Jiayu Qian, Liping Sun and Linfeng Song
Journal of Marine Science and Application,2014(No. 4): 449-454
+Show Abstract -Hide Abstract

In order to provide a theoretical guide for choosing the material for the hawsers for the FPSO side-by-side offloading system, which is moored by the yoke system, the 3D potential flow theory and full coupled time-domain analysis are presented to study the dynamic response of the offloading system. The MingZhu FPSO offloading system in the field BZ25-1 is simulated here; and four different characteristic fiber ropes are used as the material for the hawsers. To acquire an accurate hawser line tension, the polynomial fitting method is used to calculate the nonlinear stiffness of the hawsers. By comparing the hawser lines’ tension and the relative motion between the FPSO and the shuttle tanker, a suitable material for the hawser lines is chosen and discussed in this paper. The results indicate that the nonlinear stiffness characteristic of the fiber rope has a small effect on the relative motion of the vessels, but the hawser lines’ tension is greatly influenced by the different characteristics of the fiber ropes. The hawser lines’ tension with nonlinear stiffness is in accordance with the one with the upper and lower bound linear stiffness, which proves this method of fitting the fiber ropes’ nonlinear stiffness is reasonable and reliable.

S. Palraj, G. Subramanian and S. Palanichamy
Journal of Marine Science and Application,2014(No. 4): 455-461
+Show Abstract -Hide Abstract

The galvanic corrosion behaviour of aluminium 3004 - ? brass with different area ratios was studied in the tropical marine atmosphere at Tuticorin harbour over a period of 426 days. The area ratios, viz. AAluminium:A? brass, studied were 0.125, 0.25, 0.5, 1, 2, 4 and 8. The galvanic corrosion behaviour of the metals was studied in terms of the relative increase in the corrosion rate of aluminium due to galvanic coupling with ? brass, the relative decrease in the corrosion rate of ? brass due to galvanic coupling with aluminium, and the susceptibility of aluminium to pitting owing to galvanic coupling with ? brass. The galvanic potential and galvanic current of the system were monitored. Pits of different dimensions ranging from mild etchings to perforations were experienced on the borders and the surfaces of the interface of aluminium in contact with ? brass. The corrosion products resulting from galvanic corrosion were analysed using XRD and the pitting on aluminium as a result of galvanic corrosion was highlighted in terms of pit depth, size and density of pit, using a high resolution microscope. The most favourable area ratio of aluminium - ? brass in marine atmosphere in terms of gravimetric corrosion rate is 8:1 and the most unfavourable area ratio of aluminium - ? brass is 1:4.

Tao Zhang, Yong’ou Zhang, Huajiang Ouyang and Tao Guo
Journal of Marine Science and Application,2014(No. 4): 394-401
+Show Abstract -Hide Abstract

The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70?105 to 6.81?105, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill’s acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.

Changzhong Man, Chong Wang and Jinyu Yao
Journal of Marine Science and Application,2014(No. 4): 477-483
+Show Abstract -Hide Abstract

Heat transfer enhancement is used in many applications including heat exchangers, air conditioning, and refrigeration systems; hence many researchers have conducted experimental and numerical researches on heat transfer enhancement and have developed various techniques and methods. As a passive heat transfer technique, twisted tapes are widely used in various industries for their cost savings, lower maintenance requirements and the fact that they are easily set up. This paper introduces the principle of heat transfer enhancement of twisted tapes and reviews some of the experimental works done by researchers on this technique in recent years. The variously modified twisted tape inserts are widely researched and used to enhance heat transfer efficiency for heat exchangers. Twisted tapes perform better in low Re conditions and in square tubes. However, they could also cause higher pressure drops. Twisted tapes have great potential and profound implications if they can be used in traditional heat exchangers. Besides this, some correlations between the Nusselt number and friction factors are presented in this paper.

Parviz Ghadimi, Sasan Tavakoli, Abbas Dashtimanesh and Arya Pirooz
Journal of Marine Science and Application,2014(No. 4): 402-415
+Show Abstract -Hide Abstract

Recently, Morabito (2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around planing hulls. In this paper, a straight forward analysis is conducted to apply these analytical equations for finding the spray geometry profile by developing a computer program based on presented computational process. The obtained results of the developed computer program are compared against existing data in the literature and favorable accuracy is achieved. Parametric studies have been conducted for different physical parameters. Positions of spray apex are computed and three dimensional profiles of spray are examined. It is concluded that spray height increases by an increase in the speed coefficient or the deadrise angle. Ultimately, a computational process is added to Savitsky’s method and variations of spray apex are computed for different velocities. It is shown that vertical, lateral, and longitudinal positions of spray increase as the craft speed increases. On the other hand, two new angles are defined in top view and it is concluded that they have direct relation with the trim angle. However, they show inverse relation with the deadrise angle.

