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Abstract
A dynamic model of a remotely operated vehicle (ROV) is developed. The hydrodynamic damping coefficients are estimated
using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX™ and WAMIT™. A sliding-mode
controller (SMC) is then designed for the ROVmodel. The controller is subsequently robustified against modeling uncertainties,
disturbances, and measurement errors. It is shown that when the system is subjected to bounded uncertainties, the SMC will
preserve stability and tracking response. The paper ends with simulation results for a variety of conditions such as disturbances
and parametric uncertainties.
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1 Introduction

Underwater robotic vehicles (URV) are broadly classified into
remotely operated vehicles (ROV) and autonomous underwa-
ter vehicles (AUV) (Monroy et al. 2017; Shen et al. 2017a).
They are used in the offshore oil industry for tasks such as
installation of structures and pipelines, salvage, mine hunting,
and other applications, where their endurance, economy, and
safety makes them an obvious replacement for divers (Shen et
al. 2017b; Vasilijevic et al. 2017). Due to its hard-wire link or
tethered design, ROVs are best suited for work that involves
real-time image transmission, operating from a stationary
point or cruising at relatively slow speeds, such as in pipeline
inspection. While the governing dynamics of underwater ve-
hicles are generally understood, they are practically intracta-
ble. The problem stems from significant nonlinearities and
modeling uncertainties (McLain and Rock 1996; Caccia et
al. 2000; Chin and Lin 2018) and major hydrodynamic and
inertial nonlinearities due to the inherent open-frame structure

of the ROV. This is in contrast to AUVs which are designed to
contain most equipment and are streamlined for faster maneu-
vering (Fossen 1994).

There are two established modeling approaches for ROVs
(Shi et al. 2017): (1) predictive methods based on either com-
putational fluid dynamics (CFD) or strip theory (Ferziger and
Perić 2002; Wilson et al. 2006) and (2) experimental tech-
niques. The ROV’s dynamics is determined using test equip-
ment such as the Planar Motion Mechanism (PMM) and
Marine Dynamic Test Facility (Williams et al. 2000).
Physical tests during design and prototyping usually take the
form of small-scale testing (Chin et al. 2011). For truly accu-
rate results, experimental model data are then referenced
against computer simulation models obtained via computa-
tional fluid dynamic. Accordingly, in this paper, a dynamic
model of the ROV is obtained from both CFD and experimen-
tal techniques (Chin et al. 2011; Koh et al. 2002) (verified by
pool and water tank tests at the Nanyang Technological
University).

The objective of the ROV control system is to keep both its
velocity and position at the desired values. The ROV should
adhere to these desirables even when the vessel is under the
influence of (bounded) disturbances and measurement errors.
Sliding-mode controller (SMC) has two important properties
which are of significance in this case (Medina et al. 2016).
Firstly, since the dynamics of the ROV are highly nonlinear
with respect to both its position and velocity, using SMC
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means that a single controller can accommodate for the entire
mission. Secondly, when the uncertainties are bounded, the
SMC can be robustly designed to maintain stability and to
ensure good tracking (Slotine and Li 1991; Khalil 2002).

The application of SMC to control of AUVs and fully
actuated ROVs is not new (e.g., see Chin and Lin 2018;
Valdovinos et al. 2009; Vázquez et al. 2017). Traditionally,
the uncertainties are assumed to have a known structure and
unknown parameters. The SMC law is then made adaptive to
cater for their presence. The main advantage of adaptation is
that the uncertainties do not have to be bounded. However,
adaptation does have major drawbacks in practical applica-
tions. Firstly, the control law becomes more complex, leading
to notably increased computation. Since onboard processing
power is limited, increased computational costs will result in
an increase of the control update intervals (sample time).
Secondly, adaption of the control law will inherently take a
finite amount of time, rendering a response to fast changing
dynamics due to disturbances very difficult, if not impossible
(Nicholas et al. 2015). Finally, successfully adaptive control
needs persistent excitation which in practice can be quite ex-
haustive for hardware. In addition, the adaptive control of
ROV can be difficult to control for underactuated system.

Accordingly, this work follows an alternative framework in
which a non-adaptive SMC law is made robust against uncer-
tainties with a known bound for underactuated system. This
requires that the bound of uncertainties is known, similar to
traditional robust control theory (Skogestad and Postlethwaite
2005; Burkan and Uzmay 2003). To determine the bound of
the uncertainties, a detailed analysis of environmental distur-
bances (Antonelli et al. 2001) and modeling and measurement
errors is carried out. The types of uncertainties considered in
this paper are parametric uncertainties (modeling error), envi-
ronmental disturbances (wind-generated wave and ocean cur-
rents), and measurement error in sensing devices. These are
essentially all possible environmental and non-environmental
uncertainties which may decrease performance of the control-
ler in real life. To determine the bound of the uncertainties, a
detailed analysis of environmental disturbances and modeling
and measurement errors is carried out. The bounds are then
verified through simulation of the real-life model of the ROV.
Subsequently, the SMC is designed to accommodate the com-
puted bounds. Backed by extensive simulation of the ROV
with the proposed robust-SMC controller on a path-following
mission, we demonstrate that the controller exhibits excellent
performance, while respecting the design and physical con-
straints. This remains so, even in the presence of noticeable
disturbances.

The summary of the contributions of the paper are as fol-
lows. First is the use of a non-adaptive-based sliding-mode
controller for an underactuated ROV system in earth-fixed
frame instead of a fully actuated one. Second is the simulta-
neous bound of parametric uncertainties due to model error

and external disturbances due to wind and underwater current
are determined for the resulting underactuated system.

2 Modeling

The ROV, designed by the Robotics Research Center (RRC)
in Nanyang Technological University (NTU), RRC ROV is
used to perform underwater pipeline inspections such as lo-
cating pipe leakages or cracks. The twin Beye-ball^ ROV has
an open-frame structure and is 1 m long, 0.9 m wide, and
0.9 m high. It has a dry weight of 1243 N and a current
operating depth of 100 to 300 m. The RRC ROV has four
150-N-rated thruster inputs for six degree of freedom (DOF)
(surge, sway, heave, roll, pitch, and yaw velocity). Roll and
pitch motions are designed to be self-stabilizable, i.e., the cen-
ter of buoyancy is located above the center of gravity. To
proceed with modeling, the following are assumed in this
paper:

(a) ROV is a rigid body and is fully submerged once in the
water.

