Bhopale P, Bajaria P, Kazi F, Singh N (2016) LMI based depth control for autonomous underwater vehicle. International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, India, 477-481
Bhopale P, Bajaria P, Kazi F, Singh N (2017) Enhancing reduced order model predictive control for autonomous underwater vehicle. In:Le NT, van Do T, Nguyen N, Thi H (eds) Advanced computational methods for knowledge engineering. ICCSAMA 2017. Advances in intelligent systems and computing, vol 629. Springer, Cham, 60-71
Cheng X, Qu J, Yan Z, Bian X (2010) H∞ robust fault-tolerant controller design for an autonomous underwater vehicle’s navigation control system. J Mar Sci Appl 9(1):87-92. https://doi.org/10.1007/s11804-010-8052-x Council, National Research (1996) Underwater vehicles, and national needs. National Academies Press, Washington, DC, 1-6
Fossen T (2011) Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons Ltd. Publication, 6-78
Hafner R, Riedmiller M (2014) Reinforcement learning in feedback control:challenges and benchmarks from technical process control.Mach Learn 84(1-2):137-169. https://doi.org/10.1007/s10994-011-5235-x
Kober J, Andrew B, Jan P (2013) Reinforcement learning in robotics:a survey. Int J Robotics Res 32(11):1238-1274. https://doi.org/10.1177/0278364913495721
Paula M, Acosta G (2015) Trajectory tracking algorithm for autonomous vehicles using adaptive reinforcement learning. Oceans 2015, Washington, DC, 1-8
Phanthong T, Maki T, Ura T, Sakamaki T, Aiyarak P (2014) Application of A* algorithm for real-time path re-planning of an unmanned surface vehicle avoiding underwater obstacles. J Mar Sci Appl 13(1):105-116. https://doi.org/10.1007/s11804-014-1224-3
Powell W (2007) Approximate dynamic programming:solving the curses of dimensionality. John Wiley and Sons Publication, 1-25
Prestero T (2001) Verification of six-degree of freedom simulation model for the REMUS autonomous underwater vehicle, MSc/ME Thesis.Massachusetts Institute of Technology, Cambridge, 1-78
Qu Y, Xu H, Yu W, Feng H, Han X (2017) Inverse optimal control for speed-varying path following of marine vessels with actuator dynamics. J Mar Sci Appl 16(2):225-236. https://doi.org/10.1007/s11804-017-1410-1
Russell B, Veerle A, Timothy P, Bramley J, Douglas P, Brian J, Henry A, Kirsty J, Jeffrey P, Daniel R, Esther J, Stephen E, Robert M, James E (2014) Autonomous underwater vehicles (AUVs):their past, present and future contributions to the advancement of marine geoscience.
Mar Geol 352:451-468. https://doi.org/10.1016/j.margeo.2014.03.012
Su Y, Zhao J, Cao J, Zhang G (2013) Dynamics modeling and simulation of autonomous underwater vehicles with appendages. J Mar Sci Appl 12(1):45-51. https://doi.org/10.1007/s11804-013-1169-6
Sutton R, Barto A (1998) Introduction to reinforcement learning. MIT Press, Cambridge, MA, USA, pp 1-150
Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8(3-4):279-292. https://doi.org/10.1007/BF00992698
Yoo B, Kim J (2016) Path optimization for marine vehicles in ocean currents using reinforcement learning. J Mar Sci Technol 21(2):334-343. https://doi.org/10.1007/s00773-015-0355-9