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Abstract
An improved version of the sparse A* algorithm is proposed to address the common issue of excessive expansion of nodes and failure to 
consider current ship status and parameters in traditional path planning algorithms. This algorithm considers factors such as initial position and 
orientation of the ship, safety range, and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for 
ship planning. A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel 
paths to easily utilized and analyzed Cartesian coordinates. The algorithm incorporates a hierarchical chart processing algorithm to handle 
multilayered chart data. Furthermore, the algorithm considers the impact of ship length on grid size and density when implementing chart 
gridification, adjusting the grid size and density accordingly based on ship length. Simulation results show that compared to traditional path 
planning algorithms, the sparse A* algorithm reduces the average number of path points by 25%, decreases the average maximum storage node 
number by 17%, and raises the average path turning angle by approximately 10°, effectively improving the safety of ship planning paths.
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1  Introduction

With the growing trend of economic globalization, trade 
exchanges between countries around the world have become 
increasingly close. In the face of rising transportation needs, 
the industry proposes high requirements for ship functions 
and safety in the new era. Especially in the context of the 
rapid development of modern science and technology, the 
industry promotes the development of ships in the direction 
of intelligence (Li et al., 2022c). One of the urgent problems 

for intelligent ships involves quick planning of an optimal 
route from the starting point to the destination and safely 
avoiding all obstacles in a short time when the ship is in a 
complex water area (i.e., a port) (Du et al., 2021). Therefore, 
several intelligent ship route planning algorithms have been 
developed.

Traditional global path planning algorithms, including the 
Dijkstra algorithm (Sedeno-Noda and Colebrook, 2019) 
and the A* algorithm (Grifoll et al., 2022; Hu et al., 2023; 
Cheng and Wang, 2023; Liu et al., 2023), are currently 
available. Sample-based path planning algorithms, includ‐
ing the probabilistic route map method (Zhou et al., 2020) 
and the fast search random tree algorithm (Qi et al., 2020), 
also exist. Furthermore, intelligent optimization global 
path planning algorithms, including the particle swarm opti‐
mization algorithm (Thi et al., 2017) and the genetic algo‐
rithm (Feng et al., 2022; Miao et al., 2021), are available. In 
addition, improvements to various algorithms and the combi‐
nation of different algorithms (Li et al., 2022b) are observed. 
Among them, the A* algorithm has become one of the most 
widely used global path planning algorithms due to its 
search path stability (Phanthong et al., 2014; Li et al., 
2017; Sang et al., 2021; Singh et al., 2018; Chen et al., 
2022; Lee 2015; Miao et al., 2022). Wei et al. (2023) pro‐
posed an improved global path planning A* algorithm 
based on node optimization to expand the search domain of 
the A* algorithm and remove nodes by introducing random 
numbers, thus addressing the problem of the A* algorithm in 
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generating multiple inflection points and long paths. Ying and 
He (2022) introduced an improved A* algorithm that opti‐
mizes the grid map by setting a safe distance and presents 
the Floyd algorithm to reduce the number of path-turning 
points, thereby addressing the excessive closeness of the tradi‐
tional A* algorithm to the dangerous area in the planned route.

Sparse A* search (SAS) is an improvement of the stan‐
dard heuristic search algorithm A*, which effectively reduces 
the search space and enhances the efficiency and robustness 
of the algorithm by excluding invalid points and combining 
path constraints (Li et al., 2018; Zhou et al., 2021; Bi et al., 
2019). Chen et al. (2012) added the random point method 
based on the sparse A* algorithm. The random function 
was used in the path planning area to uniformly increase the 
search nodes, and the visibility check method was employed 
to reduce the number of planned path points. However, 
the expansion of the algorithm will extend the algorithm 
space, and the maximum number of nodes consumed by 
the algorithm will significantly increase. Li and Liu (2017) 
combined the sparse A* algorithm with the cultural algo‐
rithm to propose a UAV dynamic path planning algorithm 
that can quickly avoid sudden threats and solve the path 
problem around the sparse A* algorithm. However, the 
algorithm disregards factors such as the initial heading, 
draft, and length of the ship. Thus, this algorithm in the 
planned path fails to address the practical application re‐
quirements of the ship.