(b) Water is assumed incompressible, viscid, and
irrotational.

(c) The earth-fixed frame of reference is inertial.
(d) Tether effects (Jordán and Bustamante 2007) attached to

the ROV is not modeled (assuming light weight, neutral-
ly buoyant, and there is sufficient slack so that minimal
disturbance loads are transmitted to the vehicle).

2.1 ROV Equations of Motion

For marine vehicles, six DOFs are conventionally defined by
the following vectors (Fossen 1994):

& η ¼ ηT
1 ηT

2

� �
T ¼ x y z ϕ θ ψ½ � T —position and ori-

entation (Euler angles) in inertia frame
& ν ¼ νT

1 νT
2

� �
T ¼ u v w p q r½ � T —linear and angular

velocities in body-fixed frame
& τ ¼ τT

1 τT
2

� �
T ¼ τx τy τ z τϕ τθ τψ

� �
T —forces and

moments acting on the vehicle in body-fixed frame

A rigid-bodyROV’s dynamic equation ofmotion is usually
expressed in the body-fixed frame as the forces and measure-
ment devices are intuitively related to this body frame of ref-
erence. Using the Newtonian approach, the motion is de-
scribed by the following equation (Fossen 1994):

MRBν
˙ þ CRB νð Þν ¼ τRB ð1Þ

whereMRB ∈ R6 × 6 is the mass inertia matrix,CRB(v) ∈ R6 × 6 is
the rigid-boy Coriolis and centripetal matrix, and τRB ∈ R6 × 1 is
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the external forces and moments vector. The mass inertia
matrix is

MRB ¼

m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0
0 −mzG myG Ix −Ixy −I xz

mzG 0 −mxG −Iyx I y −I yz
−myG mxG 0 −I zx −I zy I z

2
666666664

3
777777775

ð2Þ

The Coriolis and centripetal terms, describing the angular
motion of the ROV, are

CRB νð Þ ¼
03�3 C12 νð Þ

−CT
12 νð Þ C22 νð Þ

2
4

3
5 ð3Þ

with

C12 νð Þ ¼
m yGqþ zGrð Þ −m xGq−wð Þ −m xGr þ vð Þ
−m yGpþ wð Þ m zGr þ xGpð Þ −m yGr−uð Þ
−m zGp−vð Þ −m zGqþ uð Þ m xGpþ yGqð Þ

2
664

3
775 ð4Þ

C22 νð Þ ¼
0 −I yzq−Ixzpþ I zr Iyzr þ Ixyp−Iyq

Iyzqþ Ixzp−I zr 0 −Ixzr−I xyqþ Ixp
−Iyzr−Ixypþ Iyq Ixzr þ Ixyq−Ixp 0

2
664

3
775

ð5Þ

The external force and moment vector includes the hydro-
dynamic forces and moments due to damping and inertial of
surrounding fluid known as added mass, and restoring force
and moment. These forces and moments tend to oppose the
motion of the ROV. Thus, the model can be expressed with
respect to a local body-fixed reference frame, in the following
matrix form (Fossen 1994):

Mν˙ þ C νð Þν þ D νð Þν þ g ηð Þ ¼ τ
η˙ ¼ J η2ð Þν
ν ¼ J−1 η2ð Þη˙

ð6Þ

where M = MRB + MA ∈ R6 × 6 is the inertia matrix for rigid
body and added mass, respectively, C(ν) = CRB(ν) + CA(ν) ∈
R6 × 6 is the rigid-body and hydrodynamic rigid-body Coriolis
and centripetal matrix, respectively, and D(ν) = DL + DQ(ν) ∈
R6 × 6 is the linear and quadratic damping matrix respectively.
The input force and moment vector τ = Tσ ∈ R6 relate the

thrust output vector σ ¼ FTσ∈R4 with the thruster configu-
ration matrix T ∈ R6 × 4, and FT ∈ R4 × 4 is the dynamics of
each thruster that converts the input voltage command σ∈R4

into thrust to propel the vehicle. J(η2) is the Euler

transformation (ET) matrix which brings the inertia frame into
alignment with the body-fixed frame and J−1(η2) is the inverse
Euler transformation (IET) matrix which brings the body-
fixed frame into alignment with the inertial frame

J η2ð Þ ¼
J1 η2ð Þ 0

0 J2 η2ð Þ
2
4

3
5

J−1 η2ð Þ ¼
J−1
1 η2ð Þ 0
0 J−1

2 η2ð Þ
2
4

3
5

ð7Þ

and

J 1 η2ð Þ ¼
c ψð Þc θð Þ −s ψð Þc ϕð Þ þ c ψð Þs θð Þs ϕð Þ s ψð Þs ϕð Þ þ c ψð Þc ϕð Þs θð Þ
s ψð Þc θð Þ c ψð Þc ϕð Þ þ s ϕð Þs θð Þs ψð Þ −c ψð Þs ϕð Þ þ s θð Þs ψð Þc ϕð Þ
−s θð Þ c θð Þs ϕð Þ c θð Þc ϕð Þ

2
664

3
775

J−1
1 η2ð Þ ¼ JT

1 η2ð Þ

J 2 η2ð Þ ¼
1 s ϕð Þt θð Þ c ϕð Þt θð Þ
0 c ϕð Þ −s ϕð Þ
0

s ϕð Þ
c θð Þ

c ϕð Þ
c θð Þ

2
6664

3
7775 ; J−1

2 η2ð Þ ¼
1 0 −s θð Þ
0 c ϕð Þ c θð Þs ϕð Þ
0 −s ϕð Þ c θð Þc ϕð Þ

2
664

3
775

where s(.) = sin(.), c(.) = cos(.), and t(.) = tan(.). The ET is
undefined for θ = ± π/2. However, this will not pose a prob-
lem since the vehicle is not designed or required to pitch
anywhere near ±π/2, in other words c(θ) ≠ 0. By this fact, both
ET and IET are nonsingular (full rank) for all η2 ∈ R3. Note
that in this approach matrix, Ṁ−2C νð Þ is skew symmetric,
i.e., for any x ∈ R6, we have xT M ⋅ −2C νð Þð Þ x ¼ 0.

