|Table of Contents|

Citation:
 Jianhua Wang,Qingping Li,Shouwei Zhou,et al.Time-Lapse Full-Waveform Inversion Using Cross-Correlation-Based Dynamic Time Warping[J].Journal of Marine Science and Application,2024,(3):634-644.[doi:10.1007/s11804-024-00440-3]
Click and Copy

Time-Lapse Full-Waveform Inversion Using Cross-Correlation-Based Dynamic Time Warping

Info

Title:
Time-Lapse Full-Waveform Inversion Using Cross-Correlation-Based Dynamic Time Warping
Author(s):
Jianhua Wang1 Qingping Li123 Shouwei Zhou12 Yufa He123
Affilations:
Author(s):
Jianhua Wang1 Qingping Li123 Shouwei Zhou12 Yufa He123
1. Beijing Huairou Laboratory, Beijing, 101499, China;
2. National Key Laboratory of Marine Natural Gas Hydrates, Beijing, 100028, China;
3. CNOOC Research Institute Co., Ltd., Beijing, 100028, China
Keywords:
Full-waveform inversion|Dynamic time warping|Ocean carbon dioxide storage monitoring|Discrepancy estimation|Model test
分类号:
-
DOI:
10.1007/s11804-024-00440-3
Abstract:
Offshore carbon capture, utilization, and storage (OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions. Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensive OCCUS project. A potential high-resolution method for the aforementioned purpose lies in the full-waveform inversion (FWI) of time-lapse seismic data. However, practical applications of FWI are severely restricted by the well-known cycle-skipping problem. A new time-lapse FWI method using cross-correlation-based dynamic time warping (CDTW) is proposed to detect changes in the subsurface property due to carbon dioxide (CO2) injection and address the aforementioned issue. The proposed method, namely CDTW, which combines the advantages of cross-correlation and dynamic time warping, is employed in the automatic estimation of the discrepancy between the seismic signals simulated using the baseline/initial model and those acquired. The proposed FWI method can then back-project the estimated discrepancy to the subsurface space domain, thereby facilitating retrieval of the induced subsurface property change by taking the difference between the inverted baseline and monitor models. Numerical results on pairs of signals prove that CDTW can obtain reliable shifts under amplitude modulation and noise contamination conditions. The performance of CDTW substantially outperforms that of the conventional dynamic time warping method. The proposed time-lapse full-waveform inversion (FWI) method is applied to the Frio-2 CO2 storage model. The baseline and monitor models are inverted from the corresponding time-lapse seismic data. The changes in velocity due to CO2 injection are reconstructed by the difference between the baseline and the monitor models.

References:

Arts R, Eiken O, Chadwick A, Zweigel P, Van der Meer L, Zinszner B (2004) Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy 29(9-10): 1383-1392. https://doi.org/10.1016/j.energy.2004.03.072
Berkhout AJ, Verschuur DJ (1997) Estimation of multiple scattering by iterative inversion, Part I: Theoretical considerations. Geophysics 62(5): 1586-1595. https://doi.org/10.1190/1.1444261
Bosch M, Mukerji T, Gonzalez EF (2010) Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review. Geophysics 75(5): 75A165-75A176. https://doi.org/10.1190/1.3478209
Bunks C, Saleck FM, Zaleski S, Chavent G (1995) Multiscale seismic waveform inversion. Geophysics 60(5): 1457-1473. https://doi.org/10.1190/1.1443880
Chi B, Dong L, Liu Y (2015) Correlation-based reflection full-waveform inversion. Geophysics 80(4): R189-R202. https://doi.org/10.1190/GEO2014-0345.1
Daley TM, Ajo-Franklin JB, Doughty C (2011) Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine pilot. International Journal of Greenhouse Gas Control 5(4): 1022-1030. https://doi.org/10.1016/j.ijggc.2011.03.002
Daley TM, Solbau RD, Ajo-Franklin JB, Benson SM (2007) Continuous active-source seismic monitoring of CO2 injection in a brine aquifer. Geophysics 72(5): A57-A61. https://doi.org/10.1190/1.2754716
Dahlen FA, Hung SH, Nolet G (2000) Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophysical Journal International 141(1): 157-174. https://doi.org/10.1046/j.1365-246X.2000.00070.x
Djebbi R, Alkhalifah T (2014) Traveltime sensitivity kernels for wave equation tomography using the unwrapped phase. Geophysical Journal International 197(2): 975-986. https://doi.org/10.1093/gji/ggu025
Eide LI, Batum M, Dixon T, Elamin Z, Graue A, Hagen S, Hovorka S, Nazarian B, Nokleby PH, Olsen GI, Ringrose P, Vieira RAM (2019) Enabling large-scale carbon capture, utilisation, and storage (CCUS) using offshore carbon dioxide (CO2) infrastructure developments—A review. Energies 12(10): 1945. https://doi.org/10.3390/en12101945
Flohr A, Schaap A, Achterberg EP, Alendal G, Arundell M, Berndt C, Blackford J, B?ttner C, Borisov SM, Brown R, Bull JM, Carter L, Chen B, Dale AW, Beer DD, Dean M, Deusner C, Dewar M, Durden JM, Elsen S, Fischer JP, Gana A, Gros J, Haeckel M, Hanz R, Holtappels M, Hosking B, Huvenne VAI, James RH, Koopmans D, Kossel E, Leighton TG, Li JH, Lichtschlag A, Linke P, Loucaides S, Martinez-Cabanas M, Matter JM, Mesher T, Monk S, Mowlem M, Oleynik A, Papadimitriou S, Paxton D, Pearce CR, Peel K, Roche K, Ruhl HA, Saleem U, Sands C, Saw K, Schmidt M, Sommer S, Strong SJ, Triest J, Ungerb?ck B, Walk J, White P, Widdicombe S, Wilson RE, Wright H, Wyatt J, Connelly D (2021) Towards improved monitoring of offshore carbon storage: a real-world field experiment detecting a controlled sub-seafloor CO2 release. International Journal of Greenhouse Gas Control 106: 103237. https://doi.org/10.1016/j.ijggc.2020.103237
Furre AK, Eiken O, Alnes H, Vevatne JN, Ki?r AF (2017) 20 years of monitoring CO2-injection at Sleipner. Energy Procedia 114: 3916-3926. https://doi.org/10.1016/j.egypro.2017.03.1523
Hale D (2013) Dynamic warping of seismic images. Geophysics 78(2): S105-S115. https://doi.org/10.1190/geo2012-0327.1
Hansen O, Gilding D, Nazarian B, Osdal B, Ringrose P, Kristoffersen JB, Eiken O, Hansen H (2013) Snohvit: The history of injecting and storing 1 Mt CO2 in the fluvial Tub?en Fm. Energy Procedia 37: 3565-3573. https://doi.org/10.1016/j.egypro.2013.06.249
Harris K, White D, Melanson D, Samson C, Daley TM (2016) Feasibility of time-lapse VSP monitoring at the Aquistore CO2 storage site using a distributed acoustic sensing system. International Journal of Greenhouse Gas Control 50: 248-260. https://doi.org/10.1016/j.ijggc.2016.04.016