Overall, with the emergence of numerous route-planning 
algorithms, route-planning technology has become increas‐
ingly mature. However, the limitations of traditional route 
planning algorithms have also become highly evident. For 
instance, in the course of chart processing and route plan‐
ning, simultaneously considering the influence of the ship’s 
initial heading, safety range, draft depth, and length on the 
planned route is impossible. Therefore, considering the afore‐
mentioned factors, this paper utilizes the sparse A* algo‐
rithm to plan an optimal obstacle avoidance route from the 
current to the target point, displaying high levels of safety 
and practicality.

Effectively reducing the average number of path points 
per unit path length and the average number of maximum 
storage nodes is possible using the ship route planning algo‐
rithm described in this paper. Additionally, considering fac‐
tors such as the ship’s initial heading, safety range, draft 
depth, and length, this algorithm enhances the safety and 
feasibility of the planned route.

2  Chart processing

2.1  Chart layering

In this paper, the image is layered in accordance with the 
chart color information. The target image is grayed after 

being inputted to reduce the difficulty of layering. However, 
grayscale images have 256 grayscale values. If only a few 
grayscale values are selected as the criteria for selecting 
information, then a large amount of information will be lost, 
resulting in a significant reduction in the security of the 
planned path. Therefore, this paper uses the fuzzy C-means 
clustering algorithm (FCM) to cluster gray values of the 
image and classify them within a certain threshold into the 
same type of information (Xie et al., 2018; Zhu, 2022).

FCM clustering and mean filtering are performed on the 
original nautical chart, and isolated points are removed. 
Shoal areas with water depths of 0‒5, 5‒10, 10‒20, and 
over 20 m are selected as the effective layers of each chart.

2.2  Coordinate change

The position of the object in the chart is typically repre‐
sented by the geographic coordinate system, namely the 
longitude and latitude coordinate system, and the longitude 
and latitude data are also used for ship positioning. The 
longitude and latitude coordinate systems can conveniently 
represent the position of any point on the Earth. However, 
the Earth is an irregular sphere with slightly flat poles and 
a slightly bulging equator. Thus, the longitude and latitude 
coordinate system is not conducive to the position represen‐
tation on the map and the use of the algorithm. Considering 
the above problems, appropriate algorithms should be selected 
to convert longitude and latitude coordinates into Gaussian 
plane coordinates and grid coordinates that are easy to repre‐
sent on the map.

In this paper, the Gauss–Kruger projection algorithm is 
first used to realize the mutual transformation of longitude 
and latitude coordinates and Gaussian plane coordinates 
(Chen, 2020). The Gauss–Kruger projection assumes that 
an elliptical cylinder is transversely sheathed outside the 
Earth’s ellipsoid and is tangent to a meridian (this meridian 
is called the central or axis meridian). The central axis of the 
elliptical cylinder passes through the center of the ellipsoid 
and then uses a certain projection method to project the area 
within a certain range of longitude difference on both sides 
of the central meridian onto the elliptical cylinder and then 
expands this cylinder to become the projection plane. The 
Gauss–Kruger projection has no angular deformation, and 
its deformation in length and area is remarkably small. 
The central meridian has no deformation. From the central 
meridian to the edge of the projection zone, the deformation 
gradually increases. The maximum deformation is located at 
both ends of the equator in the projection zone. The Gauss–
Kruger projection generally has the advantages of high pro‐
jection accuracy, small deformation, and simple calculation 
(Li et al., 2022a). The Gauss–Kruger projection diagram 
is shown in Figure 1.