2.2 Gravitational and Buoyancy Forces

The term g(η) is used to describe the gravitational and buoy-
ancy forces vector exerted on the ROV in the water (Fossen
1994). The gravitational and buoyancy forces are functions of
the orientation and are independent of vehicle motion. When
fully submerged, the ROV’s buoyancy is equal to the weight
of water displaced, i.e., B = ρg∇where ρ is the fluid density, ∇
is the volume displaced by the submerged ROV and g is the
earth gravitational constant equal to 9.8(m/sec2). In the body-
fixed coordinate system, the restoring force vector becomes

g ηð Þ ¼

W−Bð Þs θð Þ
− W−Bð Þc θð Þs ϕð Þ
− W−Bð Þc θð Þc ϕð Þ

− yGW−yBBð Þc θð Þc ϕð Þ þ zGW−zBBð Þc θð Þs ϕð Þ
zGw−zBBð Þs θð Þ þ xGW−xBBð Þc θð Þc ϕð Þ
− xGW−xBBð Þc θð Þs ϕð Þ− yGW−yBBð Þs θð Þ

2
666666664

3
777777775

ð8Þ

As the ROV is neutrally buoyant, then W = B. By appro-
priately placing the additional mass on the ROV, the XY
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coordinates of the center of buoyancy will coincide with the
XY coordinate of the center of gravity, that is xG = xB = 0 and
yG = yB = 0. Then, Eq. (8) becomes

gT ηð Þ ¼ 0 0 0 zG−zBð ÞWc θð Þs ϕð Þ zG−zBð ÞWs θð Þ 0½ � ð9Þ

2.3 Hydrodynamic Derivatives

In the vehicle equations of motion (6), external forces and
moments such as hydrodynamic drag force, actuator thrust,
and hydrodynamic added mass forces are described in
terms of vehicle’s corresponding hydrodynamic coeffi-
cients. These coefficients are expressed in the form of hy-
drodynamic derivatives which are in accordance with the
SNAME (1950) notation. For example, axial quadratic
drag force is modeled as

X ¼ −
1

2
ρCdA

� �
ujuj ¼ X ujujujuj ð10Þ

which implies that the drag force derivative in the surge
direction with respect to u ∣ u∣ is

X ujuj ¼ ∂X
∂ ujujð Þ ¼ −

1

2
ρCdA ð11Þ

Since the RRC ROV is symmetric about the XZ plane and
close to symmetric about YZ plane, it is assumed that the
motions in surge, sway, pitch, and yaw are decoupled
(Fossen 1994). Although it is not symmetric about the XY
plane, the surge and heave motions are considered to be
decoupled. Besides, the vehicle is designed to operate at rela-
tively low speeds in which the nonlinear or quadratic effects
can be small and assumed negligible. With this assumption,
the drag matrix in (6) becomes

D ¼ diag X u Y v Zw Kp Mq Nr
� �� � ð12Þ

where Xu is the damping coefficient for x-direction, Yv is the
damping coefficient for y-direction, and so forth.

The relationship between the hydrodynamic forces, mo-
ments, and accelerations are represented by added mass.
For example, if there is acceleration u⋅ in the X direction,
the hydrodynamic force X arising from that motion can be
taken as X ¼ X u⋅ u⋅ where X u˙ ¼ ∂X=∂ u⋅ is the hydrody-
namic derivative. For most low-speed underwater vehicles,
the off-diagonal terms of MA are often neglected (Fossen
1994) leading to

MA ¼ diag X u˙ Yv˙ Zẇ Kp˙ Mq˙ Np˙
� �� � ð13Þ

The corresponding Coriolis and centripetal added mass
matrix CA(v) becomes

CA vð Þ ¼

0 0 0 0 −Zẇw Y v̇v
0 0 0 Zẇw 0 −X u̇u
0 0 0 −Y v̇v X u̇u 0

−Zẇw Y v̇v 0 −Nṙr −Nṙr Mq̇q
Zẇw 0 −X u̇u Nṙr 0 −Kṗp
−Y v̇v X u̇u 0 −Mq̇q Kṗp 0

2
666666664

3
777777775

ð14Þ

The hydrodynamic damping forces were obtained via
open-tank tests and ANSYS-CFX™ (see Fig. 1a) and
were verified by comparing the results with a free-
decaying experiment on a scaled RRC ROV model
(see Fig. 1c). Note that in this approach matrix, M ⋅ −2
C νð Þ is skew symmetric, i.e., for any x ∈ ℛ6, we have
xT M ⋅ −2C νð Þð Þ x ¼ 0.

By applying laws of similitude, the hydrodynamics
parameters of the scaled model can be scaled up to
predict the corresponding values of the actual RRC
ROV model. The hydrodynamic added mass coefficients
were obtained using MULTISURF™ and WAMIT™ as
shown in Fig. 1b. The added mass coefficients obtained
were similarly obtained. Full details of the CFD simu-
lation and experimental tests used to determine the
damping and added mass coefficient for the RRC
ROV model can be found in (Chin et al. 2011) and
the data are shown in Appendix Table 1.

2.4 Thrust Model

The position of the thruster on the ROV (see Fig. 2) is
defined by the thrusters’ configuration matrix, T. The
details of the steady-state experiment performed on the
thruster can be found in Koh et al. (2002). The input
forces and moments to the ROV are determined based
on summation of the force and moment equations in the
six DOFs

τ ¼

τ x
τ y
τ z
τϕ
τθ
τψ

2
666666664

3
777777775
¼

1 1 0 0
0 0 s βð Þ −s βð Þ
0 0 c βð Þ c βð Þ
0 0 δ δ
−ε −ε αc βð Þ −αc βð Þ
γ −γ αs βð Þ −αs βð Þ

2
666666664

3
777777775

σ1

σ2

σ3

σ4

2
66664

3
77775

¼ Tσ ð15Þ

where the α = 0.017m, β = π/4, γ = 0.31m, δ =
0.293m, and ε = 0.016m are the geometrical parameters
based on the thrusters’ location on the ROV platform
(see Fig. 2), σmin ≤ σi ≤ σmax i = 1,2,3,4 are the
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minimum and maximum thrust output by each thrusters
and τ = [τx τy τz τϕ τθ τψ]

T is the force and moment

vector generated in the six DOFs. The input is σ ¼ FT

σ∈R4 with FT = fTI4, and σ∈R4 is the commanded volt-
age input to the thrusters. Note that due to the ROV
configuration, the values of α and ε are small. Thus,
roll and pitch (fourth and fifth equations) are not fully
actuated and there are insufficient thrusters to fully ma-
n euve r t h e ROV in t h e s i x DOFs (ROV i s
underactuated).

