Abayomi Obisesan, Srinivas Sriramula
Journal of Marine Science and Application,2017(No. 2):
111-128
+Show Abstract -Hide Abstract
Ship collision accidents are rare events but pose huge threat to human lives, assets, and the environment. Many researchers have sought for effective models that compute ship stochastic response during collisions by considering the variability of ship collision scenario parameters. However, the existing models were limited by the capability of the collision computational models and did not completely capture collision scenario, and material and geometric uncertainties. In this paper, a novel framework to performance characterisation of ships in collision involving a variety of striking ships is developed, by characterising the structural consequences with efficient response models. A double-hull oil carrier is chosen as the struck ship to demonstrate the applicability of the proposed framework. Response surface techniques are employed to generate the most probable input design sets which are used to sample an automated finite element tool to compute the chosen structural consequences. The resulting predictor-response relationships are fitted with suitable surrogate models to probabilistically characterise the struck ship damage under collisions. As demonstrated in this paper, such models are extremely useful to reduce the computational complexity in obtaining probabilistic design measures for ship structures. The proposed probabilistic approach is also combined with available collision frequency models from literature to demonstrate the risk tolerance computations.
|
Haibin Wang1, Peilin Zhou1,2, Zhongcheng Wang2
Journal of Marine Science and Application,2017(No. 2):
129-136
+Show Abstract -Hide Abstract
Concern about global climate change is growing, and many projects and researchers are committed to reducing greenhouse gases from all possible sources. International Maritime Organization(IMO) has set a target of 20% CO2 reduction from shipping by 2020 and also presented a series of carbon emission reduction methods, which are known as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operation Indicator (EEOI). Reviews on carbon emission reduction from all industries indicate that, Carbon Capture and Storage (CCS) is an excellent solution to global warming. In this paper, a comprehensive literature review of EEDI and EEOI and CCS is conducted and involves reviewing current policies, introducing common technologies, and considering their feasibilities for marine activities, mainly shipping. Current projects are also presented in this paper, thereby illustrating that carbon emission reduction has been the subject of attention from all over the world. Two case ship studies indicate the economic feasibility of carbon emission reduction and provide a guide for CCS system application and practical installation on ships.
|
Dario Ban1, Josip Basic1, Dorde Dobrota2
Journal of Marine Science and Application,2017(No. 2):
137-158
+Show Abstract -Hide Abstract
Split Trailing Suction Hopper Dredgers (TSHD) are special type of working ships, whose hulls open to discharge cargo to certain unloading positions while being at sea. Although they have variable hull geometry, their hydrostatic and stability characteristics are usually calculated for unchanged initial hull geometry loading conditions only, and such calculations are supported by classification society stability regulations for that ship type. Nevertheless, in this study, we show that hydrostatic particulars for intermediate loading conditions of variable ship geometry can be calculated by using analytical solutions of basic hydrostatic integrals for arbitrary list angles, and obtained for polynomial radial basis function description of ship geometry. The calculations will be performed for symmetric hopper opening during cargo discharge procedure, thus covering all Split TSHD regular unloading conditions, without examination of ship hull opening failure modes. Thus, all ship hydrostatic properties will be pre-calculated analytically and prepared for further stability calculations, as opposed to the usual numerical calculations for initial geometry and even keel only, as currently used in naval architecture design.
|
Hamed Behzad, Roozbeh Panahi
Journal of Marine Science and Application,2017(No. 2):
159-165
+Show Abstract -Hide Abstract
In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.