After converting longitude and latitude coordinates to 
Gaussian plane coordinates, Eq. (1) is then utilized to con‐
vert Gaussian plane coordinates to grid coordinates, 
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while Eq. (2) is utilized to convert grid coordinates to 
Gaussian plane coordinates. The Gaussian plane coordinates 
obtained from the transformation of grid coordinates rep‐
resent the Gaussian plane coordinates at the grid center 
point, where the grid coordinates are located.
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X ' = floor ( )X − X1

length

Y ' = floor ( )Y − Y2

width

(1)

{X = X1 + X ' × length

Y = Y2 + Y ' × width
(2)

where (X ', Y ') represent the grid coordinates of the point, 
(X, Y) represent the Gaussian plane coordinates of the point, 
(X1, Y1) represents the Gaussian plane coordinates of the 
upper left corner of the chart, (X2, Y2) represents the Gauss‐
ian plane coordinates of the lower right corner of the chart, 
length represents the actual length of each grid, and width 
represents the actual width of each grid.

2.3  Chart rasterization

The path planning algorithm must first construct the 
environment; that is, the appropriate method must be selected 
to describe the obstacle information. Such information is a 
crucial link in path planning and obstacle avoidance prob‐
lems, which determines the advantages and disadvantages 
of the path. Common methods of environment construction 
include configuration space, free space, and grid methods. 
This paper uses the grid method to develop an environmental 
model. In the grid method, the environment is divided into 
a series of grids. Each grid is marked as a safe or an obstacle 
area according to the presence or absence of an obstacle. The 
granularity of the grid indicates the fineness of the environ‐
mental description. This method facilitates the creation and 
storage of environmental information and sets the founda‐
tion for the subsequent path-planning process.

In the grid map, the completely barrier-free grid corre‐
sponds to the accessible area, while the complete obstacle 
square corresponds to the unreachable area. Some obstacle 
grids are also regarded as inaccessible areas for safety rea‐

sons. If the unreachable grid is marked as a black color block 
and the reachable grid is marked as a white color block in 
the grid environment, then the environment information 
can be represented as Figure 2.

The traditional route planning algorithm uses a grid map 
with a specified length to reduce the versatility of the algo‐
rithm. However, some narrow areas that do not meet the 
requirements of the ship length are regarded as navigable 
areas due to an excessively small grid length, thus reducing 
the safety of the planned route. If the grid length is exces‐
sively long, then the entire grid with a small number of obsta‐
cle areas will be determined as an infeasible area, resulting 
in a reduction in the driving area and an increase in the 
planned path length. This paper considers the effect of ship 
length on grid size, adaptively adjusts grid size and density 
according to ship length, and grids the chart to address the 
aforementioned problems. The rasterization process is pre‐
sented as follows:

1) The actual distance represented by the input chart is 
calculated as follows:

ì
í
î

maplength = X2 − X1

mapwidth = Y2 − Y1

(3)

where (X1, Y1) represent the Gaussian plane coordinates at 
the upper left corner of the chart, (X2, Y2) represent the 
Gaussian plane coordinates at the lower right corner of the 
chart, maplength represents the actual distance represented 
by the chart length, and mapwidth represents the actual 
distance represented by the chart width.

2) The actual distance represented by each pixel of the 
chart is calculated as follows:
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Pixelslength =
maplength

xPixels

Pixelswidth =
mapwidth

yPixels

(4)

where Pixelslength represents the actual length represented 
by each pixel on the chart, Pixelswidth represents the actual 
width represented by each pixel on the chart, xPixels rep‐
resents the number of horizontal pixels on the chart, and 
yPixels represents the number of vertical pixels on the chart.

3) The number of pixels contained in each grid is calcu‐
lated as follows:

Figure 1　Gauss–Kruger projection diagram

Figure 2　Obstacle grid
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horizontalpixel = ceil ( )shiplength
Pixelslength

verticalpixel = ceil ( )shiplength
Pixelswidth

(5)

where horizontalpixel represents the number of pixels con‐
tained horizontally in each grid, verticalpixel represents the 
number of pixels contained horizontally in each grid, and 
shiplength represents the actual length of the ship.

4) The actual distance represented by each grid is calcu‐
lated as follows:

ì
í
î

Gridlength = horizontalpixel × Pixelslength

Gridwidth = verticalpixel × Pixelswidth
(6)

where Gridlength and Gridwidth represent the actual length 
and width of each grid, respectively.