Since the thrusters have a relatively shorter response
time compared to the ROV, they may be modeled as
gain terms (Koh et al . 2002). Lumped hydro-
electromechanical dynamic model for both the DC mo-
tor shaft speed (assuming small electrical time constant
as compared to the mechanical time constant) and pro-
peller’s dynamic were used. Experimental results indi-
cate the approximate linear relationship between the
thrust (σi) and the thruster input voltage σið Þ to be

σi ¼ f Tσi; i ¼ 1; 2; 3; or 4 ð16Þ
where fT = 0.92 N m/V (forward thrust) and fT =
0.61 N m/V (reverse thrust).

3 Design of the SMC Controller

3.1 Design Framework

The ROVequations of motion in the body-fixed frame are

M v
⋅ þC νð ÞνþDνþg ηð Þ¼τ ð17Þ

which compare to its earth-fixed equations given below,

Mη ηð Þη⋅⋅ þCη η;νð Þη⋅ þDη ηð Þη⋅ þgη ηð Þ ¼ τη ð18Þ

where

Mη ηð Þ ¼ J−T ηð ÞMJ−1 ηð Þ
Cη η;νð Þ ¼ J−T ηð Þ C νð Þ−MJ−1 ηð ÞJ˙ ηð Þ� �

J−1 ηð Þ
Dη ηð Þ ¼ J−T ηð ÞDJ−1 ηð Þ
gη ηð Þ ¼ J−T ηð Þg ηð Þ

τη ¼ J−T ηð Þτ

Clearly, the model appears much simpler in the body-fixed
frame, leading to less calculations. In addition, specifying the
desired trajectory for ROVs is more natural in the body-fixed
frame, as opposed to for AUVs for which it is more natural to
use the earth-fixed frame. Nevertheless, in this instance, using
the body frame to design the control lawwill lead to difficulties.
In particular, it is demonstrated in Section 3.2 that computing
the control law in the earth-fixed framework requires knowl-
edge of η and η⋅ for feedback purposes. In the body-fixed
framework, these will change to ∫ν(t)dt and v, where ∫ν2(t)dt
does not have a physical interpretation and it is not possible to
integrate ν2 (Fossen 1994). Therefore, in spite of its more com-
plicated characteristics, the Earth-fixed frame is used for control
system design. Note that translating the dynamic model of
ROV from body-fixed frame into earth-fixed frame preserves

the skew-symmetric property of M ⋅
η ηð Þ−2Cη η;νð Þ, since d

J−1 ηð Þ� �
=dt ¼ J−1 ηð Þ J ⋅ ηð ÞJ−1 ηð Þ and

M
⋅
η ηð Þ¼−2J

⋅ −T
ηð ÞMJ−1 ηð Þ J⋅ ηð ÞJ−1 ηð Þ⇒

M
⋅
η ηð Þ−2Cη η;νð Þ ¼ J−T ηð Þ M−2C νð Þð ÞJ−1 ηð Þ

ð19Þ

3.2 Stability Performance of Sliding-Mode Controller

Given the disparity among the DOF (six) and the number
of thrusters (four), movement in some degrees of freedom
will require more than one active thruster. To optimally
distribute actuation among the four thrusters, a least-
squares optimization approach is employed. Let τ represent
a vector of bounded torques. The unconstrained thrust al-
location problem can be formulated as follows:

min
σ

1

2
σTWσ ð20Þ

(a) Pressure distributions on the ROV Body using ANSYS-CFXTM
 

(b) WAMITTM model used in added mass computation 

(c) RRC ROV prototype in water tank (orientated in surge direction) 

Fig. 1 RRC ROV prototype used in simulation and testing. (a) Pressure
distributions on the ROV Body using ANSYSCFX (b) WAMIT model
used in added mass computation (c) RRCROV prototype test in water tank
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Subject to τ − Tσ = 0 whereW is a positive definite matrix.
The solution using Lagrange multipliers is (Fossen 1994)

σ ¼ Tþτ ð21Þ
where

Tþ ¼ W−1TT TW−1TT
� �−1 ð22Þ

represents the generalized inverse. If W = I (i.e., equally
weighted control forces), then (22) reduces to the Moore-
Penrose pseudo inverse: T+ = TT(TTT)−1.

Using Slotine’s approach, and assuming the model param-
eters are known (i.e.,M, C(ν),D, and g(η)), and the values of
η and η⋅ are available, the control law becomes (Islam and Liu
2011; Liang et al. 2016; Valdovinos et al. 2009)

τ ¼ JT ηð Þ Mη ηð Þϑ
⋅
þCη η;νð Þϑþ Dη ηð Þη⋅ þgη ηð Þ−Γs

� 	

ð23Þ
where

ϑ ¼ η
⋅
d−Λη

∼
; s ¼ η

⋅
−ϑ ð24Þ

andη∼ ¼ η−ηd is the tracking error, andΛ andΓ are diagonal
positive definite matrices (gain matrices) defined as

Λ ¼ diag λ1 λ2 … λ6½ �ð Þ and

Γ ¼ diag γ1 γ2 … γ6½ �ð Þ

ð25Þ

The closed-loop equation comprising the system and the
Slotine controller becomes

Mη ηð Þ η
⋅⋅
−ϑ

⋅� 	
þ Cη η;νð Þ η

⋅
−ϑ

� 	
þ Γs ¼ 0 ⇒

Mη ηð Þ s⋅ þCη η;νð Þsþ Γs ¼ 0
ð26Þ

which describes a nonlinear ordinary differential equation
with s as the variable. To determine closed-loop stability, V
= 0.5sTMη(η)s is chosen as the candidate Lyapunov func-
tion. Since M ⋅

η ηð Þ−2Cη η; vð Þ is skew-symmetric matrix,
this leads to

V
⋅ ¼ −sTΓs≤0⇒s→0⇒η

∼
→0⇒η→ηd ; ~η

˙ →0⇒η
⋅
→η

⋅
d ð27Þ

Selection of a suitable sliding surface is an important
step in the design of the SMC controller. The manner of
the selection of the sliding surface in this paper is as
follows. First, a candidate Lyapunov function V =
0.5sTMη(η)s is considered and the sliding surface is cho-
sen such that as s → 0 then η → ηd and η̇→η̇d . The
derivative of the candidate Lyapunov function V is com-
puted as follows:

V
⋅ ¼ sTMη ηð Þ s⋅ þ0:5sTM

⋅
η ηð Þs ð28Þ

Using the skew-symmetric property forM ⋅
η ηð Þ−2Cη η;νð Þ,

we have

V
⋅ ¼ sT Mη ηð Þ s⋅ þCη η;νð Þs

� 	
ð29Þ

For a suitable choice, let s ¼ η⋅ −ϑ and substitute this for
Mη ηð Þ€η in (18). The resulting equation for the input signal τη
may then be inserted in V̇,

V
⋅ ¼ sT Mη ηð Þ η

⋅⋅
−ϑ

⋅� 	
þ Cη η;νð Þs

� 	
¼ sT −Mη ηð Þϑ˙ þ τη−Cη η; νð Þη⋅ −Dη ηð Þη⋅ −gη ηð Þ þ Cη η;νð Þs

� 	

¼ sT −Mη ηð Þϑ
⋅
þ τη−Cη η;νð Þϑ−Dη ηð Þη⋅ −gη ηð Þ

� 	

ð30Þ

The aim is to select τη such that underlined terms in the
above equations cancel out and V ⋅ becomes negative. A sim-
ple choice is (23). Finally, let ϑ ¼ η⋅

d−Λ η−ηdð Þwhich yields
s ¼ η⋅ −ηdð Þ þΛ η−ηdð Þ. The control law (23) implies V ⋅

¼ −sTΓs < 0 for Γ > 0, and s → 0. From (27),

λ Γð Þ∥s∥2≤sTΓs≤λ Γð Þ∥s∥2⇒V
⋅
≤−λ Γð Þ∥s∥2 ð31Þ

and since V = 0.5sTMη(η)s, then

1

2
λ Mη ηð Þ� �

∥s∥2≤
1

2
sTMη ηð Þs≤ 1

2
λ Mη ηð Þ� �

∥s∥2 ð32Þ

Fig. 2 Position of thrusters on the
ROV
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From (31) and (32), one may conclude that

V
⋅
≤−2

λ Γð Þ
λ Mð Þ

 !
V⇒V tð Þ≤V 0ð Þe

−2 λ Γð Þ

λ Mð Þ

 !
t

ð33Þ

where V(0) = 0.5s(0)TMη(η(0))s(0) ≥ 0. The role of λ Γð Þ
now becomes evident. By increasing its value, V(t) can be
made to converge to zero exponentially faster. Moreover,
the eigenvalues λi control the speed at which the error is
eliminated ~η→0. To see this, consider

s ¼ ~η˙ þΛη
∼ ð34Þ

For each individual-loop one obtains,

si tð Þ ¼ ~η˙ i tð Þ þ λi~ηi tð Þ; i ¼ 1; 2;…; 6 ð35Þ
where s = [s1, s2, …, s6]

T. The Laplace transform of
which gives

Si sð Þ ¼ sΩ
∼
i sð Þ þ λiΩ

∼
i sð Þ ¼ sþ λið ÞΩ

∼
i sð Þ⇒Ω

∼
i sð Þ

¼ Si sð Þ
sþ λi

ð36Þ

where Si(s) = L{si(t)} and Ω∼
i sð Þ ¼ L η∼i tð Þf g.

Accordingly, a larger λi will lead to a greater tracking
performance (i.e., the errors converge to zero more quick-
ly). While a larger value of λi and γi will lead to better
performance, it may also lead to difficulties in practical
implementation; using a large value of this, gains will
increase the effect of measurement noises on the control
law. In addition, it will lead to control signals which vio-
late the maximum torque limits. Therefore in practice,
there is an upper bound on λi and γi. The trade-off be-
tween the control system performance and torque is evi-
dent from the following relationship:

ϑ ¼ η
⋅
d−λη

∼
⇒∥ϑ∥≤∥η

⋅
d∥þ λ Λð Þ∥η

∼
∥

ϑ˙ ¼ η
⋅⋅
d−Λ~η˙ ⇒∥ϑ˙ ∥≤∥η

⋅⋅
d∥þ λ Λð Þ∥~η˙ ∥

ð37Þ

Imposing the above inequalities on the control law leads to

τη≤ λ Mη ηð Þ� �
∥η
⋅⋅
d∥þ ∥gη ηð Þ∥þ ∥C

�
η;ν

	
þ Dη ηð Þ∥∥η⋅ d∥

n o

þ λ Mη ηð Þ� �
λ Λð Þ∥~η˙ ∥þ λ Λð Þ∥C

�
η;ν

	
þ Dη ηð Þ∥∥η∼ ∥þ λ Γð Þ∥s∥

n o

ð38Þ

Note the appearance of Λ and Γ in the second term of the
inequality. From (38) and τη = J−T(η)τ, it is clear that to
reduce the upper torque bounds τ,Λ andΓ should have small-
er eigenvalues.

3.3 Robustification of the Control Law
to Disturbances and Uncertainties

The derived model for the ROV is expected to have some
discrepancy with the actual dynamics of the ROV.
Moreover, the ROV is subject to considerable environmen-
tal disturbances and external forces. These will include
waves and ocean currents. To study the effects of these
disturbances, let d(t) be an extra torque in (18) which de-
notes the sum of all possible external disturbances. As with
the study of uncertain linear systems, the upper bound of
d(t), i.e., ∥d(t) ∥ ≤ χ, is considered known. A major ben-
efit of the SMC framework is that it is possible to robustify
the controller against these uncertainties by an augmenta-
tion of the control law. By adding an extra term u0 ∈ R6, the
stability of the closed-loop system will be guaranteed in
the presence of these uncertainties (Tang et al. 2018;
Chiaverini et al. 2004; Effatnejad and Namvar 2009).
Consider the ROV’s equations of motion, subject to the
uncertainty described above,

Mη ηð Þη⋅⋅ þCη η;νð Þη⋅ þDη ηð Þη⋅ þgη ηð Þ¼τη þ d tð Þ ð39Þ

Using (24), the closed-loop equation becomes

Mη ηð Þ s⋅ þCη η;νð Þsþ Γs ¼ d tð Þ ð40Þ

addition of u0 to the control law leads to

Mη ηð Þ s⋅ þCη η;νð Þsþ Γs ¼ d tð Þ þ u0 ð41Þ

To determine closed-loop stability, take V = 0.5sTMs to be
the candidate Lyapunov function,

