Journal of Marine Science and Application 2009 no. 1
SUN Cheng-meng and JI Zhuo-shang
Journal of Marine Science and Application,2009(No. 1): 1-6
+Show Abstract -Hide Abstract

WANG Bo*, WAN Lei, XU Yu-ru and QIN Zai-bai
Journal of Marine Science and Application,2009(No. 1): 7-12
+Show Abstract -Hide Abstract

Accurate modeling and simulation of autonomous underwater vehicle (AUV) is essential for autonomous control and maneuverability research. In this paper, a mini AUV? “MAUV-Ⅱ” was researched and the nonlinear mathematic model of the AUV in spatial motion was derived based on momentum theorem. The forces acting on AUV were resolved to several modules which were expressed in matrix form. Based on the motion model and combined with virtual reality technology, a motion simulation system was constructed. Considering the characteristic of “MAUV-Ⅱ”, the heading control and depth control were simulated by adopting S-surface control method. A long distance traveling simulation experiment based on target planning was also done. The simulation results show that the “MAUV-Ⅱ” has good spatial maneuverability, and verify the feasibility and reliability of control software.

PENG Xing-ning,NIE Wu and YAN Bo
Journal of Marine Science and Application,2009(No. 1): 13-17
+Show Abstract -Hide Abstract

The protective bulkhead of the large surface warship need to be designed working in the membrane mode. In this paper, a formula is derived for calculating the plastic deformation of the protective bulkhead subjected to blast loading by the energy method, and the ultimate capability of the protective bulkhead can be calculated. The design demand of the protective bulkhead is discussed. The calculation is compared with external experiments, which indicates that the formula is of great application value.

CHEN Zhi-jie*, WANG Yong-xue, WANG Guo-yu and HOU Yong
Journal of Marine Science and Application,2009(No. 1): 18-26
+Show Abstract -Hide Abstract

The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the process of immersion, based on the twin-barge immersing operation method, the frequency-domain analysis of the tunnel element motions under wave actions was made. The linear wave diffraction theory and the three-dimensional source distribution method were applied to calculate the wave loads and motion responses of the tunnel element under different incident wave conditions. In the study, movement of the two barges in the water was assumed to be small and was ignored. Cable tension was computed by the static method. On the basis of the above theories, a computer program was made, and two cases were taken to check the validity of the program. The results showed that wave loads acting on the immersed tunnel element are relatively large near the water surface, and they decrease with the increase of immersing depth of the tunnel element. Wave loads first increase, then decrease, with the increase of wave period. The motion responses of the tunnel element are also generally large near the water surface and decrease as the immersing depth increases.

TENG Bin and NING De-zhi*
Journal of Marine Science and Application,2009(No. 1): 27-32
+Show Abstract -Hide Abstract

Based on the fifth-order Stokes regular wave theory, a simplified model for extreme-wave kinematics in deep sea was developed. In this model, from the wave records the average of two neighboring wave periods for the extreme crest or trough was defined as the period of the Stokes wave by the up and down zero-crossing methods. Then the input wave amplitude was deduced by substituting the wave period and extreme crest or trough into the expression for the fifth-order Stokes wave elevation. Thus the corresponding formula for the wave velocity can be used to describe kinematics beneath the extreme wave. By comparison with the published numerical models and experimental data, the proposed model is validated to be able to calculate the extreme wave velocity rather easily and accurately.

LIU Sheng and LI Yan-yan
Journal of Marine Science and Application,2009(No. 1): 33-39
+Show Abstract -Hide Abstract

Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.

LIANG Li-fu*, LIU Zong-min and GUO Qing-yong
Journal of Marine Science and Application,2009(No. 1): 40-45
+Show Abstract -Hide Abstract

The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.

WANG Yun-long* and JI Zhuo-shang
Journal of Marine Science and Application,2009(No. 1): 46-52
+Show Abstract -Hide Abstract

In the process of designing self-elevating drilling unit, it is important, yet complicated, to use comparison and filtering to select the optimum scheme from the feasible ones. In this research, an index system and methodology for the evaluation of self-elevating drilling unit was proposed. Based on this, a multi-objective combinatorial optimization model was developed, using the improved grey relation Analysis (GRA), in which the analytic hierarchy process (AHP) was used to determine the weights of the evaluating indices. It considered the connections within the indices, reflecting the objective nature of things, and also considered the subjective interests of ship owners and the needs of designers. The evaluation index system and evaluation method can be used in the selection of an optimal scheme and advanced assessment. A case study shows the index system and evaluation method are scientific, reasonable, and easy to put into practice. At the same time, such an evaluation index system and evaluation method will be helpful for making decisions for other mobile platforms.

LI Si-chun*, YANG De-sen and JIN Li-ping
Journal of Marine Science and Application,2009(No. 1): 53-57
+Show Abstract -Hide Abstract

An algorithm for estimating the cross-bispectrum of an acoustic vector signal was formulated. Composed features of sound pressure and acoustic vector signals are extracted by the proposed algorithm and other estimating algorithms for secondary and higher order spectra. Its effectiveness was tested with lake and sea trial data. These features can be used to construct an input vector set for a radial basis function neural network. The classification of vessels can then be made based on the extracted features. It was shown that the composed features of acoustic vector signals are more easily divided into categories than those of pressure signals. When using the composed features of acoustic vector signals, the recognition rate of underwater acoustic targets improves.

WANG Hong-jian* and XIONG Wei
Journal of Marine Science and Application,2009(No. 1): 58-64
+Show Abstract -Hide Abstract

Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.

ZHAO Jun-yi*, MENG Wei-xiao and JIA Shi-lou
Journal of Marine Science and Application,2009(No. 1): 65-70
+Show Abstract -Hide Abstract

A superimposed training (ST) based channel estimation method is presented that provides accurate estimation of a sparse underwater acoustic orthogonal frequency-division multiplexing (OFDM) channel while improving bandwidth transmission efficiency. A periodic low power training sequence is superimposed on the information sequence at the transmitter. The channel parameters can be estimated without consuming any extra system bandwidth, but an unknown information sequence can interfere with the ST channel estimation method, so in this paper, an iterative method was adopted to improve estimation performance. An underwater acoustic channel’s properties include large channel dimensions and a sparse structure, so a matching pursuit (MP) algorithm was used to estimate the nonzero taps, allowing the performance loss caused by additive white Gaussian noise (AWGN) to be reduced. The results of computer simulations show that the proposed method has good channel estimation performance and can reduce the peak-to-average ratio of the OFDM channel as well.

GU Cai-xiang*, ZHU Guan-jun, LI Lei, TIAN Xiao-yu and ZHU Guang-yao
Journal of Marine Science and Application,2009(No. 1): 71-76
+Show Abstract -Hide Abstract

In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.

HUANG Hai-yan* and WANG De-yu
Journal of Marine Science and Application,2009(No. 1): 77-82
+Show Abstract -Hide Abstract

The goal of this effort was to provide a static and dynamic collaborative optimization (CO) model for the design of ship hull structure. The CO model integrated with static, mode and dynamic analyses. In the system-level optimization model, a new objective function was advised, integrating all the subsystem-levels’ objective functions, so as to eliminate the effects of dimensions and magnitude order. The proposed CO architecture enabled multi-objectives of the system and subsystem-level to be considered at both levels during optimization. A bi-level optimization strategy was advised, using the multi-island genetic algorithm. The proposed model was demonstrated with a deck optimization problem of container ship stern. The analysis progress and results of example show that the CO strategy is not only feasible and reliable, but also well suited for use in actual optimization problems of ship design.