|Table of Contents|

 Shuhui Wang,Mingyang Lu,Jidan Mei,et al.Deconvolved Beamforming Using the Chebyshev Weighting Method[J].Journal of Marine Science and Application,2022,(3):228-235.[doi:10.1007/s11804-022-00286-7]
Click and Copy

Deconvolved Beamforming Using the Chebyshev Weighting Method


Deconvolved Beamforming Using the Chebyshev Weighting Method
Shuhui Wang1 Mingyang Lu1 Jidan Mei123 Wenting Cui1
Shuhui Wang1 Mingyang Lu1 Jidan Mei123 Wenting Cui1
1 Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;
2 Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China;
3 College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
Chebyshev weighting|Deconvolution|Beamforming|High resolution|Robust
This paper studies a deconvolved Chebyshev beamforming (Dcv-Che-BF) method. Compared with other deconvolution beamforming methods, Dcv-Che-BF can preset sidelobe levels according to the actual situation, which can achieve higher resolution performance. However, the performance of Dcv-Che-BF was not necessarily better with a lower preset sidelobe level in the presence of noise. Instead, it was much better when the preset side lobe level matched the signal to noise ratio of the signal. The performance of the Dcv-Che-BF method with different preset sidelobe levels was analyzed using simulation. The Dcv-Che-BF method achieved a lower sidelobe level and better resolution capability when the preset sidelobe level was slightly greater than the noise background level. To validate the feasibility and performance of the proposed method, computer simulations and sea trials were analyzed. The results show that the Dcv-Che-BF method is a robust high-resolution beamforming method that can achieve a narrow mainlobe and low sidelobe.


Bahr C, Cattafesta L (2012) Wavespace-based coherent deconvolution. 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, 2227. DOI:10.2514/6.2012-2227
Biggs DSC, Andrews M (1997) Acceleration of iterative image restoration algorithms. Applied Optics 36(8):1766-1775. DOI:10.1364/ao.36.001766
Blahut RE (2004) Theory of remote image formation. Cambridge University Press
Brooks TF, Humphreys WM (2006) A Deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays. Journal of Sound and Vibration 294(4):856-879. DOI:10.2514/6.2004-2954
Chu ZG, Yang Y (2013) Engine noise source identification based on non negative least squares deconvolution beamforming Vibration and Shock 32(23):75-81 (in Chinese). DOI:10.3969/j.issn.1000-3835.2013.23.014
Dougherty R (2005) Extensions of DAMAS and benefits and limitations of deconvolution in beamforming. Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference, Monterey, California, 1-8. DOI:10.2514/6.2005-2961
Ehrenfried K, Koop L (2006) Comparison of iterative deconvolution algorithms for the mapping of acoustic sources. AIAA Journal 45(7):1584-1595. DOI:10.2514/6.2006-2711
Hanisch RJ, White RL, Gilliland RL (1997) Deconvolutions of hubble space telescope images and spectra. In:"Deconvolution of Images and Spectra", Ed. P. A. Jansson, 2nd ed., Academic Press, 4-9. DOI:10.1117/12.161998
Hansen P, Nagy J, O’Leary D (1999) Deblurring images. Society for Industrial and Applied, 33-49. DOI:10.1137/1.9780898718874
Koretz A, Rafaely B (2009) Dolph-Chebyshev beampattern design for spherical arrays. IEEE Transactions on Signal Processing 57(6):2417-2420. DOI:10.1109/tsp.2009.2015120
Li Y, Fan CY, Shi DF, Wang HT, Feng XX, Qiao CH, Xu B (2010) Blind restoration algorithm of turbulence degraded image based on accelerated damping Richardson Lucy algorithm. 2010 Optical Conference of China Optical Society, 48(8):8 (in Chinese). DOI:10.3788/LOP48.081001
Li WZ, Liu QL (2005) Improved doff Chebyshev weighted beamforming method. Applied Science and Technology 32(8):1-3 (in Chinese). DOI:10.3969/j.issn.1009-671X.2005.08.001
Liu R, Jia J (2008) Reducing boundary artifacts in image deconvolution. IEEE International Conference on Image Processing, 505-508.DOI:10.1109/icip.2008.4711802
Liu H, Yu JP, Liang G (2018) Area array beamforming method based on Chebyshev weighting. Electronic Design Engineering 26(1):140-143 (in Chinese). DOI:10.3969/j.issn.1674-6236.2018.01.031
Mei J, Pei Y, Zakharov Y, Sun D, Ma C (2020) Improved underwater acoustic imaging with non-uniform spatial resampling RL deconvolution. IET Radar, Sonar & Navigation 14(11):1697-1707.DOI:10.1049/iet-rsn.2020.0175
Mo P, Jiang W (2016) A hybrid deconvolution approach to separate static and moving single-tone acoustic sources by phased microphone array measurements. Mechanical Systems and Signal Processing 84:399-413. DOI:10.1016/j.ymssp.2016.07.033
Richardson WH (1972) Bayesian-based iterative method of image restoration. Journal of the Optical Society of America 62(1):55-59.DOI:10.1364/josa.62.000055
Sun DJ, Ma C, Mei JD, Shi WP (2019) Vector array deconvolution beamforming method based on nonnegative least squares. Journal of Harbin Engineering University 40(7):1217-1223 (in Chinese).DOI:10.11990/jheu.201811059
Tiana-Roig E, Jacobsen F (2013) Deconvolution for the localization of sound sources using a circular microphone array. The Journal of the Acoustical Society of America 134(3):2078-2089. DOI:10.1121/1.4816545
Xenaki A, Jacobsen F, Fernandez-Grande E (2012) Improving the resolution of three-dimensional acoustic imaging with planar phased arrays. Journal of Sound and Vibration 331(8):1939-1950. DOI:10.1016/j.jsv.2011.12.011
Xenaki A, Jacobsen F, Tiana-Roig E, Grande EF (2010) Improving the resolution of beamforming measurements on wind turbines.International Congress on Acoustics, Sydney, 272-272
Yang TC (2017) Deconvolved conventional beamforming for a horizontal line array. IEEE Journal of Oceanic Engineering 99:1-13.DOI:10.1109/joe.2017.2680818
Yang TC (2018) Performance analysis of superdirectivity of circular arrays and implications for sonar systems. IEEE Journal of Oceanic Engineering 44(1):156-166. DOI:10.1109/joe.2018.2801144
Zhong D, Yang D, Zhu M (2016) Improvement of sound source localization in a finite duct using beamforming methods. Applied Acoustics 103:37-46. DOI:10.1016/j.apacoust.2015.10.007
Zielinski A (1986) Matrix formulation for Dolph-Chebyshev beamforming. Proceedings of the IEEE 74(12):1799-1800. DOI:10.1109/proc.1986.13692


Received date:2022-05-13;Accepted date:2022-07-13。
Foundation item:Supported by the National Natural Science Foundation of China under Grant No. 61801140.
Corresponding author:Jidan Mei,E-mail:meijidan@hrbeu.edu.cn
Last Update: 2022-10-09