|Table of Contents|

Citation:
 Wanda Rulita Sari,Gunawan Gunawan,Kurniawan T. Waskito,et al.Integrating Marine Renewable Energy with Green Hydrogen Production from Seawater: Feasibility and Future Prospects for Sustainable Energy Development in Indonesia[J].Journal of Marine Science and Application,2025,(5):925-946.[doi:10.1007/s11804-025-00631-6]
Click and Copy

Integrating Marine Renewable Energy with Green Hydrogen Production from Seawater: Feasibility and Future Prospects for Sustainable Energy Development in Indonesia

Info

Title:
Integrating Marine Renewable Energy with Green Hydrogen Production from Seawater: Feasibility and Future Prospects for Sustainable Energy Development in Indonesia
Author(s):
Wanda Rulita Sari Gunawan Gunawan Kurniawan T. Waskito Dimas Angga Fakhri Muzhoffar
Affilations:
Author(s):
Wanda Rulita Sari Gunawan Gunawan Kurniawan T. Waskito Dimas Angga Fakhri Muzhoffar
Department of Mechanical Engineering, Universitas Indonesia, Depok 16424, Indonesia
Keywords:
Marine renewable energy|Green hydrogen|Green hydrogen production|Seawater electrolysis|Sustainable energy
分类号:
-
DOI:
10.1007/s11804-025-00631-6
Abstract:
This study examines the feasibility and prospects of integrating marine renewable energy (MRE) with green hydrogen production in Indonesia. As global energy demand increases and the environmental impacts of fossil fuels become more pronounced, the search for sustainable alternatives intensifies. Indonesia, with its extensive maritime resources, presents a unique opportunity to harness tidal wave and offshore wind energy for green hydrogen production from seawater. This research explores various electrolysis methods, particularly those that eliminate the need for desalination, thereby enhancing efficiency and reducing costs. The findings indicate that advanced electrolysis techniques can significantly lower energy and production costs while maintaining environmental sustainability by avoiding harmful chemicals and ensuring minimal ecological footprints. Moreover, the utilization of Indonesia’s extensive marine resources can foster energy independence, boost economic growth, and lower carbon emissions, which highlights the need for ongoing research and optimization to improve the economic and environmental feasibility of these technologies. This review article provides an in-depth analysis of the potential for MRE and green hydrogen production in Indonesia, outlining a viable path toward sustainable energy development.

References:

[1] Abdelsalam E, Almomani F, Alnawafah H (2023) Sustainable production of green hydrogen, electricity, and desalinated water via a Hybrid Solar Chimney Power Plant (HSCPP) water-splitting. International Journal of Hydrogen Energy 52: 1356-1369. https://doi.org/10.1016/j.ijhydene.2023.06.165
[2] Abhold K, Baresic D, Fuente SSDL, Shaw A, Stewart J, Dávila AS, Loeff WSVD, Bingham C, Perico C, Rojon I, Galbraith C, Ennison RE, Boussidan N, Monkelbaan J, Prasetya JH, Makarim H, Juwana S, Lasrindy K, Gianova G (2022) Shipping’s energy transition: Strategic opportunities in Indonesia. P4G Getting to Zero Coalition Partneship, Global Maritime Forum & University College London. Available from https://safety4sea.com/wp-content/uploads/2022/08/GMF-Shippings-Energy-Transition-Strategic-Opportunities-in-Indonesia-2022_08.pdf [Accessed on Jun. 10, 2024]
[3] Adiputra R, Habib MI, Erwandi, Prabowo AR, Marta ASD, Pandoe WW, Puryantini N, Sitanggang RB, Nurfanani A (2023) Ocean renewable energy in Indonesia: A brief on the current state and development potential. In: S. Ariyanto, S. I. Heriyanti (Eds.). Renewable energy: Policy and strategy, BRIN Publishing 13-36. DOI: 10.55981/brin.900.c782
[4] Agaton CB, Batac KIT, Reyes EM (2022) Prospects and challenges for green hydrogen production and utilization in the Philippines. International Journal of Hydrogen Energy 47(41): 17859-17870. https://doi.org/10.1016/j.ijhydene.2022.04.101