Parviz Ghadimi1, Alireza Bolghasi1, Mohammad A. Feizi Chekab1, Rahim Zamanian2
Journal of Marine Science and Application,2015(No. 3): 334-342
+Show Abstract -Hide Abstract

It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of air-water interface have been introduced. Anomalous transparency of air-water interface states that the sound generated by a submerged shallow depth monopole point source localized at depths less than 1/10 sound wavelength, can be transmitted into the air with omni-directional pattern. The generated sound has 35 times higher power compared to the classical ray theory prediction. In this paper, sound transmission through air-water interface for a localized underwater shallow depth source is examined. To accomplish this, two-phase coupled Helmholtz wave equations in two-phase media of air-water are solved by the commercial finite element based COMSOL Multiphysics software. Ratios of pressure amplitudes of different sound sources in two different underwater and air coordinates are computed and analyzed against non-dimensional ratio of the source depth (D) to the sound wavelength (λ). The obtained results are compared with the experimental data and good agreement is displayed.

Santu Das and Swaroop Nandan Bora
Journal of Marine Science and Application,2014(No. 4): 362-376
+Show Abstract -Hide Abstract

Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structure, gets reflected by the multi-step bottom and the porous structure, and the rest propagates into the water medium following the porous structure. Two cases are considered: first a solid vertical wall placed at a finite distance from the porous structure in the water medium following the porous structure and then a special case of an unbounded water medium following the porous structure. In both cases, boundary value problems are set up in three different media, the first medium being water, the second medium being the porous structure consisting of p vertical regions-one above each step and the third medium being water again. By using the matching conditions along the virtualvertical boundaries, a system of linear equations is deduced. The behavior of the reflection coefficient and the dimensionless amplitude of the transmitted progressive wave due to different relevant parameters are studied. Energy loss due to the propagation of oblique water wave through the porous structure is also carried out. The effects of various parameters, such as number of evanescent modes, porosity, friction factor, structure width, number of steps and angle of incidence, on the reflection coefficient and the dimensionless amplitude of the transmitted wave are studied graphically for both cases. Number of evanescent modes merely affects the scattering phenomenon. But higher values of porosity show relatively lower reflection than that for lower porosity. Oscillation in the reflection coefficient is observed for lower values of friction factor but it disappears with an increase in the value of friction factor. Amplitude of the transmitted progressive wave is independent of the porosity of the structure. But lower value of friction factor causes higher transmission. The investigation is then carried out for the second case, i.e., when the wall is absent. The significant difference between the two cases considered here is that the reflection due to a thin porous structure is very high when the solid wall exists as compared to the case when no wall is present. Energy loss due to different porosity, friction factor, structure width and angle of incidence is also examined. Validity of our model is ascertained by matching it with an available one.

Peng Zhang
Journal of Marine Science and Application,2014(No. 4): 416-421
+Show Abstract -Hide Abstract

The high-speed digital imaging technique is applied to observe the developing process of flash boiling spray of dimethyl ether at low ambient pressure, and the effects of nozzle opening pressure and nozzle hole diameter on the spray shape, spray tip penetration and spray angle during the injection are investigated. The experimental results show that the time when the vortex ring structure of flash boiling spray forms and its developing process are determined by the combined action of the bubble growth and breakup in the spray and the air drag on the leading end of spray; with the enhancement of nozzle opening pressure, the spray tip penetration increases and the spray angle decreases. The influence of nozzle hole diameter on the spray tip penetration is relatively complicated, the spray tip penetration is longer with a smaller nozzle hole diameter at the early stage of injection, while the situation is just opposite at the later stage of injection. This paper establishes that the variation of spray angle is consistent with that of nozzle hole diameter.

Ahmadreza Vasel-Be-Hagh, Rupp Carriveau and David S-K Ting
Journal of Marine Science and Application,2014(No. 4): 467-476
+Show Abstract -Hide Abstract

An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.

Dilip Das
Journal of Marine Science and Application,2015(No. 3): 270-282
+Show Abstract -Hide Abstract

There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.

