|Table of Contents|

Citation:
 Mostafa Eslami,Cheng Siong Chin,Amin Nobakhti.Robust Modeling, Sliding-Mode Controller, and Simulation of an Underactuated ROV Under Parametric Uncertainties and Disturbances[J].Journal of Marine Science and Application,2019,(2):213-227.[doi:10.1007/s11804-018-0037-1]
Click and Copy

Robust Modeling, Sliding-Mode Controller, and Simulation of an Underactuated ROV Under Parametric Uncertainties and Disturbances

Info

Title:
Robust Modeling, Sliding-Mode Controller, and Simulation of an Underactuated ROV Under Parametric Uncertainties and Disturbances
Author(s):
Mostafa Eslami1 Cheng Siong Chin2 Amin Nobakhti1
Affilations:
Author(s):
Mostafa Eslami1 Cheng Siong Chin2 Amin Nobakhti1
1 Electrical Engineering Department, Sharif University of Technology, Azadi Avenue, Tehran 11365-11155, Iran;
2 Newcastle University Singapore, Singapore 599493, Singapore
Keywords:
Remotely operated vehicleRobust modelingSliding-mode controlSimulationDisturbancesParametric uncertainties
分类号:
-
DOI:
10.1007/s11804-018-0037-1
Abstract:
A dynamic model of a remotely operated vehicle (ROV) is developed. The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFXTM and WAMITTM. A sliding-mode controller (SMC) is then designed for the ROV model. The controller is subsequently robustified against modeling uncertainties, disturbances, and measurement errors. It is shown that when the system is subjected to bounded uncertainties, the SMC will preserve stability and tracking response. The paper ends with simulation results for a variety of conditions such as disturbances and parametric uncertainties.

References:

Antonelli G, Chiaverini S, Sarkar N, West M (2001) Adaptive control of an autonomous underwater vehicle:experimental results on ODIN.IEEE Trans Control Syst Technol 9(5):756-765. https://doi.org/10.1109/87.944470
Burkan R, Uzmay I (2003) Upper bounding estimation for robustness to the parameter uncertainty in trajectory control of robot arm. Robot Auton Syst 45(2):99-110. https://doi.org/10.1007/s10846-006-9061-5
Caccia M, Indiveri G, Veruggio G (2000) Modeling and identification of open-frame variable configuration unmanned underwater vehicles.IEEE J Ocean Eng 25(2):227-240. https://doi.org/10.1109/48.838986
Calvo O, Sousa A, Rozenfeld A, Acosta G (2009) Smooth path planning for autonomous pipeline inspections. 6th International MultiConference on Systems, Signals and Devices SSD’09, pp 1-9.https://doi.org/10.1109/SSD.2009.4956800.
Chiaverini S, Antonelli G, Caccavale F (2004) Adaptive tracking control of underwater vehicle-manipulator systems based on the virtual decomposition approach. IEEE Trans Robot Autom 20(3):594-602.https://doi.org/10.1109/TRA.2004.825521
Chin CS, Lin WP (2018) Robust genetic algorithm and fuzzy inference mechanism embedded in sliding-mode controller for uncertain underwater robot. IEEE/ASME Trans Mechatronics 23(2):655-666.https://doi.org/10.1109/TMECH.2018.2806389
Chin CS, Lau MWS, Low E (2011) Supervisory cascaded controller design:experiment test on a remotely operated vehicle. Proc Inst Mech Eng C J Mech Eng Sci 225(3):584-603. https://doi.org/10.1243/09544062JMES2223
Curti HJ, Acosta GG, Calvo OA (2005) Autonomous underwater pipeline inspection in autotracker project:the simulation module. In Oceans 2005-Europe, volume 1, 384-388. https://doi.org/10.1109/OCEANSE.2005.1511745.
Effatnejad K, Namvar M (2009) Adaptive robust control of robot manipulators subject to input-dependent uncertainties. 4th IEEE Conference on Industrial Electronics and Applications, pp 3428-3433. https://doi.org/10.1109/ICIEA.2009.5138838
Ferziger JH, Peri? M (2002) Computational methods for fluid dynamics, volume 3. Springer, Berlin ISBN 978-3-642-56026-2
Fossen TI (1994) Guidance and control of ocean vehicles. Wiley ISBN:978-0-471-94113-2
Islam S, Liu XP (2011) Robust sliding mode control for robot manipulators. IEEE Trans Ind Electron 58(6):2444-2453. https://doi.org/10.1109/TIE.2010.2062472
Jordán MA, Bustamante JL (2007) Numerical stability analysis and control of umbilical-ROV systems in one-degree-of-freedom taut-slack condition. Nonlinear Dynamics 49(1-2):163-191. https://doi.org/10.1007/s11071-006-9120-2
Khalil HK (2002) Nonlinear systems, volume 3. Prentice hall Upper Saddle River ISBN-13:978-0130673893
Koh TH, Lau MWS, Low E, Seet G, Swei S, Cheng PL (2002) Development and improvement of an underactuated underwater robotic vehicle, OCEANS ’02 MTS. IEEE 4:2039-2044. https://doi.org/10.1109/OCEANS.2002.1191945.
Liang X, Wang H, Liu YH, Chen W, Hu G, Zhao J (2016) Adaptive taskspace cooperative tracking control of networked robotic manipulators without task-space velocity measurements. IEEE Trans Cybern 46(10):2386-2398. https://doi.org/10.1109/TCYB.2015.2477606
McLain TW and Rock SM (1996) Experiments in the hydrodynamic modeling of an underwater manipulator. Proceedings of the 1996Symposium on Autonomous Underwater Vehicle Technology, pp 463-469. https://doi.org/10.1109/AUV.1996.532448.
Medina YV, Tkachova AF, Santana LH, Entenza PJP (2016) Yaw controller in sliding mode for underwater autonomous vehicle. IEEE Lat Am Trans 14(3):1213-1220. https://doi.org/10.1109/TLA. 2016.7459601
Monroy JA, Campos E, Torres JA (2017) Attitude control of a micro AUV through an embedded system. IEEE Lat Am Trans 15(4):603-612. https://doi.org/10.1109/TLA.2017.7896344
Nicholas LT, Valladarez D, Toit NED (2015) Robust adaptive control of underwater vehicles for precision operations. In OCEANS 2015 -MTS/IEEE. https://doi.org/10.23919/OCEANS.2015.7404364
Qiao L, Zhang W (2017) Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles. IET Control Theory Appl 11(8):1293-1306. https://doi.org/10.1049/ietcta.2017.0016
Shen C, Buckham B, Shi Y (2017a) Modified C/GMRES algorithm for fast nonlinear model predictive tracking control of AUVs. IEEE Trans Control Syst 25(5):1896-1904. https://doi.org/10.1109/TCST.2016.2628803
Shen C, Shi Y, Buckham B (2017b) Integrated path planning and tracking control of an AUV:a unified receding horizon optimization approach. IEEE/ASME Trans Mechatronics 22(3):1163-1173.https://doi.org/10.1109/TMECH.2016.2612689
Shi Y, Shen C, Fang H, Li H (2017) Advanced control in marine mechatronic systems:a survey. IEEE/ASME Trans Mechatronics 22(3):1121-1131. https://doi.org/10.1109/TMECH.2017.2660528
Skogestad S, Postlethwaite I (2005) Multivariable feedback control:analysis and design, 2nd edn. Wiley, Hoboken ISBN:978-0-470-01167-6
Slotine JJE, Li W (1991) Applied nonlinear control, volume 199. Prentice Hall, New Jersey ISBN-13:978-0130408907
Tang C, Wang Y, Wang S, Wang R, Tan M (2018) Floating autonomous manipulation of the underwater biomimetic vehicle-manipulator system:methodology and verification. IEEE Trans Ind Electron 65(6):4861-4870. https://doi.org/10.1109/TIE.2017.2772148
Valdovinos LGG, Jimenez TS, Rodriguez HT (2009) Model-free high order sliding mode control for rov:station-keeping approach. In OCEANS 2009, MTS/IEEE Biloxi-marine technology for our future:global and local challenges, pp 1-7. https://doi.org/10.23919/OCEANS.2009.5422455
Vasilijevic A, Nad D, Mandic F, Miskovic N, Vukic Z (2017)Coordinated navigation of surface and underwater marine robotic vehicles for ocean sampling and environmental monitoring. IEEE/ASME Trans Mechatronics 22(3):1174-1184. https://doi.org/10.1109/TMECH.2017.2684423
Vázquez AJM, Rodríguez HR, Vega VP, Orta AS (2017) Fractional sliding mode control of underwater rovs subject to non-differentiable disturbances. Int J Control Autom Syst 15:1314-1321. https://doi.org/10.1007/s12555-015-0210-0
Williams C, Mackay M, Perron C, Muselet C (2000) The NRC-IMD marine dynamics test facility:a six-degree-of freedom forcedmotion apparatus for underwater vehicle testing. NRC Institute for Ocean Technology; National Research Council Canada, IR-1999-28
Wilson R, Paterson E, Stern F (2006) Unsteady rans CFD method for naval combatant in waves. Proceedings of the 22nd ONR Symposium on Naval Hydrodynamics, pp 532-549. https://doi.org/10.1002/fld.183
Yin Y, Hayakawa Y, Ogata K, Hosoe S (2003) A nonlinear adaptive robust control design for robotic systems under time-varying parameter perturbation and external disturbance. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2767-2772. https://doi.org/10.1109/IROS.2003.1249289

Memo

Memo:
Received date:2017-12-12;Accepted date:2018-4-4。
Corresponding author:Cheng Siong Chin
Last Update: 2019-07-06