[5] Agyekum EB, Khan T, Dankwa Ampah J, Giri NC, Fendzi Mbasso W, Kamel S (2024) Review of the marine energy environment-a combination of traditional, bibliometric and PESTEL analysis. Heliyon 10(6): e27771. https://doi.org/10.1016/j.heliyon.2024.e27771
[6] Ahmad A, Tezcan F, Yerlikaya G, Zia-ur-Rehman, Paksoy H, Karda? G (2022) Solar light driven photoelectrochemical water splitting using Mn-doped CdS quantum dots sensitized hierarchical rosetterod TiO2 photoanodes. Journal of Electroanalytical Chemistry 916: 116384. https://doi.org/10.1016/j.jelechem.2022.116384
[7] Akhtar F, Rehmani MH (2015) Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renewable and Sustainable Energy Reviews 45: 769-784. https://doi.org/10.1016/j.rser.2015.02.021
[8] Al-Karaghouli A, Kazmerski LL (2013) Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews 24: 343-356. https://doi.org/10.1016/j.rser.2012.12.064
[9] Alias ND, Go YI (2023) Decommissioning platforms to offshore solar system: Road to green hydrogen production from seawater. Renewable Energy Focus 46: 136-155. https://doi.org/10.1016/j.ref.2023.05.003
[10] Almomani D, Obeidat AM, Holderbaum W (2024) A review of hydrogen production and storage materials for efficient integrated hydrogen energy systems. SCI Energy Science Engineering 12(5): 19341968. https://doi.org/10.1002/ese3.1723
[11] Alt?n H (2024) The impact of energy efficiency and renewable energy consumption on carbon emissions in G7 countries. International Journal of Sustainable Engineering 17(1): 1-9. https://doi.org/10.1080/19397038.2024.2319648
[12] Awodumi OB, Adewuyi AO (2020) The role of non-renewable energy consumption in economic growth and carbon emission: Evidence from oil producing economies in Africa. Energy Strategy Reviews 27: 100434. https://doi.org/10.1016/j.esr.2019.100434
[13] Badea GE, Hora C, Maior I, Cojocaru A, Secui C, Filip SM, Dan FC (2022) Sustainable hydrogen production from seawater electrolysis: Through fundamental electrochemical principles to the most recent development. Energies 15(22): 8560. https://doi.org/10.3390/en15228560
[14] Badreldin A, El Ghenymy A, A-Zubi A, Ashour A, Hassan N, Prakash A, Kozusnik M, Esposito DV, Solim SU, Abdel-Wahab A (2024) Stepwise strategies for overcoming limitations of membraneless electrolysis for direct seawater electrolysis. Journal of Power Sources 593: 233991. https://doi.org/10.1016/j.jpowsour.2023.233991
[15] Baldinelli A, Cinti G, Barelli L, Bidini G (2022) Hydrogen production from low-quality water: challenges and perspectives. Journal of Physics: Conference Series 2385(2022): 012048. https://doi.org/10.1088/1742-6596/2385/1/012048
[16] Berkowitz R (2023) Tidal turbine development ebbs and flows. Physics Today 76(8): 22-25. https://doi.org/10.1063/PT.3.5289
[17] Bian H, Qi P, Xie G, Liu X, Zeng Y, Zhang D, Wang P (2023) HEA-NiFeCuCoCe/NF through ultra-fast electrochemical self-reconstruction with high catalytic activity and corrosion resistance for seawater electrolysis. Chemical Engineering Journal 477: 147286. https://doi.org/10.1016/j.cej.2023.147286
[18] Biggs CMB, Gannon WJF, Courtney JM, Curtis DJ, Dunnill CW (2023) Electrolysing mud: Membraneless electrolysis of water for hydrogen production using montmorillonite-rich marine mud. Applied Clay Science 241: 106950. https://doi.org/10.1016/j.clay.2023.106950
[19] Campagna Zignani S, Faro MLo, Carbone A, Italiano C, Trocino S, Monforte G, Aricò AS (2022) Performance and stability of a critical raw materials-free anion exchange membrane electrolysis cell. Electrochimica Acta 413: 140078. https://doi.org/10.1016/j.electacta.2022.140078
[20] Cao X, Novitski D, Holdcroft S (2019) Visualization of hydroxide ion formation upon electrolytic water splitting in an anion exchange membrane. ACS Materials Letters 1(3): 362-366. https://doi.org/10.1021/acsmaterialslett.9b00195
