Bi T, Ye P, Xu Y, Zhang F (2019) Route planning of unmanned aerial vehicle based on sparse A* algorithm. Proceedings of 2019 International Conference on Informatics, Control and Robotics (ICICR 2019), Shanghai, China, 31-37. DOI: 10.26914/c.cnkihy.2019.077835
Chen S, Liu C, Huang Z (2012) Global path planning for AUV based on sparse A* search algorithm. Torpedo Technology 20(4): 271-275. DOI: 10.3969/j.issn.1673-1948.2012.04.007
Chen X, Bose N, Brito M (2022) Risk-based path planning for autonomous underwater vehicles in an oil spill environment. Ocean Engineering 266: 113077.1-113077.13. DOI: 10.1016/j.oceaneng.2022.113077
Chen Z (2020) Using Gauss projection to realize band change of AutoCAD topographic map. Bulletin of Surveying and Mapping 525(12): 138-143. DOI: 10.13474/j.cnki.11-2246.2020.0409
Cheng X, Wang F (2023) Agv path planning based on improved A* algorithm. Computer Systems & Applications∣Comput Syst Appl 32(3): 180-185. DOI: 10.15888/j.cnki.csa.009020
Du Y, Huang J, Zhang H (2021) Multi-direction path planning method of surface unmanned vechicle. Command Control and Simulation 43(4): 7-12. DOI:https://doi.org/10.3969/j.issn.1673-3819.2021.04.002
Feng H, Hu Q, Zhao Z (2022) AUV swarm path planning based on elite family genetic algorithm. Systems Engineering and Electronics 44(7): 2251-2262. DOI: 10.12305/j.issn.1001-506X.2022.07.21
Grifoll M, Boren C, Castells-Sanabra M (2022) A comprehensive ship weather routing system using CMEMS products and A* algorithm. Ocean Engineering 255: 111427.1-111427.15. DOI: 10.1016/j.oceaneng.2022.111427
Hu S, Wu M, Shi J (2023) Research on improved A* algorithm integrating vector cross-product and jump point search strategy. Mechanical Science and Technology for Aerospace Engineering: 1-10. DOI: 10.13433/j.cnki.1003-8728.20230017
Lee T, Kim H, Chung H (2015) Energy efficient path planning for a marine surface vehicle considering heading angle. Ocean Engineering 107: 118-131. DOI: 10.1016/j.oceaneng.2015.07.030
Li M, Zhang Y, Li S (2018) The gradational route planning for aircraft stealth penetration based on genetic algorithm and sparse A* algorithm. 2017 Asia Conference on Mechanical and Aerospace Engineering, 151: 1-5. DOI: 10.1051/matecconf/201815104001
Li J, Liu Q (2017) Dynamic path planning of unmanned aerial vehicle based on sparse A* algorithm and cultura algorithm. Journal of Applied Sciences 35(1): 128-138. DOI: 10.3969/j.issn.0255-8297.2017.01.014
Li X, Li H, Liu G, Bian S (2022a) Optimization of complex function expansions for Gauss-Krüger projections. ISPRS International Journal of Geo-Information 11(11): 566. DOI: 10.3390/ijgi11110566
Li X, Ma X, Wang X (2022b) A survey of path algorithms for mobile robots. Computer Measurement and Control 30(7): 9-19. DOI: 10.16526/j.cnki.11-4762/tp.2022.07.002
Li Y, Duan P, Guo S (2022c) Overview of ship global path planning algorithms. Ship Standardization Engineer 55(5): 26-30+55. DOI: 10.14141/j.31-1981.2022.05.004
Li Y, Ma T, Chen P (2017) Autonomous underwater vehicle optimal path planning method for seabed terrain matching navigation. Ocean Engineering 133: 107-115. DOI: 10.1016/j.ocean-eng.2017.01.026
Li Z, Shi R, Zhang Z (2022d) A new path planning method based on sparse A* algorithm with map segmentation. Transactions of the Institute of Measurement and Control 44(4): 916-925. DOI:https://doi.org/10.1177/01423312211046410
DWA algorithm for mobile robot path planning. Computer Integrated Manufacturing Systems: 1-20. http://kns.cnki.net/kcms/detail/11.5946.TP.20221125.1957.004.html
Miao C, Chen G, Yan C, Wu Y (2021) Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm. Computers & Industrial Engineering 156(8): 107230-107230. DOI: 10.1016/j.cie.2021.107230
Miao T, El Amam E, Slaets P (2022) An improved real-time collision-avoidance algorithm based on hybrid A* in a multi-object-encountering scenario for autonomous surface vessels. Ocean Engineering 255: 111406.1-111406.15. DOI: 10.1016/j.oceaneng.2022.111406
Phanthong T, Maki T, Ura T, Sakamaki T, Aiyarak P (2014) Application of A* algorithm for real-time path re-planning of an unmanned surface vehicle avoiding underwater obstacles. Journal of Marine Science and Application 13(1): 105-116. DOI: 10.1007/s11804-014-1224-3
Qi J, Yang H, Sun H (2020) MOD-RRT*: A sampling-based algorithm for robot path planning in dynamic environment. IEEE Transactions on Industrial Electronics 68(8): 7244-7251. DOI: 10.1109/TIE.2020.2998740
Sang H, You Y, Sun X (2021) The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations. Ocean Engineering 223: 108709.1-108709.16. DOI: 10.1016/j.oceaneng.2021.108709
Sedeno-noda A, Colebrook M (2019) A biobjective Dijkstra algorithm. European Journal of Operational Research 276(1): 106-118. DOI: 10.1016/j.ejor.2019.01.007
Singh Y, Sharma S, Sutton R (2018) A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents. Ocean Engineering 168:187-201. DOI:https://doi.org/10.1016/j.oceaneng
Thi T, Copot C, Duc T, De K (2017) A hierarchical global path planning approach for mobile robots based on multiobjective particle swarm optimization. Applied Soft Computing 59(68-76): 68-76. DOI: 10.1016/j.asoc.2017.05.012
Wang S, Long T, Wang Z (2018) Dynamic path planning using anytime repairing sparse A* algorithm. Systems Engineering and Electronics 40(12): 2714-2721. DOI: 10.3969/j.issn.1001-506X.2018.12.14
Wei Y, Jin F, Dong K (2023) Improved global path planning A* algorithm based on node optimization. Computer Measurement and Control 31(6): 1-11. DOI: 10.3969/j.issn.1005-1228.2022.02.002
Xie L, Xue S, Huang L (2018) Draught monitoring based on contour cluster analysis. Navigation of China 41(1): 60-63+108. DOI: 10.3969/j.issn.1000-4653.2018.01.012
Ying Z, He Q (2022) Unmanned vehicle path planning in complex waters based on improved A* algorithm. Mechanical & Electrical Technology 144(5): 33-35. DOI: 10.19508/j.cnki.1672-4801.2022.05.010
Zhou S, Wang W, Tang J (2021) Improved sparse A* trajectory planning exploration incorporated with pheromone. Electronics Optics & Control 28(11): 26-30. DOI: 10.3969/j.issn.1671-637X.2021.11.006
Zhou X, Zhou Y, Xu L (2020) A path planning algorithm for lunar cover based on probabilistic roadmap. Aerospace Control and Application 46(6): 43-49+78. DOI: 10.3969/j.issn.1674-1579.2020.06.006
Zhu K (2022) Research and application of image segmentation based on improved FCM algorithm. Journal of Chongqing Technology and Business University (Natural Science Edition) 39(5): 24-33. DOI: 10.16055/j.issn.1672-058X.2022.0005.004