|
Chuang Huang1, Jianjun Dang1, Kai Luo1, Daijin Li1, Zhiqiang Wang2
Journal of Marine Science and Application,2017(No. 2):
166-172
+Show Abstract -Hide Abstract
Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, and specific impulse, but water flux changes the shapes of supercavity. To uncover the cavitator drag characteristics and the supercavity shape of HSSVs with water inflow for ramjets, supercavitation flows around a disk cavitator with inlet hole are studied using the homogenous model. By changing the water inflow in the range of 0-10?L/s through cavitators having different water inlet areas, a series of numerical simulations of supercavitation flows was performed. The water inflow flux of ramjets significantly influences the drag features of disk cavitators and the supercavity shape, but it has little influence on the slender ratio of supercavitaty. Furthermore, as the water inlet area increases, the drag coefficient of the cavitators’ front face decreases, but this increase does not influence the diameter of the supercavity’s maximum cross section and the drag coefficient of the entire cavitator significantly. In addition, with increasing water flux of the ramjet, both the drag coefficient of cavitators and the maximum diameter of supercavities decrease stably. This research will be helpful for layout optimization and supercavitaty scheme design of HSSVs with water inflow for ramjets.
|
M. Ghorbani Shahr-e-Babaki1, A. Jamali Keikha1, A. Behzad Mehr2
Journal of Marine Science and Application,2017(No. 2):
173-181
+Show Abstract -Hide Abstract
Using thesupercavitation phenomenon is necessary to reach high velocities underwater. Supercavitation can be achieved in two ways: natural and artificial. In this article, the simulation of flows around a torpedo was studiednaturally and artificially. The validity of simulation using theoretical and practical data in the natural and artificial phases was evaluated. Results showed that the simulations were consistent with the laboratory results.Theresults in different injection coefficient rates, injection angles, andcavitation numbers were studied. The obtained results showed the importance ofcavitation number, injection rate coefficient, and injection anglein cavity shape. At the final level, determining the performance conditions usingthe Design of Experiment (DOE) method was emphasized, and the performance of cavitation number, injection rate coefficient, and injection anglein drag and lift coefficient was studied. The increasein injection angle in the low injection rate coefficient resulted in a diminished drag coefficient and that in the high injection rate coefficient resulted in an enhanced drag coefficient.
|
Arifah Ali1, Adi Maimun1, Yasser M. Ahmed2, Rahimuddin3
Journal of Marine Science and Application,2017(No. 2):
182-189
+Show Abstract -Hide Abstract
Resistance analysis is an important analytical method used to evaluate the hydrodynamic performance of High Speed Craft (HSC). Analysis of multihull resistance in shallow water is essential to the performance evaluation of any type of HSC. Ships operating in shallow water experience increases in resistance because of changes in pressure distribution and wave pattern. In this paper, the shallow water performance of an HSC design concept, the semi-Small Waterplane Area Twin Hull (semi-SWATH) form, is studied. The hull is installed with fin stabilizers to reduce dynamic motion effects, and the resistance components of the hull, hull trim condition, and maximum wave amplitude around the hull are determined via calm water resistance tests in shallow water. These criteria are important in analyzing semi-SWATH resistance in shallow water and its relation to flow around hull. The fore fin angle is fixed to zero degrees, while the aft fin angle is varied to 0o, 5o, 10o, and 15o. For each configuration, investigations are conducted with depth Froude numbers (FrH) ranging from 0.65 to 1.2, and the resistance tests are performed in shallow water at the towing tank of UTM. Analysis results indicate that the resistance, wave pattern, and trim of the semi-SWATH hull form are affected by the fin angle. The resistance is amplifiedwhereas the trim and sinkage are reduced as thefin angle increases. Increases in fin angle contribute to seakeeping and stability but affect the hull resistance of HSCs.
|
A. Choudhary, S. C. Martha
Journal of Marine Science and Application,2017(No. 2):
190-198
+Show Abstract -Hide Abstract
The present study deals with the scattering of oblique surface water waves by small undulation on the bottom in the presence of a thin vertical barrier. Here, three different configurations of vertical barriers are investigated. Perturbation analysis is employed to determine the physical quantities, namely, the reflection and transmission coefficients. In this analysis, many different Boundary Value Problems (BVPs) are obtained out of which the first two bvps are considered. The zeroth order bvp is solved with the aid ofeigenfunction expansion method. The first order reflection and transmission coefficients are derived in terms of the integrals by the method of the Green’s integral theorem. The variation of these coefficients is plotted and analyzed for different physical parameters. Furthermore, the energy balance relation, an important relation in the study of water wave scattering, is derived and checked for assuring the correctness of the numerical results for the present problem.