5) The number of rows and columns of the chart grid is 
calculated as follows:
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maplines = ceil ( )xPixels
horizontalpixel

mapcolumns = ceil ( )yPixels
verticalpixel

(7)

where maplines and mapcolumns represent the number of 
rows and columns of the chart grid, respectively.

6) According to the above data, the input chart is divided 
into maplines × mapcolumns grids, and the actual size of 
each grid is Gridlength × Gridwidth.

3  Sparse A* algorithm implementation

The sparse A* algorithm is an improvement of the tradi‐
tional A* algorithm. This algorithm reduces the number 
of nodes and path points to be expanded and minimizes 
the search space by adding some constraints during node 
expansion (Wang et al., 2018; Li et al., 2022d).

The traditional A* algorithm fails to consider information 
such as the initial ship heading, ship length, draft depth, and 
other factors, yielding planned paths that do not meet the 
requirements of practical ship applications and have poor 
safety. The sparse A* algorithm has currently not been 
applied in the field of ship route planning. This paper com‐
prehensively considers the aforementioned factors and uses 
the sparse A* algorithm to plan ship routes. The basic idea 
of this algorithm is similar to the traditional A* algorithm. 
First, the chart to be planned is imported and rasterized. 
Then, the cost to reach each node to be expanded is subse‐
quently calculated through the preset cost function. The 

node to be expanded with the lowest cost is selected into 
the path point set, and its parent node is set as the current 
point. Finally, the extensible node is placed in the node set 
to be expanded. When the newly added node to the path 
point set is the target point, the source of the path point set 
is traced in accordance with the parent node until the start‐
ing point is identified and the path planning algorithm is 
obtained. The algorithm ultimately ends.

Compared with the traditional A* algorithm, the sparse 
A* algorithm only extends to some node elements in the 
neighborhood that meet the relevant constraints during node 
expansion. The region to be expanded at the next node of 
the algorithm comprises the current point Si, the parent 
node Si-1 of the current point, the expansion radius d, and 
the maximum expansion angle α decision. The identified 
area to be expanded is then divided into M parts, and the 
minimum cost point in each part is selected to be stored in 
the node set to be expanded. The node expansion method 
of the sparse A* algorithm is shown in Figure 3. The sector 
area in the figure is the area to be expanded.

3.1  Path planning process

The process of ship path planning based on the sparse 
A* algorithm is shown in Figure 4.

1) Input the chart and ship information, and then layer 
and rasterize the chart. Simultaneously, the longitude and 
latitude of the starting point are converted into the array 
coordinates available for the algorithm.

2) Create open and closed tables. The open table is used 
to record the nodes to be extended, and the closed table is 
used to record the extended nodes. Simultaneously, the start‐
ing point is inputted into the open table, and the closed table 
is left empty.

3) Determine whether the open table is empty. If it is 
empty, then the target path of the algorithm search failure 
is not found; if it is not empty, then Si is inputted into the 
least expensive point to be extended in the open table into 
the closed table.

4) Identify whether Si is the target point. If so, then exe‐
cute step 5). The algorithm performs successful searches, 
and the target path is found. If not, then the extension node 

Figure 3　Areas to be expanded
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Si+1 of node Si is obtained in accordance with the following 
four steps:

① Construct the area to be expanded for the current 
node Si . The extension line of the connection between Si − 1 
and Si , that is, the parent node of the current node, is taken 
as the axis of symmetry: twice the maximum expansion 
angle α is the angle, and the extension length d is the radius, 
forming a sector area as the area to be expanded for the 
current node Si.② Take grid node A in the area to be expanded to deter‐
mine whether it meets the constraint. If not, then the point 
is discarded; if it is satisfied, then the generation value of 
this point is calculated as follows:

F ( x ) = g ( x ) + h ( x ) (8)

where F(x) represents the generation value of the current 
point, g(x) represents the actual cost from the starting 
point to the current point, and h(x) represents the estimated 
cost from the current point to the target point. The Euclidean 
distance is used in this paper to calculate g(x) and h(x), and 
the expression is:
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( )|| X 'Si

− X 'Si + 1
× length

2

+( )||Y 'Si
− Y 'Si + 1

× width
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h ( x ) =
( )|| X 'Si

− X 'Sn
× length

2

+( )||Y 'Si
− Y 'Sn

× width
2

(9)

where (X 'Si  
, Y 'Si 

) represent the grid coordinates of the current 

point, (X 'Si + 1, Y 'Si + 1) represent the grid coordinates of the 

next extension point of the current point, (X 'n , Y 'n ) repre‐
sent the grid coordinates at the end point, length represents 
the actual length of each grid, and width represents the actual 
width of each grid.

③ Split the area to be expanded. The sector obtained 
from ① is divided into one sector every 5° to obtain M 
small sectors. A large M value yields a maximum expan‐
sion angle α. Identifying the track of the ship becomes dif‐
ficult when the probability of finding the required track is 
high, and the required space for the algorithm will increase 

Figure 4　Flowchart of ship path planning based on the sparse A* algorithm
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accordingly. Therefore, this paper sets the initial value of 
the expansion angle to 5° and gradually increases by 5° until 
the maximum expansion angle α is reached. On the premise 
of ensuring that the planned route can be identified, the 
feasibility of the planned route can be improved to the 
maximum extent, and the required space by the algorithm 
can be reduced.

④ Select the point to be expanded that meets the con‐
straints and has the lowest generation value in each sector. 
This point is then stored in the open table of the node set to 
be expanded, and its parent node is set as the current node Si.

5) Repeat steps 3) and 4). After finding the target path, 
trace the source of the closed table according to the parent 
node until the starting point is identified and the path plan‐
ning algorithm is obtained.

3.2  Algorithm constraint settings

For a series of problems, such as the current state of the 
ship and some ship parameters that the traditional path 
planning algorithm fails to consider, the path planning con‐
straints set in this paper mainly include the following:

1) Safety scope constraints
The ship is not a particle. When planning the path for 

the ship, the safe distance between the ship and the obstacle 
should be fully considered to ensure that the ship maintains 
a certain distance from the obstacle, reducing the possibility 
of ship grounding or reef accidents.

2) Draft constraint
Layered data from different water depth parts can be 

obtained after the chart is processed through the hierarchical 
grid process described in the first part. The navigable area 
can be obtained by importing the ship's draft and comparing 
it with the hierarchical chart data.

3) Initial bow restraint
The traditional path planning algorithm disregards the 

bow direction of the ship's initial position β. Therefore, the 
planned route is inconsistent with the actual application of 
the ship, which easily causes collision accidents during nav‐
igation. During ship path planning, the area to be expanded 
at the starting point is from the initial bow of the ship to the 
β decision. The area to be expanded at the starting point is 
shown in Figure 5.

4  Experiment comparison and result analysis

The experimental platform uses an Intel Core i5-6200U 
CPU@2.30 GHz processor and is programmed by Microsoft 
Visual Studio C++ for simulation experiments. The chart 
used in the experiment is selected from the areas of longi‐
tude E121°22'19"–E121°29'27" and latitude E39°45'32"–
E39°42'54", as shown in Figure 6.

The experimental vessel 1 is set with a length of 30 m, a 
safety range of 50 m, and a draft of 4 m. The starting point 
of the route is set a E121°26'36", N39°43'32", and the end‐
ing point of the route is set to E121°26'58", N39°45'27".

The experimental vessel 2 is set with a length of 50 m, a 
safety range of 80 m, and a draft of 8 m. The starting point 
of the route is set at E121° 25'37", N39° 43'52", and the 
ending point of the route is set to E121° 26'36", N39°
45'24".

The bow directions of experimental vessels 1 and 2 are 
set at 0°, 90°, 180°, and 270°.