Arpan Kumar Mondal, Pankaj Biswas, Swarup Bag
Journal of Marine Science and Application,2015(No. 3): 250-260
+Show Abstract -Hide Abstract

Submerged arc welding (SAW) is advantageous for joining high thickness materials in large structure due to high material deposition rate. The non-uniform heating and cooling generates the thermal stresses and subsequently the residual stresses and distortion. The longitudinal and transverse residual stresses and angular distortion are generally measured in large panel structure of submerged arc welded fillet joints. Hence, the objective of this present work is to quantify the amount of residual stress and distortion in and around the weld joint due to positioning of stiffeners tack. The tacking sequence influences the level of residual stress and proper controlling of tacking sequences is required to minimize the stress. In present study, an elasto-plastic material behavior is considered to develop the thermo mechanical model which predicts the residual stress and angular distortion with varying tacking sequences. The simulated result reveals that the tacking sequence heavily influences the residual stress and deformation pattern of the single sided fillet joint. The finite element based numerical model is calibrated by comparing the experimental data from published literature. Henceforth, the angular distortions are measured from an in-house developed experimental set-up. A fair agreement between the predicted and experimental results indicates the robustness of the developed numerical model. However, the most significant conclusion from present study states that tack weld position should be placed opposite to the fillet weld side to minimize the residual stress.

Hailong Chen, Ji Li, Conglai Long, Tong Wei, Guoqing Ning, Jun Yan and Zhuangjun Fan
Journal of Marine Science and Application,2014(No. 4): 462-466
+Show Abstract -Hide Abstract

This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductive GNS-CNT networks. As a result, the NiS/GNS/CNT electrode showed a high specific capacitance of 2 377 F?g-1 at 2 mV?s-1 and good cycling stability compared with the pure NiS (1 599 F?g-1). The enhanced electrochemical performances are attributed to the synergetic effect between the conductive carbon and the pseudo-capacitive NiS. The high performance supercapacitor may provide application in the sea flashing signal system.

Hongyang Chen, Qi Li and Dejiang Shang
Journal of Marine Science and Application,2014(No. 4): 437-448
+Show Abstract -Hide Abstract

In order to predict acoustic radiation from a structure in waveguide, a method based on wave superposition is proposed, in which the free-space Green’s function is used to match the strength of equivalent sources. In addition, in order to neglect the effect of sound reflection from boundaries, necessary treatment is conducted, which makes the method more efficient. Moreover, this method is combined with the sound propagation algorithms to predict the sound radiated from a cylindrical shell in waveguide. Numerical simulations show the effect of how reflections can be neglected if the distance between the structure and the boundary exceeds the maximum linear dimension of the structure. It also shows that the reflection from the bottom of the waveguide can be approximated by plane wave conditionally. The proposed method is more robust and efficient in computation, which can be used to predict the acoustic radiation in waveguide.

Chunyu Guo1, Qi Zhang1,2, Yu Shen1
Journal of Marine Science and Application,2015(No. 3): 225-233
+Show Abstract -Hide Abstract

The scale effect leads to large discrepancies between the wake fields of model-scale and actual ships, and causes differences in cavitation performance and exciting forces tests in predicting the performance of actual ships. Therefore, when test data from ship models are directly applied to predict the performance of actual ships, test results must be subjected to empirical corrections. This study proposes a method for the reverse design of the hull model. Compared to a geometrically similar hull model, the wake field generated by the modified model is closer to that of an actual ship. A non-geometrically similar model of a Korean Research Institute of Ship and Ocean Engineering (KRISO)’s container ship (KCS) was designed. Numerical simulations were performed using this model, and its results were compared with full-scale calculation results. The deformation method of getting the wake field of full-scale ships by the non-geometrically similar model is applied to the KCS successfully.

Pu Liang1, Ming Hongand Zheng Wang1,2
Journal of Marine Science and Application,2015(No. 3): 234-243
+Show Abstract -Hide Abstract

In this paper, the vibration characteristics of the structure in the finite fluid domain are analyzed using a coupled finite element method. The added mass matrix is calculated with finite element method (FEM) by 8-node acoustic fluid elements. The vibration characteristics of the structure in the finite fluid domain are calculated combining structure FEM mass matrix. By writing relevant programs, the numerical analysis on vibration characteristics of a submerged cantilever rectangular plate in finite fluid domain and loaded ship model is performed. A modal identification experiment for the loaded ship model in air and in water is conducted and the experiment results verify the reliability of the numerical analysis. The numerical method can be used for further research on vibration characteristics and acoustic radiation problems of the structure in the finite fluid domain.