|
Israa Alesbe1,2, Moustafa Abdel-Maksoud1, Sattar Aljabair1,2
Journal of Marine Science and Application,2017(No. 2):
199-207
+Show Abstract -Hide Abstract
Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)—panMARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5?MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4?m and wave period of 7.16?s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.
|
Kunpeng Wang, Chunyan Ji
Journal of Marine Science and Application,2017(No. 2):
208-215
+Show Abstract -Hide Abstract
A helical wire is a critical component of an unbonded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.
|
Hongjian Jia1,2, Xiukun Li1,2, Xiangxia Meng1,2, Yang Yang1,2
Journal of Marine Science and Application,2017(No. 2):
216-224
+Show Abstract -Hide Abstract
The analysis and characteristic extraction of target echo characteristics are important in underwater target detection and recognition. Rigid acoustic scattering components are generally used as major echo contributors with relatively stable characteristic information. Previous studies focus on echo characteristics from a single angle, thereby limiting the amount of extracted characteristic information. This paper aims to establish a full-angle rigid echo components model and overcome the difficulty of the extraction of time delay characteristics of narrow-band acoustic scattering echoes. On the basis of the analysis of the target echo highlight model, the echo characteristics of rigid acoustic scattering components are extracted in the cepstrum domain, and a wavelet process is proposed to enhance the effect of time delay estimation. Experimental data indicate that the extracted time delay characteristics accord with the rigid echo characteristics of underwater target, thereby validating the effectiveness of the cepstrum method.
|
Yang Qu1,2, Haixiang Xu1,2, Wenzhao Yu1,2, Hui Feng1,2, Xin Han1,2
Journal of Marine Science and Application,2017(No. 2):
225-236
+Show Abstract -Hide Abstract
A controller which is locally optimal near the origin and globally inverse optimal for the nonlinear system is proposed for path following of over actuated marine crafts with actuator dynamics. The motivation is the existence of undesired signals sent to the actuators, which can result in bad behavior in path following. To attenuate the oscillation of the control signal and obtain smooth thrust outputs, the actuator dynamics are added into the ship maneuvering model. Instead of modifying the Line-of-Sight (LOS) guidance law, this proposed controller can easily adjust the vessel speed to minimize the large cross-track error caused by the high vessel speed when it is turning. Numerical simulations demonstrate the validity of this proposed controller.
|
G. T. Parthiban1, G. Subramanian2, K. Muthuraman1, P. Ramakrishna Rao3
Journal of Marine Science and Application,2017(No. 2):
237-242
+Show Abstract -Hide Abstract
HE15 is a heat treatable high strength alloy with excellent machinability find wide applications in aerospace and defence industries. In view of their excellent mechanical properties, workability, machinability, heat treatment characteristics and good resistance to general and stress corrosion cracking, MDN138 &MDN250 have been widely used in petrochemical, nuclear and aerospace industries. The galvanic corrosion behaviour of the metal combinations HE15/MDN138 and HE15/MDN250, with 1:1 area ratio, has been studied in natural seawater using the open well facility of CECRI’s Offshore Platform at Tuticorin for a year. The open circuit potentials of MDN138, MDN250 and HE15 of the individual metal, the galvanic potential and galvanic current of the couples HE15/MDN138 and HE15/MDN250were periodically monitored throughout the study period. The calcareous deposits on MDN138 and MDN250 in galvanic contact with HE15 were analyzed using XRD. The electrochemical behaviors of MDN138, MDN250 and HE15 in seawater have been studied using an electrochemical work station. The surface characteristics of MDN138 and MDN250 in galvanic contact with HE15 have been examined with scanning electron microscope. The results of the study reveal that HE15 offered required amount of protection to MDN138 & MDN250.
|