[21] Chang J, Yang Y (2023) Advancements in seawater electrolysis: progressing from fundamental research to applied electrolyzer application. Renewables 1(4): 415-454. https://doi.org/10.31635/renewables.023.202300034
[22] Chen M, Chang X, Li C, Wang H, Jia L (2023) Ni-Doped BiVO4 photoanode for efficient photoelectrochemical water splitting. Journal of Colloid and Interface Science 640: 162-169. https://doi.org/10.1016/j.jcis.2023.02.096
[23] Chi J, Jiang Z, Yan J, Larimi A, Wang Z, Wang L, Shangguan W (2022) Recent advancements in bismuth vanadate photoanodes for photoelectrochemical water splitting. Materials Today Chemistry 26: 101060. https://doi.org/10.1016/j.mtchem.2022.101060
[24] d’Amore-Domenech R, Santiago Ó, Leo TJ (2020) Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea. Renewable and Sustainable Energy Reviews 133: 110166. https://doi.org/10.1016/j.rser.2020.110166
[25] Dokhani S, Assadi M, Pollet BG (2023) Techno-economic assessment of hydrogen production from seawater. International Journal of Hydrogen Energy 48(26): 9592-9608. https://doi.org/10.1016/j.ijhydene.2022.11.200
[26] Dresp S, Dionigi F, Klingenhof M, Strasser P (2019) Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Letters 4(4): 933-942. https://doi.org/10.1021/acsenergylett.9b00220
[27] Du N, Roy C, Peach R, Turnbull M, Thiele S, Bock C (2022) Anion-exchange membrane water electrolyzers. Chemical Reviews 122 (13): 11830-11895. https://doi.org/10.1021/acs.chemrev.1c00854
[28] El-Shafie M (2023) Hydrogen production by water electrolysis technologies: A review. Results in Engineering 20: 101426. https://doi.org/10.1016/j.rineng.2023.101426
[29] Elahi S, Seddighi S (2024) Renewable energy storage using hydrogen produced from seawater membrane-less electrolysis powered by triboelectric nanogenerators. Journal of Power Sources 609: 234682. https://doi.org/10.1016/j.jpowsour.2024.234682
[30] Faisal S, Zaky A, Wang Q, Huang J, Abomohra A (2022) Integrated marine biogas: A promising approach towards sustainability. Fermentation 8(10): 520. https://doi.org/10.3390/fermentation8100520
[31] Fehr AMK, Agrawal A, Mandani F, Conrad CL, Jiang Q, Park SY, Alley O, Li B, Sidhik S, Metcalf I, Botello C, Young JL, Even J, Blancon JC, Deutsch TG, Zhu K, Albrecht S, Toma FM, Wong M, Mohite AD (2023) Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%. Nature Communications 14(1): 1-12. https://doi.org/10.1038/s41467-023-39290-y
[32] Fei H, Liu R, Liu T, Ju M, Lei J, Wang Z, Wang S, Zhang Y, Chen W, Wu Z, Ni M, Wang J (2023) Direct seawater electrolysis: from catalyst design to device applications. Advanced Materials 36 (17): 2309211. https://doi.org/10.1002/adma.202309211
[33] Forrest D, Li X, Avilés MF, Roberts A (2022) Riding the wave: Challenges and opportunities for marine renewable energies in Canada’s energy transition. Working Paper Series Institute for the Oceans and Fisheries. Available from https://tethys.pnnl.gov/sites/default/files/publications/Challenges-opportunities-for-marine-energy-transistion-Canada-UBC-Working-Paper-2022-02.pdf [Accessed on Jun. 10, 2024]
[34] Fuel Cells and Hydrogen 2 Joint Undertaking (2019) Hydrogen roadmap Europe: A sustainable pathway for the European energy transition. Publications Office of the European Union, Luxembourg. https://doi.org/10.2843/249013
[35] Genauer J, Halim R, Verschuure JP (2022) TA-9690 alternative marine fuels for Indonesia. Technical assistance consultant’s report. Available from https://www.adb.org/sites/default/files/project-documents/52041/52041-002-tacr-en_0.pdf [Accessed on Jun. 10, 2024]
[36] Groenemans H, Saur G, Mittelsteadt C, Lattimer J, Xu H (2022) Techno-economic analysis of offshore wind PEM water electrolysis for H2 production. Current Opinion in Chemical Engineering 37: 100828. https://doi.org/10.1016/j.coche.2022.100828
