Journal of Marine Science and Application [Marine Corrosion and Protection]
Sahil Julka, Mohd Imran Ansari, Dineshsingh G. Thakur
Journal of Marine Science and Application,2016(No. 4): 484-492
+Show Abstract -Hide Abstract

Successful co-deposition of fine particulate matter within an Electroless Nickel-Phosphorous (ENi-P) matrix is dependent on various factors like bath composition, particle compatibility with metallic matrix, bath reactivity (pH), particle size and their distribution. ENi-P deposits incorporating Al2O3/ Alumina in a disperse phase have varied effects on properties and attributes like surface roughness (Ra), microhardness, wear resistance, corrosion resistance and surface morphology of the deposits obtained. This paper experimentally investigates the effect of alumina (1.55 g/L) on Ra, microhardness, surface morphology, deposition rate, wettability, wear resistance and corrosion resistance of ENi-P-Al2O3 composite deposits on mild steel substrates at bath pH 5, 7 and 9. Study reveals that optimum deposit parameters and deposition rates are achieved with bath pH. However, not much study has been undertaken concerning composite deposits obtained from higher bath pH or basic bath. This is attributable to the fact that at higher bath pH or alkaline baths, the bath gets unstable and eventually degrades or decomposes, thereby resulting in sub optimal or poor deposition. Hence, experimental investigations carried out by preparing suitable baths, operating under optimum conditions, and enabling successful composite deposition in acidic and alkaline baths have revealed that there is a significant improvement in the above mentioned properties of the as-deposited composite deposits, as the pH is increased from pH 5 to pH 9. This aspect can therefore be advantageously utilized for preparing various marine components like fasteners, nuts, bolts, washers, pipes, cables, components having relative motion etc.

G. Subramanian1, G. T. Parthiban2, K. Muthuraman2, P. Ramakrishna rao3
Journal of Marine Science and Application,2016(No. 3): 343-348
+Show Abstract -Hide Abstract

In view of their excellent mechanical properties, workability and heat treatment characteristics, MDN 138 & MDN 250 have been widely used in missile, rocket and aerospace industries. With light weight and high performance characteristics HE 20 aluminium alloy acts as an important material in defence and aerospace applications. The galvanic corrosion behaviour of the metal combinations HE 20/MDN 138 and HE 20/MDN 250, with 1:1 area ratio, has been studied in natural seawater using the open well facility of CECRI’s Offshore Platform at Tuticorin for a year. The open circuit potentials of MDN 138, MDN 250 and HE 20 of the individual metal, the mixed potential and galvanic current of the couples HE 20/MDN 138 and HE 20/MDN 250 were periodically monitored throughout the study period. The calcareous deposits on MDN 138 and MDN 250 were analysed using XRD. The results of the study reveal that that HE 20 has offered required amount of protection to MDN 138 & MDN 250.

Abubakar Muazu1, Yaro Shehu Aliyu2,3,4, Malik Abdulwahab2,3, Abimbola Patricia Idowu Popoola3
Journal of Marine Science and Application,2016(No. 2): 208-213
+Show Abstract -Hide Abstract

In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the Al-6%Zn-1%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic Al2Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.

S. Palraj, M. Selvaraj, K. Maruthan and M. Natesan
Journal of Marine Science and Application,2015(No. 1): 105-112
+Show Abstract -Hide Abstract

In continuation of the extensive studies carried out to update the corrosion map of India, in this study, the degradation of mild steel by air pollutants was studied at 16 different locations from Nagore to Ammanichatram along the east coast of Tamilnadu, India over a period of two years. The weight loss study showed that the mild steel corrosion was more at Nagapattinam site, when compared to Ammanichatram and Maravakadu sites. A linear regression analysis of the experimental data was attempted to predict the mechanism of the corrosion. The composition of the corrosion products formed on the mild steel surfaces was identified by XRD technique. The corrosion rate values obtained are discussed in the light of the weathering parameters, atmospheric pollutants such as salt content & SO2 levels in the atmosphere, corrosion products formed on the mild steel surfaces.