V
⋅ ¼ −sTΓsþ sTd tð Þ þ sTu0 ð42Þ

Now, by letting u0 ¼ −χ s
sj jj j,

V˙ ≤−λ Γð Þ∥s∥2 þ χ∥s∥þ sTu0

¼ −λ Γð Þ∥s∥2≤0⇒s→0 ð43Þ

Clearly, ∥u0∥ is bounded in [−χ, + χ]; however, as s goes
through zero, chattering will ensue. To eliminate chattering,
the additional term is modified as follows (see Theorem 14.1
and 14.2 in Khalil (2002)),

u0 ¼ −χtanh
s
ε

� 	
ð44Þ

M. Eslami et al.: Robust Modeling, Sliding-Mode Controller, and Simulation of an Underactuated ROV Under Parametric... 219



Since it is required to determine the upper bound of this
disturbance, it is necessary to first characterize its constit-
uent elements. The three main sources of uncertainty stud-
ied in this paper are modeling uncertainty, disturbances,
and measurement error. Modeling parametric uncertainty
refers to the mismatch between the estimated values and
actual values of the model parameters such as added mass
and the hydrodynamic coefficients and is denoted by τp.
Disturbances refer to the various external and environmen-
tal forces such as wind, wind-generated waves, and ocean
current that act on the ROV and are denoted by τu.

Finally, the torque error induced by the sensor measure-
ment error is denoted by τd. In resume, taking into account
the specified errors, the ROV’s equation of motion in the
body-fixed frame becomes

Mν˙ þ C νð Þν þ Dν þ g ηð Þ ¼ τþτ e ð45Þ
where

τ e ¼ τp þ τu þ τd ð46Þ

and τp, τu, and τd are as specified previously.

3.3.1 Parametric Uncertainties

Let the error in the estimation of MRB and MA be denoted
by ΔM, the error in estimation of C(ν) and CA(ν) be de-
noted by ΔC, and the error for D and g(η) be respectively
denoted by ΔD and Δg. The upper bound for the estima-
tion error of m, Ix, Iy, and Iz is assumed to be ±100ε1%.
Thus, from (2) to (5), the largest percentage error in MRB,
C(ν), and g(η) is ±100ε1. Similarly, assuming the upper
bound for the estimation error of the hydrodynamic coef-
ficient is ±100ε2%, then the eventual model of the para-
metric uncertainty can be computed as follows:

ΔM ¼ �ε1MRB � ε2MA

ΔC ¼ �ε1C νð Þ � ε2CA νð Þ
ΔD ¼ �ε2D
Δg ¼ �ε1g ηð Þ

⇒τp ¼ ΔM v
⋅ þΔCν þΔDν þΔg

ð47Þ

3.3.2 External Disturbances

Due to their stochastic nature, environmental disturbances
are not usually included in ROV models. However, the
benefit of the framework adopted in this paper is that it
is possible to design the control law for some worst con-
dition. The main environmental disturbances that are con-
sidered are wind-generated waves and ocean currents
(Fossen 1994). Since it is assumed that the vessel is sub-
merged, surface winds are not taken into consideration.

The torque induced by the wind-generated waves and
ocean currents are respectively denoted by τwave and
τcurrent. That is τu = τwave + τcurrent. The first component,
τwave, may be modeled as follows (Fossen 1994):

τwave ¼ Xwave Ywave Zwave 0 0 0½ �T ð48Þ
where

Xwave ¼ ∑
N

i¼0
ρgBLTc ρð Þpi tð Þ

Ywave ¼ − ∑
N

i¼0
ρgBLTs ρð Þpi tð Þ

Nwave ¼ ∑
N

i¼0

1

24
ρgBLT L2−B2

� �
s 2ρð Þp2i tð Þ

ð49Þ

Note that the forces induced by the waves (in (48)) are
not so significant that required a torque generating pitch
motion.

In (48), ρ (kg/m3) is the density of the water, B ×
L (m2) is the cross-sectional area of the ROV in water,
T (m) is the draft distance, ρ is the angle between head-
ing and the direction of the wave, and finally pi(t) is the
wave slope for component ith which can be obtained by
statistical analysis such as short-term prediction. For the
worst-condition case, the Pierson-Moskowitz (PM) spec-
trum gives

pm ¼ 0:0731

ffiffiffiffi
V
g

s
ð50Þ

where V (in knots) is the wind speed at the height of
19.4 m over the sea surface and to have the worst case,
the parameter ρ must be selected such that the maxi-
mum wave torque can be generated. Let the vertical
position z be measured positive downward. From (48)
and ignoring surface winds, one arrives at

τT
wave ¼

ρgpmNBLTu−1 0:5−zð Þ
24

24c ρð Þ −24s ρð Þ L2−B2
� �

pms 2ρð Þ 0 0 0
� �

ð51Þ

where u−1(.) is the Heaviside function and z ≥ 0. As the
ocean current uncertainty is assumed to be continuous,
its effect may be reproduced by varying the relative
velocity in (6). The relative velocity is defined as νr =
ν − νc, where νc is the current velocity in the body-
fixed reference. In this case, the current velocity will be
measured by an acoustic Doppler current profiler
(ADCP). If the body-fixed current velocity is constant
or slowly varying, then
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v
⋅⋅
c ¼ 0⇒v

⋅⋅
r ¼ v

⋅⋅ ð52Þ
and the nonlinear relative equation of motion becomes

Mν˙ þ C νrð Þνr þ Dνr þ g ηð Þ ¼ τ⇒
M v

⋅ þC νð ÞνþDν þ g ηð Þ¼C νð Þν−C νrð Þνr þ Dνc þ τ

ð53Þ

From (3) to (5), it is evident that the Coriolis and centripetal
matrix is a linear operator on the velocity. Thus, the current-
induced moments may be modeled as

τ current ¼ C νð Þνc þ C νcð Þνr þ Dνc ð54Þ
where νc = [uc vc wc 0 0 0]Tis a vector of non-rotational
body-fixed current velocities (Fossen 1994). The value of
νc can be determined by using the IET from the earth-
fixed frame νE

c ¼ uEc vEc wE
c 0 0 0 0

� �
T as follows: let

α1 and α2 be defined as angle of attack and sideslip that
describe the orientation of the current velocity profile
(Vc(z)). Then,

uEc ¼ Vcc α1ð Þc α2ð Þ
vEc ¼ Vcs α2ð Þ

wE
c ¼ Vcs α1ð Þc α2ð Þ

ð55Þ

The six velocity components may then be written as
a single summation Vc(z), where it is noted that the first
three components are often the dominant terms
(Williams et al. 2000) for ROV operating above the
seabed above the pipeline,