[37] Guo L, Xie J, Chen S, He Z, Liu Y, Shi C, Gao R, Pan L, Huang ZF, Zhang X, Zhou JJ (2024) Self-supported crystalline-amorphous composites of metal phosphate and NiS for high-performance water electrolysis under industrial conditions. Applied Catalysis B: Environmental 340: 123252. https://doi.org/10.1016/j.apcatb.2023.123252
[38] Han JH, Bae J, Lim J, Jwa E, Nam JY, Hwang KS, Jeong N, Choi J, Kim H, Jeung YC (2022) Direct seawater electrolysis via synergistic acidification by inorganic precipitation and proton flux from bipolar membrane. Chemical Engineering Journal 429: 132383. https://doi.org/10.1016/j.cej.2021.132383
[39] Han JH, Bae J, Lim J, Jwa E, Nam JY, Hwang KS, Jeong N, Choi J, Kim H, Jeung YC (2023a) Acidification-based direct electrolysis of treated wastewater for hydrogen production and water reuse. Heliyon 9(10): e20629. https://doi.org/10.1016/j.heliyon.2023.e20629
[40] Han Z, Zakari A, Youn IJ, Tawiah V (2023b) The impact of natural resources on renewable energy consumption. Resources Policy 83: 103692. https://doi.org/10.1016/j.resourpol.2023.103692
[41] Harirchi S, Wainaina S, Sar T, Ali S, Parchami M (2022) Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 13(3): 6521-6557. https://doi.org/10.1080/21655979.2022.2035986
[42] Haris M (2023) Development of Indonesian maritime sovereignty culture through Indonesian maritime policy with Indonesian maritime defense strategy. The Innovation of Social Studies Journal 5(1): 33-45. https://doi.org/10.20527/issj.v5i1.8489
[43] Harrison KW, Remick R, Martin GD, Hoskin A (2010) Hydrogen production: Fundamentals and case study summaries. National Renewable Energy Laboratory. Available from https://www.nrel.gov/docs/fy10osti/48269.pdf [Accessed on Jun. 10, 2024]
[44] Hasan Z, Tania M, Shampa A, Islam A (2024) Marine renewable energy harnessing for sustainable development in Bangladesh: A technological review. Energy Reports 11: 1342-1362. https://doi.org/10.1016/j.egyr.2024.01.001
[45] Hassan IU, Naikoo GA, Salim H, Awan T, Tabook MA, Pedram MZ, Mustaqeem M, Sohani A, Hoseinzadeh S, Saleh TA (2023a) Advances in photochemical splitting of seawater over semiconductor nano-catalysts for hydrogen production: A critical review. Journal of Industrial and Engineering Chemistry 121: 1-14. https://doi.org/10.1016/j.jiec.2023.01.006
[46] Hassan NS, Jalil AA, Rajendran S, Khusnun NF, Bahari MB, Johari A, Kamaruddin MJ, Ismail M (2024) Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society. International Journal of Hydrogen Energy 52: 420-441. https://doi.org/10.1016/j.ijhydene.2023.09.068
[47] Hassan Q, Sameen AZ, Salman HM, Jaszczur M (2023b) Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy. International Journal of Hydrogen Energy 48(88): 34299-34315. https://doi.org/10.1016/j.ijhydene.2023.05.126
[48] Hausmann JN, Schlögl Robert, Menezes PW, Driess M (2021) Is direct seawater splitting economically meaningful? Energy and Environmental Science 14(7): 3679-3685. https://doi.org/10.1039/d0ee03659e
[49] He T, Liu Q, Fan H, Yang Y, Wang H, Zhang S, Che R, Wang E (2023) Exploring the effect of ion concentrations on the electrode activity and stability for direct alkaline seawater electrolysis. International Journal of Hydrogen Energy 48(51): 19385-19395. https://doi.org/10.1016/j.ijhydene.2023.01.321
[50] Henkensmeier D, Cho WC, Jannasch P, Stojadinovic J, Li Q, Aili D, Jensen JO (2024) Separators and membranes for advanced alkaline water electrolysis. Chemical Reviews 124(10): 6393-6443. https://doi.org/10.1021/acs.chemrev.3c00694
[51] Holmes-Gentle I, Alhersh F, Bedoya-Lora F, Hellgardt K (2018) Photoelectrochemical reaction engineering for solar fuels production. In: Sankir ND and Sankir M (Eds.). Photoelectrochemical Solar Cells. Scrivener Publishing LLC, Beverly, 1-41. https://doi.org/10.1002/9781119460008.ch1
[52] Horri BA, Ozcan H (2024) Green hydrogen production by water electrolysis: Current status and challenges. Current Opinion in Green and Sustainable Chemistry 47: 100932. https://doi.org/10.1016/j.cogsc.2024.100932