Seyed Shahab Emamzadeh1, Mohammad Taghi Ahmadi2, Soheil Mohammadi3, Masoud Biglarkhani4
Journal of Marine Science and Application,2015(No. 3): 302-315
+Show Abstract -Hide Abstract

In this paper, an investigation into the propagation of far field explosion waves in water and their effects on nearby structures are carried out. For the far field structure, the motion of the fluid surrounding the structure may be assumed small, allowing linearization of the governing fluid equations. A complete analysis of the problem must involve simultaneous solution of the dynamic response of the structure and the propagation of explosion wave in the surrounding fluid. In this study, a dynamic adaptive finite element procedure is proposed. Its application to the solution of a 2D fluid-structure interaction is investigated in the time domain. The research includes: a) calculation of the far-field scatter wave due to underwater explosion including solution of the time-depended acoustic wave equation, b) fluid-structure interaction analysis using coupled Euler-Lagrangian approach, and c) adaptive finite element procedures employing error estimates, and re-meshing. The temporal mesh adaptation is achieved by local regeneration of the grid using a time-dependent error indicator based on curvature of pressure function. As a result, the overall response is better predicted by a moving mesh than an equivalent uniform mesh. In addition, the cost of computation for large problems is reduced while the accuracy is improved.

Qingchang Meng, Zhihong Zhang, Jubin Liu
Journal of Marine Science and Application,2015(No. 3): 283-289
+Show Abstract -Hide Abstract

To deal with the effect of compressible fluids on the supercavitating flow over the subsonic disk cavitator of a projectile, a finite volume method is formulated based on the ideal compressible potential theory. By using the continuity equation and Tait state equation as well as Riabouchinsky closure model, an “inverse problem” solution is presented for the supercavitating flow. According to the impenetrable condition on the surface of supercavity, a new iterative method for the supercavity shape is designed to deal with the effect of compressibility on the supercavity shape, pressure drag coefficient and density field. By this method, the very low cavitation number can be computed. The calculated results agree well with the experimental data and empirical formula. At the subsonic condition, the fluid compressibility will make supercavity length and radius increase. The supercavity expands, but remains spheroid. The effect on the first 1/3 part of supercavity is not obvious. The drag coefficient of projectile increases as the cavitation number or Mach number increases. With Mach number increasing, the compressibility is more and more significant. The compressibility must be considered as far as the accurate calculation of supercavitating flow is concerned.

Reza Ghazangian1, Mehdi Shafieefar1, Roozbeh Panahi1, Mohammad R. Allahyar2
Journal of Marine Science and Application,2015(No. 3): 261-269
+Show Abstract -Hide Abstract

The objective of this paper is to introduce an appropriate unidirectional wave spectrum model for the Strait of Hormuz. The research is focused on assessing performance of standard wave spectrum models in the region. By evaluating such models based on valuable measurement data recently published, the calibration procedure has been conducted on such standard models to reach a better concordance between a modified standard spectral model and observed field spectra. The calibration is performed initially with respect to four distinct directions related to four available measurement stations. So, it results in four sets of coefficients for a nominated model. Next, it is continued to reach just one model insensitive to directions. Results clearly showed that the International Towing Tank Conference (ITTC) model is more appropriate than Joint North Sea Wave Project (JONSWAP) and Pierson and Moskowitz (PM) models in this area, even without any calibration. However, modifications have been successful on improving the conformity of the model.

Md. Shamim Mahmud
Journal of Marine Science and Application,2015(No. 3): 244-249
+Show Abstract -Hide Abstract

Centrifugal forces are commonly created when ships turn, which may cause a ship to capsize in a critical situation. A mathematical model has been developed to optimize the stability coefficients for ship, with the aim to prevent capsizing and to increase ship maneuverability in high-speed water craft. This model can be used to develop algorithms for control system improvement. The mathematical model presented in this paper optimized the use of multipurpose hydrofoils to reduce heeling and the trimming moment, maintaining an upright ship’s position and lessening the resistance via transverse force. Conventionally, the trimming and heeling of a ship are controlled using ballast water; however, under variable sea conditions it is sometimes difficult to control a ship’s motion using ballast water. In this case, a hydrofoil would be more stable and maneuverable than a ballast tank controlled vessel. A movable hydrofoil could theoretically be adapted from moveable aerofoil technology. This study proves the merit of further investigation into this possibility.