During the simulation experiments, ensuring that the 
safety range of the experimental vessel is greater than its 
length is necessary to prevent the vessel from getting too 
close to obstacles or even crossing them along the planned 
path. Additionally, the starting point and endpoint of the 
simulation should be within the range of the provided chart 
and located within the feasible area for the experimental 
vessel. Furthermore, the distance between the starting point 
and endpoint and the infeasible area should be greater than 
the length of the experimental vessel to ensure that the 
starting point and endpoint are not positioned within the 
grid of the obstacle, thus ensuring the feasibility of effective 
path planning.

1) The chart layering results are shown in Figure 7. The 
effective layers are as follows: the shoal area, the areas with 
water depths of 0–5, 5–10, 10–20, and more than 20 m.

2) Figure 8(a) shows the obstacle point identification 
results of vessel 1. The green part in the figure is an unfea‐
sible area, including land, shoals, and regions with a water 
depth of 0–5 m. The water depth in other parts of the drawing 
is larger than 5 m, which can ensure the safe operation of 
vessel 1.

Figure 8(b) presents the obstacle point identification re‐Figure 5　Area to be expanded at the starting point

Figure 6　Experimental chart
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sults of vessel 2. The green part in the figure is an unfeasible 
area, including land, shoals, and regions with water depths 
of 0–5 and 5–10 m. The water depth in other parts of the 
drawing is larger than 10 m, which can ensure the safe oper‐
ation of vessel 2.

3) The chart gridding results of experimental ship 1 
are shown in Figure 9(a). The actual length of the chart is 
10 269.45 m, the actual width is 4 710.45 m, the number of 
horizontal grids is 289, and the number of vertical grids is 
139. The length of each grid in the chart is 35.576 m, and 
the width is 34.092 m.

The chart gridding results of experimental ship 2 are 
shown in Figure 9(b). The actual length of the chart is 
10 269.45 m, the actual width is 4 710.45 m, the number of 
horizontal grids is 193, and the number of vertical grids is 
93. The length and width of each grid in the chart are 53.364 
and 51.139 m, respectively.

Figure 7　Image layering results

Figure 8　Obstacle Point Identification Results

Figure 9　Grid results of experimental vessels
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The grid results reveal that each grid size is close to the 
length of the ship, ensuring that the planned path does not 
pass through narrow areas that do not meet the requirements 
for the ship length while reducing the waste of obstacle-free 
areas in some obstacle grids.

4) Path planning results
① The path planning results for experimental ships 1 and 

2 using the sparse A* algorithm for different initial ship di‐
rections are shown in Figure 10(a) and 10(b), respectively.

The blue, green, red, and black lines in the figure indicate 

the path planning results with an initial ship heading of 0°, 
the road planning results with an initial ship heading of 90°, 
the road planning results with an initial ship heading of 180°, 
and the road planning results with an initial ship heading 
of 270°, respectively.

② The comparison of path planning results between the 
sparse A* algorithm for experimental ship 1 and the tradi‐
tional A* algorithm is shown in Figure 11, and the compar‐
ison of path planning results for experimental ship 2 is 
shown in Figure 12.

Figure 10　Results under different ship heading conditions

Figure 11　Comparison of path planning results for experimental ship 1
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The red and blue lines in the figure denote the path plan‐
ning results of the traditional A* and sparse A* algorithms, 
respectively.

5) The results of sparse A* and A* algorithms are com- 

pared, and the comparison results are presented in Table 1.
The table reveals that the average number of path points 

per unit length for the traditional A* algorithm is 0.02, 
while that for the sparse A* algorithm is 0.015, which is 

Figure 12　Comparison of path planning results for experimental ship 2

Table 1　Comparison of algorithm performance

Experimental 
parameters

Test vessel 1
bow 0°

Test vessel 1
bow 90°

Test vessel 1
bow 180°

Test vessel 1
bow 270°

Test vessel 2
bow 0°

Test vessel 2
bow 90°

Test vessel 2
bow 180°

Test vessel 2
bow 270°

Planning 
algorithm

A*

Sparse A*

A*

Sparse A*

A*

Sparse A*

A*

Sparse A*

A*

Sparse A*

A*

Sparse A*

A*

Sparse A*

A*

Sparse A*

Path 
length (m)