[53] Hota P, Das A, Maiti DK (2022) A short review on generation of green fuel hydrogen through water splitting. International Journal of Hydrogen Energy 48(2): 523-541. https://doi.org/10.1016/j.ijhydene.2022.09.264
[54] Huang J, Wang Q (2018) The measurements and efficiency definition protocols in photoelectrochemical solar hydrogen generation. In: Sankir ND and Sankir M (Eds.). Photoelectrochemical Solar Cells. Scrivener Publishing LLC, Beverly, 43-58. https://doi.org/10.1002/9781119460008.ch2
[55] IRENA (2020) Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5 ℃ climate goal. International Renewable Energy Agency. Available from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf [Accessed on Jun. 10, 2024]
[56] IRENA (2021) Making the breakthrough: Green hydrogen policies and technology costs. International Renewable Energy Agency, Abu Dhabi. Available from https://energycentral.com/system/files/ece/nodes/594268/irena_green_hydrogen_breakthrough_2021_1.pdf [Accessed on Jun. 10, 2024]
[57] IRENA (2023) Water for hydrogen production. International Renewable Energy Agency, Abu Dhabi. Available from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Dec/IRENA_Bluerisk_Water_for_hydrogen_production_2023.pdf [Accessed on Jun. 10, 2024]
[58] Jiang C, Moniz SJA, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting-materials and challenges. Chemical Society Reviews 46(15): 4645-4660. https://doi.org/10.1039/c6cs00306k
[59] Jiang J, Tian Y, Zhang J, Zhang C, Ai L (2024a) Metallic Cu-incorporated NiFe layered double hydroxide nanosheets enabling energy-saving hydrogen generation from chlorine-free seawater electrolysis coupled with sulfion upcycling. Fuel 367: 131506. https://doi.org/10.1016/j.fuel.2024.131506
[60] Jiang S, Suo H, Zhang T, Liao C, Wang Y, Zhao Q, Lai W (2022) Recent advances in seawater electrolysis. Catalysts 12(2): 123. https://doi.org/10.3390/catal12020123
[61] Jiang Z, Jia X, Liao J (2024b) Natural resources, renewable energy, and healthcare expenditure in the pursuit of sustainable development amidst inflation reduction act of 2022. Resources Policy 89: 104563. https://doi.org/10.1016/j.resourpol.2023.104563
[62] Jwa E, Lee W, Choi S, Jeung YC, Hwang KS, Han JH, Jeong N (2024) In situ disinfection and green hydrogen production using carbon-based cathodes in seawater electrolysis. Desalination 580: 117580. https://doi.org/10.1016/j.desal.2024.117580
[63] Kasani A, Maric R, Bonville L, Blizankov S (2024) Catalysts for direct seawater electrolysis: Current status and future prospectives. ChemElectroChem 11(9): 202300743. https://doi.org/10.1002/celc.202300743
[64] Katakam VSS, Bahadur V (2024) Reverse osmosis-based water treatment for green hydrogen production. Desalination 581: 117588. https://doi.org/10.1016/j.desal.2024.117588
[65] Khan MA, Al-Attas T, Roy S, Rahman MM, Ghaffour N, Thangadurai V, Larter S, Hu J, Ajayan PM, Kibria MG (2021) Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy & Environmental Science 14(9): 48314839. https://doi.org/10.1039/D1EE00870F
[66] Kumar SP, Sharafudeen PC, Elumalai P (2023) High entropy metal oxide@graphene oxide composite as electrocatalyst for green hydrogen generation using anion exchange membrane seawater electrolyzer. International Journal of Hydrogen Energy 48(97): 38156-38171. https://doi.org/10.1016/j.ijhydene.2023.06.121
[67] Kuspanov Z, Bakbolat B, Baimenov A, Issadykov A (2023) Science of the total environment photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications combined Computational Fluid Dynamics. Science of the Total Environment 885: 163914. https://doi.org/10.1016/j.scitotenv.2023.163914
[68] Lafoz M, Villalba I, Macedo A, Blanco M, Rojas R, Romero-filgueira A, García-mendoza A, Santos-herran M, Alves M (2024) What future for marine renewable energy in Portugal and Spain up to 2030? Forecasting plausible scenarios using general morphological analysis and clustering techniques. Energy Policy 184: 113859. https://doi.org/10.1016/j.enpol.2023.113859
