Ambur DR, Jaunky N, Hilburger MW (2004) Progressive failure studies of stiffened panels subjected to shear loading. Compos Struct 65(2):129–142. https://doi.org/10.1016/S0263-8223(03)00153-3
Anyfantis KN (2019) Evaluating the influence of geometric distortions to the buckling capacity of stiffened panels. Thin-Walled Structures 140:450–465. https://doi.org/10.1016/j.tws.2019.03.057
Anyfantis KN, Tsouvalis NG (2012) Post buckling progressive failure analysis of composite laminated stiffened panels. Appl Compos Mater 19:219–236. https://doi.org/10.1007/s10443-011-9191-1
Assaee H, Ovesy H, Hajikazemi M (2012) A semi-energy finite strip non-linear analysis of imperfect composite laminates subjected to end-shortening. Thin-Walled Structures 60:46–53. https://doi.org/10.1016/j.tws.2012.06.011
Bai R, Bao S, Lei Z, Liu C, Chen Y, Liu D, Yan C (2018) Experimental study on compressive behavior of I-stiffened CFRP panel using fringe projection profilometry. Ocean Eng 160:382–388. https://doi.org/10.1016/j.oceaneng.2018.04.085
Barsotti B, Gaiotti M, Rizzo CM (2020) Recent industrial developments of marine composites limit states and design approaches on strength. J Mar Sci Appl 19:553–566. https://doi.org/10.1007/s11804-020-00171-1
Bisagni C, Vescovini R (2009) Analytical formulation for local buckling and post-buckling analysis of stiffened laminated panels. Thin-Walled Structures 47(3):318–334. https://doi.org/10.1016/j.tws.2008.07.006
Chen NZ, Guedes Soares C (2007a) Progressive failure analysis for prediction of post-buckling compressive strength of laminated composite plates and stiffened panels. J Reinf Plast Compos 26(10):1021–1042. https://doi.org/10.1177/0731684407079422
Chen NZ, Guedes Soares C (2007b) Reliability assessment of post-buckling compressive strength of laminated composite plates and stiffened panels under axial compression. Int J Solids Struct 44(22–23):7167–7182. https://doi.org/10.1016/j.ijsolstr.2007.04.002
Chen NZ, Guedes Soares C (2008a) Spectral stochastic finite element analysis for laminated composite plates. Comput Methods Appl Mech Eng 197(51–52):4830–4839. https://doi.org/10.1016/j.cma.2008.07.003
Chen NZ, Guedes Soares C (2008b) Ultimate longitudinal strength of ship hulls of composite materials. J Ship Res 52(3):184–193. https://doi.org/10.5957/jsr.2008.52.3.184
Elseifi MA, Gurdal Z, Nikolaidis E (1999) Convex/probabilistic models of uncertainties in geometric imperfections of stiffened composite panels. AIAA J 37(4):468–474. https://doi.org/10.2514/2.757
Gaitanelis DG, Giannopoulos IK, Theotokoglou EE (2019) Numerical FEA parametric analysis of CAI behaviour of CFRP stiffened panels. Thin-Walled Structures 143:106231. https://doi.org/10.1016/j.tws.2019.106231
Ghannadpour SAM, Abdollahzadeh N (2020) Progressive failure analysis of thick imperfect composite plates using nonlinear plate theory. Int J Non-Linear Mech 121:103292. https://doi.org/10.1016/j.ijnonlinmec.2019.103292
Ghannadpour S, Barekati M (2016) Initial imperfection effects on postbuckling response of laminated plates under end-shortening strain using Chebyshev techniques. Thin-Walled Structures 106:484–494. https://doi.org/10.1016/j.tws.2016.03.028
Ghannadpour SAM, Shakeri M (2018) Energy based collocation method to predict progressive damage behavior of imperfect composite plates under compression. Latin Am J Solids Struct 15(4):35. https://doi.org/10.1590/1679-78254257
Ghannadpour S, Shakeri M (2020) Application of a new energy-based collocation method for nonlinear progressive damage analysis of imperfect composite plates. Thin-Walled Structures 147:106369. https://doi.org/10.1016/j.tws.2019.106369
Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47(2):329–3334. https://doi.org/10.1115/1.3153664
Huang L, Sheikh AH, Ng CT, Griffith MC (2015) An efficient finite element model for buckling analysis of grid stiffened laminated composite plates. Compos Struct 122:41–50. https://doi.org/10.1016/j.compstruct.2014.11.039
Karrech A, Elchalakani M, Attar M, Seibi A (2017) Buckling and post-buckling analysis of geometrically non-linear composite plates exhibiting large initial imperfections. Compos Struct 174:134–141. https://doi.org/10.1016/j.compstruct.2017.04.029
Kong CW, Lee IC, Kim CG, Hong CS (1998) Postbuckling and failure of stiffened composite panels. Compos Struct 42(1):13–21. https://doi.org/10.1016/S0263-8223(98)00044-0
Mittelstedt C, Schroder KU (2010) Postbuckling of compressively loaded imperfect composite plates: closed-form approximate solutions. Int J Struct Stab Dyn 10(4):761–778. https://doi.org/10.1142/S0219455410003725
Mittelstedt C, Erdmann H, Schröder KU (2011) Postbuckling of imperfect rectangular composite plates under inplane shear closed-form approximate solutions. Arch Appl Mech 81:1409–1426. https://doi.org/10.1007/s00419-010-0491-y
Morshedsolouk F, Khedmati MR (2014) Parametric study on average stress-average strain curve of composite stiffened plates using progressive failure method. Latin Am J Solids Struct 11(12):2203–2226
Murugesan N, Rajamohan V (2017) Prediction of progressive ply failure of laminated composite structures: a review. Arch Comput Methods Eng 24:841–853. https://doi.org/10.1007/s11831-016-9191-2
Namdar Ö, Darendeliler H (2017) Buckling, postbuckling and progressive failure analyses of composite laminated plates under compressive loading. Compos B Eng 120:143–151. https://doi.org/10.1016/j.compositesb.2017.03.066
Pal P, Bhattacharyya SK (2007) Progressive failure analysis of cross-ply laminated composite plates by finite element method. J Reinf Plast Compos 26(5):465–477. https://doi.org/10.1177/0731684406072533
Pal P, Ray C (2002) Progressive failure analysis of laminated composite plates by finite element method. J Reinf Plast Compos 21(16):1502–1513. https://doi.org/10.1177/0731684402021016488
Priyadharshani SA, Prasad AM, Sundaravadivelu R (2017) Analysis of GFRP stiffened composite plates with rectangular cutout. Compos Struct 169:42–51. https://doi.org/10.1016/j.compstruct.2016.10.054
Smith CS, Dow RS (1985) Compressive strength of longitudinally stiffened GRP panels. In: Marshall IH (eds) Composite Structures 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4952-2_33
Stamatelos DG, Labeas GN, Tserpes KI (2011) Analytical calculation of local buckling and post-buckling behavior of isotropic and orthotropic stiffened panels. Thin-Walled Structures 49(3):422–430. https://doi.org/10.1016/j.tws.2010.11.008
Tran KL, Douthe C, Sab K, Dallot J, Davaine L (2014) Buckling of stiffened curved panels under uniform axial compression. J Constr Steel Res 103:140–147. https://doi.org/10.1016/j.jcsr.2014.07.004
Zhu S, Yan J, Chen Z, Tong M, Wang Y (2015) Effect of the stiffener stiffness on the buckling and post-buckling behavior of stiffened composite panels – experimental investigation. Compos Struct 120:334–345. https://doi.org/10.1016/j.compstruct.2014.10.021