Vc zð Þ ¼ Vt zð Þ þ Vlw zð Þ þ Vs zð Þ ¼ Vt 0ð Þ

þ Vlw 0ð Þ d0−z
d0

� �
u−1 50−zð Þ þ 0:0286

V2

g

� �
e−

gz
V2

ð56Þ
where Vt is the tidal component, Vlw is the component
generated by local winds, and Vs is the Stokes drift com-

ponent (due to nonlinear waves). Finally, νc ¼ νTc1 νTc2

h i
T

is obtained as follows:

νc1 ¼ J−1
1 ηð Þ

c α1ð Þc α2ð Þ
s α2ð Þ

s α1ð Þc α2ð Þ

2
664

3
775Vc zð Þ ; νc2 ¼ 0 0 0½ �T ð57Þ

3.3.3 Measurement Error

In computation of the SMC law, the exact values of η
and η⋅ are required. In reality, these terms are measured
using the accelerometer and the gyroscope. Even in the
best cases, these measurements will not be perfect. The

significance of these errors is that even negligible errors
in the measurements may produce a large error in the
value of η and η⋅ as these are obtained by integrating
the velocity (ν2) and acceleration (v⋅1 ) of the ET. To
determine the effects of these errors, let the inertial sen-
sor measurements be v⋅1 þ e1 and ν2 + e2, where e1 and
e2 are measurement errors,

e1 ¼ �ε3v
⋅
1 & e2 ¼ �ε4ν2 ð58Þ

From (23), this error can be modeled by an additional force
on the right hand side of (6) where the effect of the inflow
velocity to the thruster blades is assumed to be negligible. Let
the added term be denoted by τd,

τd ¼ JT ηð Þ
�
Mη ηð Þϑ

⋅
þCη η;νð Þϑþ Dη ηð Þνþgη ηð Þ−Γs

−Mη η̂ð Þϑ
�
−Cη η̂; ν̂ð Þϑ̂−Dη η̂ð Þν̂−gη η̂ð Þ þ Γ ŝ

	

ð59Þ

where, by assumption of constant ε3 and ε4, it leads to

η
�
tð Þ ¼ J η̂̂ tð Þð Þ

∫t0v
⋅
1 τð Þ 1� ε3ð Þ dτ
ν2 tð Þ 1� ε4ð Þ

2
4

3
5 ¼ J η̂̂ tð Þð Þ

ν1 tð Þ 1� ε3ð Þ
ν2 tð Þ 1� ε4ð Þ

2
4

3
5 ð60Þ

The terms ϑ̂ and ŝ will be obtained by inserting the above
equality in (24).

3.4 Bound of Uncertainties

To robustify the controller, the upper bound of the uncertainty
in the Earth-fixed reference equations of motion is required,
i.e.,

χ ¼ max
t

∥d tð Þ∥ ¼ max
t

∥J−T η tð Þð Þτ e∥ ð61Þ

Due to the stochastic nature of some of constituent
elements, finding an exact value for χ might not be
possible. But a good estimate can be obtained by pro-
viding certain uncertainties or errors in simulation.
Traditionally, the effects of these disturbances are dealt
with by incorporating an adaptive element in the control
law (Qiao and Zhang 2017; Yin et al. 2003; Effatnejad
and Namvar 2009;Valdovinos et al. 2009). However, as
previously described in the introduction, in this work,
the control law is made robust against these changes,
instead of being made adaptive. A number of reasons
warrant this decision: Firstly, making the control law
adaptive will bring with it an increased computational
burden which may be required to be carried out on-
board. This will increase further, if reasonably fast
tracking dynamics are required. Secondly, since in pipe-
line tracking, the location of the task space is fixed, a
good estimate for d0, Vt(0), V, and g can be determined
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a priori. Moreover, information on the maximum mea-
surement error is readily available from the manufactur-
er. Finally, disturbances will usually violate any slow-
varying condition required to convergence. Therefore,
by noting the convergence of the SMC trajectory track-
ing error to zero, the upper bound of ∥d(t)∥ can be
represented in terms of εi as
χ ¼ max

t
∥J−T ηd tð Þð Þτd

e∥ ð62Þ

where τd
e is the expected extra torque in the body-fixed

equation of the motion, with η = ηd, η⋅ ¼ η⋅
d , and ν =

νd.

4 Pipeline Simulation Results

For previous studies on the Pipeline tracking problem, please
refer to the following references (Curti et al. 2005; Calvo et al.
2009; Chin et al. 2011). The main purpose of pipeline tracking
is autonomous inspections with minimum human intervention.
The advantage of using AUV in pipeline inspection is its min-
imum human intervention required. However, the current gen-
eration of AUV is still not as successful or useful as the ROVs.
Mainly, this is due to the fact that a hard-wire link for delivery
of suitable power supply and real-time image processing is still
required. Moreover, wireless communication in water is

(a)

(b)

Position and orientation tracking - (m and rad) vs. time (s) – without uncertainty

Position and orientation tracking - (m and rad) vs. time (s) – in the presence of uncertainty

Fig. 3 Position and orientation
tracking— (m and rad) vs. time
(sec) (a) without uncertainty (b)
with presence of uncertainity
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seriously hampered by the Doppler effect which limits both the
rate and the range of possible communications.

The RRC ROV model, uncertainty, and controller
parameters used to set up the simulation are given in
Appendix Tables 2, 3, and 4. Numerous simulations
have been run to assess the performance of the ROV.
All simulations are performed in MATLAB SIMULINK

software. Due to lack of space, only one set for each of
the uncertain and certain cases is presented in Figs. 3,
4, 5, and 6. For each instance, the value of tracking
integral absolute error (IAE) is indicated on the plot
itself. Variables x and y represent longitude and latitude
coordinate in all figures, while z denotes altitude which
is positively downward.