[69] Langer J, Quist J, Blok K (2021) Harnessing the economic potential of ocean thermal energy conversion in Indonesia with upscaling scenarios. Proceedings of the 20th European Roundtable on Sustainable Consumption and Production, Graz, Austria, 261-278. https://doi.org/10.3217/978-3-85125-842-4-37
[70] Lee JE, Shafiq I, Hussain M, Shiung S, Hoon G, Park Y (2021) A review on integrated thermochemical hydrogen production from water. International Journal of Hydrogen Energy 47(7): 43464356. https://doi.org/10.1016/j.ijhydene.2021.11.065
[71] Li M, Luo H, Zhou S, Senthil Kumar GM, Guo X, Law TC, Cao S (2022) State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia. Renewable and Sustainable Energy Reviews 162: 112404. https://doi.org/10.1016/j.rser.2022.112404
[72] Li Y, Phoumin H, Kimura S (2021) Hydrogen sourced from renewables and clean energy: A feasibility study of achieving large-scale demonstration. Economic Research Institute for ASEAN and East Asia (ERIA), Jakarta, Indonesia, ERIA Research Project Report 2021, No. 19
[73] Liguo X, Ahmad M, Khattak SI (2022) Impact of innovation in marine energy generation, distribution, or transmission-related technologies on carbon dioxide emissions in the United States. Renewable and Sustainable Energy Reviews 159: 112225. https://doi.org/10.1016/j.rser.2022.112225
[74] Lin B, Ullah S (2024) Modeling the impacts of changes in nuclear energy, natural gas, and coal in the environment through the novel DARDL approach. Energy 287: 129572. https://doi.org/10.1016/j.energy.2023.129572
[75] Liu G, Xu Y, Yang T, Jiang L (2023) Recent advances in electrocatalysts for seawater splitting. Nano Materials Science 5(1): 101-116. https://doi.org/10.1016/j.nanoms.2020.12.003
[76] Liu J, Xu SM, Li Y, Zhang R, Shao M (2020) Facet engineering of WO3 arrays toward highly efficient and stable photoelectrochemical hydrogen generation from natural seawater. Applied Catalysis B: Environmental 264: 118540. https://doi.org/10.1016/j.apcatb.2019.118540
[77] Liu Z, Han B, Lu Z, Guan W, Li Y, Song C, Chen L, Singhal SC (2021) Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells. Applied Energy 300: 117439. https://doi.org/10.1016/j.apenergy.2021.117439
[78] Loomba S, Khan W, Mahmood N (2023) Seawater to green hydrogen: Future of green energy. ChemElectroChem 10(24): 202300471. https://doi.org/10.1002/celc.202300471
[79] Luo H, Jenkins PE, Ren Z (2011) Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environmental Science and Technology 45(1): 340-344. https://doi.org/10.1021/es1022202
[80] Madadi Avargani V, Zendehboudi S, Cata Saady NM, Dusseault MB (2022) A comprehensive review on hydrogen production and utilization in North America: Prospects and challenges. Energy Conversion and Management 269: 115927. https://doi.org/10.1016/j.enconman.2022.115927
[81] Marin DH, Perryman JT, Hubert MA, Lindquist GA, Chen L, Aleman AM, Kamat GA, Niemann VA, Stevens MB, Regmi YN, Boettcher SW, Nielander AC, Jaramillo TF (2023) Hydrogen production with seawater-resilient bipolar membrane electrolyzers. Joule 7(4): 765-781. https://doi.org/10.1016/j.joule.2023.03.005
[82] Mehanna M, Kiely PD, Call DF, Logan BE (2010) Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environmental Science and Technology 44(24): 9578-9583. https://doi.org/10.1021/es1025646
[83] Mohamadi-Baghmolaei M, Zahedizadeh P, Hajizadeh A, Zendehboudi S (2022) Hydrogen production through catalytic supercritical water gasification: Energy and char formation assessment. Energy Conversion and Management 268: 115922. https://doi.org/10.1016/j.enconman.2022.115922
[84] Moura LCMAD, González MOA, Ferreira PDO, Sampaio PGV (2024) Technology mapping of direct seawater electrolysis through patent analysis. International Journal of Hydrogen Energy 56: 1120-1131. https://doi.org/10.1016/j.ijhydene.2023.12.251