S. Palraj, G. Subramanian and S. Palanichamy
Journal of Marine Science and Application,2014(No. 4): 455-461
+Show Abstract -Hide Abstract

The galvanic corrosion behaviour of aluminium 3004 - ? brass with different area ratios was studied in the tropical marine atmosphere at Tuticorin harbour over a period of 426 days. The area ratios, viz. AAluminium:A? brass, studied were 0.125, 0.25, 0.5, 1, 2, 4 and 8. The galvanic corrosion behaviour of the metals was studied in terms of the relative increase in the corrosion rate of aluminium due to galvanic coupling with ? brass, the relative decrease in the corrosion rate of ? brass due to galvanic coupling with aluminium, and the susceptibility of aluminium to pitting owing to galvanic coupling with ? brass. The galvanic potential and galvanic current of the system were monitored. Pits of different dimensions ranging from mild etchings to perforations were experienced on the borders and the surfaces of the interface of aluminium in contact with ? brass. The corrosion products resulting from galvanic corrosion were analysed using XRD and the pitting on aluminium as a result of galvanic corrosion was highlighted in terms of pit depth, size and density of pit, using a high resolution microscope. The most favourable area ratio of aluminium - ? brass in marine atmosphere in terms of gravimetric corrosion rate is 8:1 and the most unfavourable area ratio of aluminium - ? brass is 1:4.

Luciana V. R. de Messano, Barbara L. Ignacio, Maria H. C. B. Neves and Ricardo Coutinho
Journal of Marine Science and Application,2014(No. 3): 346-353
+Show Abstract -Hide Abstract

In the presence of biofilms, stainless steels (SS) exhibits an increase in corrosion potential, called ennoblement. In the present study, the corrosion potential (Ecorr) behavior of the duplex SS UNS S32760 was recorded simultaneously with the in situ marine biofilm formation in two areas at Arraial do Cabo, Southeastern Brazil. The biofilm at Forno Harbor (an anthropogenically disturbed area) was characterized by higher relative abundances of Bacteria at day 2, followed by diatoms (especially Navicula sp.) on day 10 and dinoflagellates on day 18, whereas no clear trend was recorded at Cabo Frio Island (an undisturbed area). The ennoblement of Ecorr values was site-dependent. In a complementary laboratory assay, biofilms were removed and the Ecorr values registered in sterile conditions for the subsequent 10 days and corroborated in situ results. Understanding biofilms and SS interactions has important implications for materials science and engineering decisions as well as helping to fill in important gaps in this knowledge.

Selma Ergin and Erinç Dobrucal?
Journal of Marine Science and Application,2014(No. 2): 206-211
+Show Abstract -Hide Abstract

The exhaust smoke dispersion for a generic frigate is investigated numerically through the numerical solution of the governing fluid flow, energy, species and turbulence equations. The main objective of this work is to obtain the effects of the yaw angle, velocity ratio and buoyancy on the dispersion of the exhaust smoke. The numerical method is based on the fully conserved control-volume representation of the fully elliptic Navier-Stokes equations. Turbulence is modeled using a two-equation (k-ε) model. The flow visualization tests using a 1/100 scale model of the frigate in the wind tunnel were also carried out to determine the exhaust plume path and to validate the computational results. The results show that down wash phenomena occurs for the yaw angles between ψ =10° and 20°. The results with different exhaust gas temperatures show that the buoyancy effect increases with the increasing of the exhaust gas temperature. However, its effect on the plume rise is less significant in comparison with its momentum. A good agreement between the predictions and experiment results is obtained.

G. Subramanian, S. Palraj and S. Palanichamy
Journal of Marine Science and Application,2014(No. 2): 230-236
+Show Abstract -Hide Abstract

The galvanic corrosion behaviour of aluminium 3004 and copper with different area ratios were studied in the tropical marine atmosphere at Tuticorin harbour over a period of 426 days. The area ratios of AAl : ACu, studied were 1:1, 1:2, 1:4, 1:8, 2:1, 4:1 & 8:1. The galvanic corrosion behaviour of metals was studied in terms of relative increase in the corrosion rate of aluminium due to galvanic coupling with copper, relative decrease in the corrosion rate of copper due to galvanic coupling with aluminium, and the susceptibility of aluminium to pitting owing to galvanic coupling with copper. The galvanic potential and galvanic current of the system were monitored. Pits of different dimensions ranging from mild etchings to perforations were experienced on the borders and the surfaces of the interface of aluminium in contact with copper. The weathering parameters and the environmental pollutants which have a major role in influencing the galvanic corrosion of metals were also monitored. The corrosion products resulting from galvanic corrosion were analysed using XRD and the pitting on aluminium resulting from galvanic corrosion has been highlighted in terms of pit depth, size and density of pit, using a high resolution microscope.