(b)

(a) Velocity tracking in body-fixed coordinate - (m/s and rad/s) vs. time (s)- without uncertainty

Velocity tracking in body-fixed coordinate - (m/s and rad/s) vs. time (s)- in the presence of

uncertainty 

Fig. 4 Velocity tracking in body-
fixed coordinate — (m/sec and
rad/s) vs. time (sec) (a) without
uncertainty (b) with presence of
uncertainity
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4.1 Robust Position, Orientation Tracking, and Thrust
Results

Figure 3 shows the position and orientation of tracking in the
earth-fixed reference frame (η and ηd) and Fig. 4 displays
velocity tracking in body-fixed coordinated frame (ν and
νd). The optimal required thrusts for this path are depicted in
Fig. 5a, b for the certain and uncertain cases respectively. The
results show that the ROV can track the pipelines robustly.

4.2 Robust 3D Tracking Results

Figure 6 shows a 3D view of the desired and actual ROV
trajectory. This figure graphically verifies the performance of
the controller in light of the main pipeline inspection objec-
tives, i.e., tracking with minimal error.

While the controller gives excellent tracking performance
even in the case of considering the worst-case combination of
all uncertainties, as expected this does comes at the expense of
requiring larger torques from the thrusters. This is logical
since additional torque is required to counter the effects of
uncertainties. It is also necessary to point out that the control
law momentarily violates the maximum torque specification
of the thrusters. However, the overload is of a limited duration
and is not considered to be of a critical nature. It is also im-
portant to consider how the torque profiles change in the sim-
ulation of the uncertainty system. Initially, it is thrusters 3 and
4 which see the biggest change. This is due to the effect of
wind-generated wave and ocean current direction which cause
large disturbances in the z direction. However, as the ROV
proceeds along the desired trajectory, the disturbances in the x
and y direction become more pronounced, leading to changes
in the torque profile of thrusters 1 and 2.

(a)

(b)

Required thrust and their limits - (Nm) vs. time (s) - without uncertainty

Required thrust and their limits - (Nm) vs. time (s) - in the presence of uncertainty

Fig. 5 Required thrust and their
limits — (Nm) vs. time (sec) (a)
without uncertainty (b) with
presence of uncertainity
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5 Conclusions

The paper described modeling, sliding-mode control
(SMC) design, and simulation of the RRC ROV. The
dynamic model of the ROV was obtained from both
CFD software and experimental techniques performed
in the swimming pool and water tank tests. These ex-
perimental tests were performed to verify the damping
and added mass coefficients used in the dynamic equa-
tions. The results from the CFD software (such as
ANSYS™, MULTISURF™, and WAMIT™ software)
were verified by comparing them to a free-decaying
experiment on a scaled RRC ROV model. By applying
laws of similitude, the hydrodynamics damping and
added mass forces or the coefficients of the scaled mod-
el were scaled up to predict the corresponding values of
the actual RRC ROV model.

The sliding-model control law was first developed
and then made robust against uncertainties with a
known bound. The bound for the uncertainties was ob-
tained from a detailed analysis of environmental distur-
bance’s modeling and was then verified through simula-
tion of the real-life model of the ROV on a path-
following mission. The simulated results showed an ex-
cellent tracking performance with the minimal position
tracking error. For future works, other approaches such
as machine learnings will be applied on the ROV.
Experimental works to test the control scheme will be
implemented.

Acknowledgements The author would like to express his thanks to
Newcastle University in Singapore campus for providing the support
during the project.

(a)

(b)

Trajectory tracking - (m m m)- without uncertainty

Trajectory tracking - (m m m)- in the presence of uncertainty

Fig. 6 Trajectory tracking — (m
x m x m) (a) without uncertainty
(b) with presence of uncertainity
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Appendix

Table 2 Parameters for ROV model

Parameters Values

MRB 115 0 0 0 0 0½ 01150000 00115000 0006:1−0:00016−0:185 000−0:000165:980:0006 000−0:1850:00065:517 �
MA diag([21.1403, 51.7012, 92.4510, 3.6191, 2.6427, 2.3033])

C12(ν) 0 115w −115v½ −115w0115u 115v−115u0 �
C22(ν) −0:0006qþ 0:185pþ 5:5170r −0:0006qþ 0:185pþ 5:5170r 0:0006r−0:0002p−5:9800q½ 0:0006q−0:185p−5:5170r00:1850r

þ0:0002qþ 6:100p −0:0006r þ 0:0002pþ 5:9800q−0:1850r−0:0002q−6:100p0 �
CA(ν) 0 0 0 0 −92:4510w 51:7012v½ 00092:4510w0−21:140u 000−51:7012v21:140u0 0−92:4510w51:7012v0−2:3033r2:6427q

92:4510w0−21:140u2:3033r0−3:6191p −51:7012v21:140u0−2:6427q3:6191p0 �
D diag([17.2, 38.06, 72.50, 1.665, 1.456, 1.180])

W 115 (kg)

rG [xG, yG, zG]
T = [0, 0, 0]T (m)

rB [xB, yB, zB]
T = [0, 0, − 0.048]T (m)

T 1 1 0 0½ 000:707−0:707 000:7070:707 00−0:2930:293 −0:016−0:0160:012−0:012 0:31−0:310:012−0:012 �

Table 3 Parameters used in computing uncertainties

Parameter ρ V ρ α1 α2 V10 d0 Vt(0) ε1 ε2 ε3 ε4

Value 1000 10 π/4 π/12 π/4 5.15 50 0.8 0.01 0.1 0.001 0.01

Unit kg/m3 kn rad rad rad m/s m m/s – – – –

Table 4 Controller gains and parameters used

Controller gains and parameters Without uncertainty With uncertainty

λi, i = 1, 2, …, 6 10 10

γi, i = 1, 2, …, 6 10 5

χ 0 608

ε 0 0.5

Table 1 Damping and added mass coefficients used for RRC ROV model simulation

Methods Damping coefficient/added mass coefficient

Surge (0–0.5 m/s) Sway (0–0.5 m/s) Heave (0–0.02 m/s) Yaw (0–0.5 rad/s)

Xu Xu ∣ u∣ Yv Yv ∣ v∣ Zw Zw ∣w∣ Nr Nr ∣ r∣

ANSYS-CFX 11.863 108.45 19.640 108.24 2.3756 351.98 0 10.390

Experiment 17.240 106.03 38.060 84.100 72.530 104.41 1.180 7.5100

Xu˙ Yv˙ Zẇ Nr˙

WAMIT 21.140 51.700 92.450 2.3030

Experiment 21.480 55.170 113.60 0.2960
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