[85] Na J, Yu H, Jia S, Chi J, Lv K, Li T, Zhao Y, Zhao YT, Zhang H, Shao Z (2024) Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis. Journal of Energy Chemistry 91: 370-382. https://doi.org/10.1016/j.jechem.2023.12.018
[86] Nabgan W, Nabgan B, Jalil AA, Ikram M, Hussain I, Bahari MB, Tran TV, Alhassan M, Owgi AHK, Parashuram L, Nordin AH, Medina F (2024) A bibliometric examination and state-of-the-art overview of hydrogen generation from photoelectrochemical water splitting. International Journal of Hydrogen Energy 52: 358-380. https://doi.org/10.1016/j.ijhydene.2023.05.162
[87] New Climate Institute (2023) The role of green hydrogen in a just, Paris-compatible transition. New Climate Institute. Available from https://newclimate.org/resources/publications/the-role-of-green-hydrogen-in-a-just-paris-compatible-transition [Accessed on Jun. 10, 2024]
[88] Oraby M, Shawqi A (2024) Green hydrogen production directly from seawater with no corrosion using a nonmetallic electrode: A novel solution and a proof of concept. International Journal of Energy Research 2024: 5576626. https://doi.org/10.1155/2024/5576626
[89] Osman AI, Mehta N, Elgarahy AM, Hefny M, Hinai AA, Muhtaseb HA, Rooney DW (2022) Hydrogen production, storage, utilisation and environmental impacts: A review. Environmental Chemistry Letters 20: 153-188. https://doi.org/10.1007/s10311-021-01322-8
[90] Park YS, Lee J, Jang MJ, Yang J, Jeong J, Park J, Kim Y, Seo MH, Chen Z, Choi SM (2021) High-performance anion exchange membrane alkaline seawater electrolysis. Journal of Materials Chemistry A 9(15): 9586-9592. https://doi.org/10.1039/d0ta12336f
[91] Parvin M, Savickaja I, Tutliene S, Naujokaitis A, Ramanauskas R, Petruleviciene M, Juodkazyte J (2024) Nanostructured porous WO3 for photoelectrochemical splitting of seawater. Journal of Electroanalytical Chemistry 954: 118026. https://doi.org/10.1016/j.jelechem.2024.118026
[92] Patonia A, Poudineh R (2022) Cost-competitive green hydrogen: how to lower the cost of electrolysers? Oxford Institute for Energy Studies. Available from https://www.oxfordenergy.org/publications/cost-competitive-green-hydrogen-how-to-lower-the-cost-of-electrolysers/ [Accessed on Jun. 10, 2024]
[93] Peiffer E, Williams R, Ba-aoum M, Hudson-heck E, Aranda I (2024) Evaluation of new opportunities for marine energy to power the blue economy: Green hydrogen and marine carbon dioxide removal. Golden, CO: National Renewable Energy Laboratory. NREL/SR-5700-89475. Available from https://www.nrel.gov/docs/fy24osti/89475.pdf [Accessed on Jun. 10, 2024]
[94] Pein M, Neumann NC, Venstrom LJ, Vieten J, Roeb M, Sattler C (2021) Two-step thermochemical electrolysis: An approach for green hydrogen production. International Journal of Hydrogen Energy 46(49): 24909-24918. https://doi.org/10.1016/j.ijhydene.2021.05.036
[95] Pérez-Vigueras M, Sotelo-Boyás R, González-Huerta R de G, Bañuelos-Ruedas F (2023) Feasibility analysis of green hydrogen production from oceanic energy. Heliyon 9(9): e20046. https://doi.org/10.1016/j.heliyon.2023.e20046
[96] Perveen R, Kishor N, Mohanty SR (2014) Off-shore wind farm development: Present status and challenges. Renewable and Sustainable Energy Reviews 29: 780-792. https://doi.org/10.1016/j.rser.2013.08.108
[97] Prasad M, Sharma V, Rokade A, Jadkar S (2018) Photoelectrochemical cell: A versatile device for sustainable hydrogen production. Photoelectrochemical Solar Cells. Scrivener Publishing LLC, Beverly 59-119. https://doi.org/10.1002/9781119460008.ch3
[98] Presiden RI (2006) Perpres No. 05 Tahun 2006. Available from https://jdih.esdm.go.id/index.php/web/result/187/detail [Accessed on Jun. 10, 2024] (in Bahasa Indonesia)