4 835.65

4 720.2

4 835.65

4 907.31

4 835.65

5 017.37

4 835.68

4 728.19

3 706.64

3 688.29

3 706.64

3 837.86

3 706.64

4 389.53

3 706.64

3 759.21

Maximum number 
of storage nodes

3 136

2 421

3 136

2 688

3 136

3 218

3 136

2 452

503

321

503

265

503

554

503

345

Number of 
path points

113

85

113

91

113

88

113

84

61

48

61

44

61

54

61

49

Path average 
turning 
angle (°)

165.405

177.361

165.405

176.528

165.405

176.835

165.405

177.329

166.271

173.152

166.271

173.521

166.271

172.722

166.271

174.994

Times of 
passing through 
infeasible areas

50

0

50

0

50

0

50

0

33

0

33

0

33

0

33

0

Minimum 
distance from 

infeasible area (m)

24.614 8

61.490 8

24.614 8

61.490 8

24.614 8

61.490 8

24.614 8

61.490 8

36.922 3

92.236 1

36.922 3

92.236 1

36.922 3

92.236 1

36.922 3

92.236 1

Running 
time (s)

1.979

42.741

1.748

47.463

1.873

62.298

1.546

48.648

0.513

4.571

0.511

3.521

0.528

7.609

0.512

6.452
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approximately 25% less than the traditional A* method. 
Additionally, the sparse A* algorithm has an average path 
turning angle that is approximately 10° greater than the tra‐
ditional A* algorithm, resulting in a smoother path that is 
more conducive to ship tracking. The average maximum 
number of nodes consumed per unit path length by the tradi‐
tional A* and the sparse A* algorithms is 0.392 and 0.324, 
respectively. This finding reveals a reduction of approxi‐
mately 17% compared to the traditional A* method, result‐
ing in a decrease in storage space usage. Moreover, the mini‐
mum distance between the planned path and the nonnavi‐
gable area calculated by the sparse A* algorithm is always 
higher than the set value and does not pass through non‐
navigable areas. Comparison of the path planning results of 
experimental ships 1 and 2 reveals that the results of the 
sea chart grid vary with different ship conditions, leading to 
various planned paths. Furthermore, different draft depths 
and initial headings significantly affect the path planning 
effectiveness of the sparse A* algorithm. Compared with the 
traditional A* algorithm, the sparse A* algorithm markedly 
improves the safety and feasibility of the path.

In addition, when using the sparse A* algorithm in this 
study, the maximum expansion angle gradually increases by 
5°, reducing the number of expanded nodes and the space 
occupied by the algorithm. However, these conditions also 
increase the running time of the algorithm to some extent.

5  Conclusion

This paper comprehensively considers the influence of 
the initial heading of the vessel, safety range, draft depth, 
and vessel length on the planned path. The sparse A* algo‐
rithm is employed to generate an optimal collision-avoidance 
route for the vessel from the current to the target point, 
which possesses high safety and practicality. Different vessel 
parameters and states are selected for simulation experi‐
ments, and the following conclusions are drawn: the average 
number of path points per unit length is reduced by approxi‐
mately 25%, the average maximum expanded node count 
is decreased by approximately 17%, the average turning 
angle of the path is decreased by approximately 10° , and 
the required storage space is minimized. This approach is 
highly advantageous for tracking the path of the vessel. The 
minimum distance to infeasible areas always remains above 
the set value, and different paths can be planned for vessels 
with various initial headings, effectively improving the safety 
and feasibility of the planned route and reducing the possi‐
bility of vessel grounding or stranding accidents.

However, the algorithm used in this paper is currently 
only applicable to static environments. Thus, dynamic envi‐
ronmental factors, such as considering the influence of other 
ships on the planned path, should be incorporated into future 
work to increase the suitability of the improved algorithm 

for real maritime conditions.
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