S. Palanichamy and G. Subramanian
Journal of Marine Science and Application,2014(No. 1): 117-126
+Show Abstract -Hide Abstract

In the present study an attempt has been made to investigate the relationship between the variations in the fouling assemblage and corrosion behaviour of HSLA steel at three coastal locations in the Gulf of Mannar, India, over a period of 24 months. Oyster fouling was dominant in the Tuticorin open sea, while barnacles were the major foulants in the Tuticorin harbour and Mandapam. The fouling load in the Tuticorin waters was higher when compared to the Mandapam waters. The corrosion rates decreased progressively with the immersion time at all three test locations. In the Tuticorin open sea, the corrosion rates were higher when compared to the other two locations throughout the study period. The surface of the coupons was characterized by crevices beneath the hard foulers in the Tuticorin harbour and Mandapam, whereas in the Tuticorin open sea, the coupons experienced crevices of a tunneling nature. The percentage of the loss of the tensile strength increased with time at all the test locations.

Ibrahim S. Seddiek, Mosaad A. Mosleh3 and Adel A. Banawan
Journal of Marine Science and Application,2013(No. 4): 463-472
+Show Abstract -Hide Abstract

The progress of economic globalization, the rapid growth of international trade, and the maritime transportation has played an increasingly significant role in the international supply chain. As a result, worldwide seaports have suffered from a central problem, which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed. Many ports have taken the necessary precautions to overcome this problem, while others still suffer due to the presence of technical and financial constraints. In this paper, the barriers, interconnection standards, rules, regulations, power sources, and economic and environmental analysis related to ships, shore-side power were studied in efforts to find a solution to overcome his problem. As a case study, this paper investigates the practicability, costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga, Egypt. The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving. Moreover, environmentally, it could achieve an annual reduction in exhaust gas emissions of CO2, CO, NOx, P.M, and SO2 by 276, 2.32, 18.87, 0.825 and 3.84 tons, respectively.

G. Subramanian and S. Palanichamy
Journal of Marine Science and Application,2013(No. 4): 500-509
+Show Abstract -Hide Abstract

Corrosion behaviour and biofouling characteristics of mild steel in three different coastal locations in the Gulf of Mannar, India have been studied over a period of 24 months. Oyster fouling was predominant at Open sea - Tuticorin, while barnacle fouling was dominant at both Mandapam and Harbour - Tuticorin. The rate of corrosion for 24 months exposure period was highest at Mandapam, where fouling was minimal. The surface of the mild steel was characterized by etchings & crevices beneath the hard foulers attached on it, at all the test locations. The depth of crevice caused by hard foulers was higher at Open sea - Tuticorin followed by Harbour - Tuticorin and Mandapam. The loss in ultimate tensile strength was more in Open sea - Tuticorin than the other two locations. Corrosion behaviour of mild steel is discussed based on the variation in the biofouling assemblage at the three test locations.

Jie Gao, Zhenjiang Yu, Xiaohui Zhang, Dan Zhao, Fangbo Zhao
Journal of Marine Science and Application,2013(No. 2): 245-249
+Show Abstract -Hide Abstract

The objective of this research was to examine if certain strains of Bacillus bacteria, could survive in dry powder products and if so, could the bacteria degrade organic contaminants in saline wastewater on a ship. As part of the study, we isolated 7 domesticated strains named NY1, NY2,…, and NY7, the strain NY6 showed to have the best performance for organic matter degradation and could survive in dry powder more than 3 months. NY6 was identified as Bacillus aerius, based on the morphological and physic-chemical properties. Its optimal growth conditions were as follows: salinity was 2%; temperature was 37℃; pH was in 6.5-7.0; best ratio of C: N: P was 100:5:1. The capability of its dry powder for Chemical Oxygen Demand (COD) removal was 800mg COD/g in synthesized marine wastewater with 2% salinity. The spores in the dry powder were 1.972×108 g -1.