[99] Presiden RI (2022) Peraturan presiden nomor 112 tahun 2022 tentang percepatan pengembangan energi terbarukan untuk penyediaan listrik 135413. Available from https://peraturan.bpk.go.id/Details/225308/perpres-no-112-tahun-2022 [Accessed on Jun. 10, 2024] (in Bahasa Indonesia)
[100] Putri NN, Purabaya Sangki, Roziki A, Siswanto N (2021) Literature review of coal waste utilization. Proceedings of the International Conference on Industrial Engineering and Operations Management, 799-805. https://doi.org/10.46254/an11.20210148
[101] Rezaei M, Mostafaeipour A, Qolipour M, Arabnia H (2018) Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran. Energy & Environment 29(3): 333-357. https://doi.org/10.1177/0958305X17750052
[102] Ringwood JV (2022) Marine renewable energy devices and their control: An overview. IFAC PapersOnLine 55(31): 136-141. https://doi.org/10.1016/j.ifacol.2022.10.421
[103] Saada H, Fabre B, Loget G, Benoit G (2024) Is direct seawater splitting realistic with conventional electrolyzer technologies? ACS Energy Letters 9(7): 3351-3368. https://doi.org/10.1021/acsenergylett.4c00271
[104] Sajna MS, Elmakki T, Schipper K, Ihm S, Yoo Y, Park B, Park H, Kyong H, Suk D (2024) Integrated seawater hub: A nexus of sustainable water, energy, and resource generation. Desalination 571: 117065. https://doi.org/10.1016/j.desal.2023.117065
[105] Salvo JLD, De Luca Giorgio, Cipollina A, Micale G (2021) A full-atom multiscale modelling for sodium chloride diffusion in anion exchange membranes. Journal of Membrane Science 637: 119646. https://doi.org/10.1016/j.memsci.2021.119646
[106] Samsó R, Crespin J, García-Olivares A, Solé J (2023) Examining the potential of marine renewable energy: A net energy perspective. Sustainability (Switzerland) 15(10): 1-36. https://doi.org/10.3390/su15108050
[107] Sari WR, Gunawan G, Surjosatyo A, Muzhoffar DAF (2024) Systematic analysis of potential marine renewable energy for coastal ecological balance on Bawean Island: A review. International Journal of Marine Engineering Innovation and Research 9(2): 349-362. https://doi.org/10.12962/j25481479.v9i2.20298
[108] Satriawan M, Setiawan W, Abdullah AG (2021) Unlimited energy source: A review of ocean wave energy utilization and its impact on the environment. Indonesian Journal of Science & Technology 6(1): 1-16. https://doi.org/10.17509/ijost.v6i1.31473
[109] Schrçder M, Kailasam K, Borgmeyer J, Neumann M, Thomas A, Schomäcker R, Schwarze M (2015) Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation. Energy Technology 3: 1014-1017. https://doi.org/10.1002/ente.201500142
[110] Scroggins RE, Fry JP, Brown MT, Neff RA, Asche F, Anderson JL, Love DC (2022) Renewable energy in fisheries and aquaculture: Case studies from the United States. Journal of Cleaner Production 376: 134153. https://doi.org/10.1016/j.jclepro.2022.134153
[111] Serna Á, Tadeo F (2014) Offshore hydrogen production from wave energy. International Journal of Hydrogen Energy 39(3): 15491557. https://doi.org/10.1016/j.ijhydene.2013.04.113
[112] Shabalov MY, Zhukovskiy Yu L, Buldysko AD, Gil B, Starshaia V V (2021) The influence of technological changes in energy efficiency on the infrastructure deterioration in the energy sector. Energy Reports 7: 2664-2680. https://doi.org/10.1016/j.egyr.2021.05.001
[113] Simoes SG, Catarino J, Picado A, Lopes TF, Berardino S, Amorim F, Gírio F, Rangel CM, Ponce T, Le D (2021) Water availability and water usage solutions for electrolysis in hydrogen production. Journal of Cleaner Production 315: 128124. https://doi.org/10.1016/j.jclepro.2021.128124
[114] Singh D, Kumawat S, Saini A, Sonia P, Goyal A, Sravanthi G, Sax

Memo

Memo:
Received date:2024-6-12;Accepted date:2024-8-30。<br>Foundation item:Supported by The Indonesia Endowment Funds for Education or Lembaga Pengelola Pendidikan (LPDP) Ministry of Finance with scholarship contracts 0000559/TRP/M/19/lpdp2023.<br>Corresponding author:Gunawan Gunawan,E-mail:gunawan_kapal@eng.ui.ac.id
Last Update: 2025-10-24