Changhui Song1, Weicheng Cui1,2
Journal of Marine Science and Application,2020(3): 415-429
+Show Abstract -Hide Abstract

This paper presents a comprehensive review and analysis of ship hull cleaning technologies. Various cleaning methods and devices applied to dry-dock cleaning and underwater cleaning are introduced in detail, including rotary brushes, high-pressure and cavitation water jet technology, ultrasonic technology, and laser cleaning technology. The application of underwater robot technology in ship cleaning not only frees divers from engaging in heavy work but also creates safe and efficient industrial products. Damage to the underlying coating of the ship caused by the underwater cleaning operation can be minimized by optimizing the working process of the underwater cleaning robot. With regard to the adhesion technology mainly used in underwater robots, an overview of recent developments in permanent magnet and electromagnetic adhesion, negative pressure force adhesion, thrust force adhesion, and biologically inspired adhesion is provided. Through the analysis and comparison of current underwater robot products, this paper predicts that major changes in the application of artificial intelligence and multirobot cooperation, as well as optimization and combination of various technologies in underwater cleaning robots, could be expected to further lead to breakthroughs in developing next-generation robots for underwater cleaning.

Kai Yu, Peikai Yan, Jian Hu
Journal of Marine Science and Application,2020(3): 436-443
+Show Abstract -Hide Abstract

In this study, a series of numerical calculations are carried out in ANSYS Workbench based on the unidirectional fluid-solid coupling theory. Using the DTMB 4119 propeller as the research object, a numerical simulation is set up to analyze the open water performance of the propeller, and the equivalent stress distribution of the propeller acting in the flow field and the axial strain of the blade are analyzed. The results show that FLUENT calculations can provide accurate and reliable calculations of the hydrodynamic load for the propeller structure. The maximum equivalent stress was observed in the blade near the hub, and the tip position of the blade had the largest stress. With the increase in speed, the stress and deformation showed a decreasing trend.

Peng Chen1, Jiahao Chen2, Zhiqiang Hu1,3
Journal of Marine Science and Application,2020(3): 339-361
+Show Abstract -Hide Abstract

Due to the dissimilar scaling issues, the conventional experimental method of FOWTs can hardly be used directly to validate the full-scale global dynamic responses accurately. Therefore, it is of absolute necessity to find a more accurate, economic and efficient approach, which can be utilized to predict the full-scale global dynamic responses of FOWTs. In this paper, a literature review of experimental-numerical methodologies and challenges for FOWTs is made. Several key challenges in the conventional basin experiment issues are discussed, including scaling issues; coupling effects between aero-hydro and structural dynamic responses; blade pitch control strategies; experimental facilities and calibration methods. Several basin experiments, industrial projects and numerical codes are summarized to demonstrate the progress of hybrid experimental methods. Besides, time delay in hardware-in-the-loop challenges is concluded to emphasize their significant role in real-time hybrid approaches. It is of great use to comprehend these methodologies and challenges, which can help some future researchers to make a footstone for proposing a more efficient and functional hybrid basin experimental and numerical method.

Shuijin Li1, Masoud Hayatdavoodi1,2, R. Cengiz Ertekin2
Journal of Marine Science and Application,2020(3): 317-338
+Show Abstract -Hide Abstract

Structural integrity has remained a challenge for design and analysis of wave energy devices. A difficulty in assessment of the structural integrity is often laid in the accurate determination of the wave-induced loads on the wave energy devices and the repones of the structure. Decoupled hydroelastic response of a submerged, oscillating wave energy device to extreme nonlinear wave loads is studied here. The submerged wave energy device consists of an oscillating horizontal disc attached to a direct-drive power take-off system. The structural frame of the wave energy device is fixed on the seafloor in shallow water. Several extreme wave conditions are considered in this study. The nonlinear wave loads on members of the submerged structure are obtained by use of the level I Green-Naghdi equations and Morison’s equation for cylindrical members. Distribution of Von Mises stresses and the elastic response of the structure to the extreme wave loads are determined by use of a finite element method. The decoupled hydroelastic analysis of the structure is carried out for devices built by four different materials, namely stainless steel, concrete, aluminium alloy, and titanium alloy. The elastic response of these devices is studied and results are compared with each other. Points of maximum stress and deformations are determined and the structural integrity under the extreme conditions is assessed. It is shown that the proposed approaches provide invaluable information about the structural integrity of wave energy devices.

Mohammad Kazem Tahmasebi1, Rahim Shamsoddini1, Bahador Abolpour2
Journal of Marine Science and Application,2020(3): 381-387
+Show Abstract -Hide Abstract

Liquid sloshing is a common phenomenon in the transportation of liquid-cargo tanks. Liquid waves lead to fluctuating forces on the tank walls. If these fluctuations are not predicted or controlled, for example, by using baffles, they can lead to large forces and momentums. The volume of fluid (VOF) two-phase numerical model in OpenFOAM open-source software has been widely used to model the liquid sloshing. However, a big challenge for modeling the sloshing phenomenon is selecting a suitable turbulence model. Therefore, in the present study, different turbulence models were studied to determine their sloshing phenomenon prediction accuracies. The predictions of these models were validated using experimental data. The turbulence models were ranked by their mean error in predicting the free surface behaviors. The renormalization group (RNG) k-ε and the standard k-ω models were found to be the best and worst turbulence models for modeling the sloshing phenomena, respectively; moreover, the SST k-ω model and v2-f k-ε results were very close to the RNG k-ε model result.

Shiqiang Yan, Q. W. Ma, Jinghua Wang
Journal of Marine Science and Application,2020(3): 362-380
+Show Abstract -Hide Abstract

In the Lagrangian meshless (particle) methods, such as the smoothed particle hydrodynamics (SPH), moving particle semi-implicit (MPS) method and meshless local Petrov-Galerkin method based on Rankine source solution (MLPG_R), the Laplacian discretisation is often required in order to solve the governing equations and/or estimate physical quantities (such as the viscous stresses). In some meshless applications, the Laplacians are also needed as stabilisation operators to enhance the pressure calculation. The particles in the Lagrangian methods move following the material velocity, yielding a disordered (random) particle distribution even though they may be distributed uniformly in the initial state. Different schemes have been developed for a direct estimation of second derivatives using finite difference, kernel integrations and weighted/moving least square method. Some of the schemes suffer from a poor convergent rate. Some have a better convergent rate but require inversions of high order matrices, yielding high computational costs. This paper presents a quadric semi-analytical finite-difference interpolation (QSFDI) scheme, which can achieve the same degree of the convergent rate as the best schemes available to date but requires the inversion of significant lower-order matrices, i.e. 3×3 for 3D cases, compared with 6×6 or 10×10 in the schemes with the best convergent rate. Systematic patch tests have been carried out for either estimating the Laplacian of given functions or solving Poisson’s equations. The convergence, accuracy and robustness of the present schemes are compared with the existing schemes. It will show that the present scheme requires considerably less computational time to achieve the same accuracy as the best schemes available in literatures, particularly for estimating the Laplacian of given functions.

Naga Venkata Rakesh Nimmagadda, Lokeswara Rao Polisetty, Anantha Subramanian Vaidyanatha Iyer
Journal of Marine Science and Application,2020(3): 398-414
+Show Abstract -Hide Abstract

High-speed planing crafts have successfully evolved through developments in the last several decades. Classical approaches such as inviscid potential flow-based methods and the empirically based Savitsky method provide general understanding for practical design. However, sometimes such analyses suffer inaccuracies since the air-water interface effects, especially in the transition phase, are not fully accounted for. Hence, understanding the behaviour at the transition speed is of fundamental importance for the designer. The fluid forces in planing hulls are dominated by phenomena such as flow separation at various discontinuities viz., knuckles, chines and transom, with resultant spray generation. In such cases, the application of potential theory at high speeds introduces limitations. This paper investigates the simulation of modelling of the pre-planing behaviour with a view to capturing the air-water interface effects, with validations through experiments to compare the drag, dynamic trim and wetted surface area. The paper also brings out the merits of gridding strategies to obtain reliable results especially with regard to spray generation due to the air-water interface effects. The verification and validation studies serve to authenticate the use of the multi-gridding strategies on the basis of comparisons with simulations using model tests. It emerges from the study that overset/chimera grids give better results compared with single unstructured hexahedral grids. Two overset methods are investigated to obtain reliable estimation of the dynamic trim and drag, and their ability to capture the spray resulting from the air-water interaction. The results demonstrate very close simulation of the actual flow kinematics at steady-speed conditions in terms of spray at the air-water interface, drag at the pre-planing and full planing range and dynamic trim angles.