Hovorka SD, Benson SM, Doughty C, Freifeld BM, Sakurai S, Daley TM, Kharaka YK, Holtz MH, Trautz RC, Nance HS, Myer LR, Knauss KG (2006) Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environmental Geosciences 13(2): 105-121. https://doi.org/10.1306/eg.11210505011
Hu Q, Grana D, Innanen KA (2023) Feasibility of seismic time-lapse monitoring of CO2 with rock physics parametrized full waveform inversion. Geophysical Journal International 233(1): 402-419. https://doi.org/10.1093/gji/ggac462
Knapp CH, Carter GC (1976) The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech and Signal Processing 24: 320-327. https://doi.org/10.1109/TASSP.1976.1162830
Li D, Peng S, Guo Y, Lu Y, Cui X, Du W (2023) Reservoir multiparameter prediction method based on deep learning for CO2 geologic storage. Geophysics 88(1): M1-M15. https://doi.org/10.1190/geo2021-0717.1
Li D, Peng S, Huang X, Guo Y, Lu Y, Cui X (2021) Time-lapse full waveform inversion based on curvelet transform: Case study of CO2 storage monitoring. International Journal of Greenhouse Gas Control 110: 103417. https://doi.org/10.1016/j.ijggc.2021.103417
Li J (2022) Accelerate the offshore CCUS to carbon-neutral China. Fundamental Research. https://doi.org/10.1016/j.fmre.2022.10.015
Lu K, Li J, Guo B, Fu L, Schuster G (2017) Tutorial for wave-equation inversion of skeletonized data. Interpretation 5(3): SO1-SO10. https://doi.org/10.1190/INT-2016-0241.1
Luo Y, Schuster GT (1991) Wave-equation traveltime inversion. Geophysics 56(5): 645-653. https://doi.org/10.1190/1.1443081
Ma Y, Hale D (2013) Wave-equation reflection traveltime inversion with dynamic warping and full-waveform inversion. Geophysics 78(6): R223-R233. https://doi.org/10.1190/geo2013-0004.1
Meckel TA, Trevino R, Hovorka SD (2017) Offshore CO2 storage resource assessment of the northern Gulf of Mexico. Energy Procedia 114: 4728-4734. https://doi.org/10.1016/j.egypro.2017.03.1609
Métivier L, Allain A, Brossier R, Mérigot Q, Oudet E, Virieux J (2018) Optimal transport for mitigating cycle skipping in full-waveform inversion: A graph-space transform approach. Geophysics 83(5): R515-R540. https://doi.org/10.1190/geo2017-0807.1
Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung SH (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303(5656): 338-343. https://doi.org/10.1126/science.1092485
Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New York, USA
Plessix R (2006) A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International 167(2): 495-503. https://doi.org/10.1111/j.1365-246X.2006.02978.x
Pyun S, Shin C, Min DJ, Ha T (2005) Refraction traveltime tomography using damped monochromatic wavefield. Geophysics 70(2): U1-U7. https://doi.org/10.1190/L1884829
Quei?er M, Singh SC (2013) Localizing CO2 at sleipner—Seismic images versus P-wave velocities from waveform inversion. Geophysics 78(3): B131-B146. https://doi.org/10.1190/geo2012-0216.1
Ringrose PS, Meckel TA (2019) Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions. Scientific Reports 9(1): 1-10. https://doi.org/10.1038/s41598-019-54363-z
Roche B, Bull JM, Marin-Moreno H, Leighton TG, Falcon-Suarez IH, Tholen M, White PR, Provenzano G, Lichtschlag A, Li J, Faggetter M (2021) Time-lapse imaging of CO2 migration within near-surface sediments during a controlled sub-seabed release experiment. International Journal of Greenhouse Gas Control 109: 103363. https://doi.org/10.1016/j.ijggc.2021.103363
Saito H, Nobuoka D, Azuma H, Xue Z (2008) Time lapse cross well seismic tomography monitoring CO2 geological sequestration at Nagaoka pilot project site. Journal of MMIJ 124: 78-86. https://doi.org/10.2473/journalofmmij.124.78
Sirgue L, Pratt RG (2004) Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics 69(1): 231-248. https://doi.org/10.1190/1.1649391
Suicmez VS (2019) Feasibility study for carbon capture utilization and storage (CCUS) in the Danish North Sea. Journal of Natural Gas Science and Engineering 68: 102924. https://doi.org/10.1016/j.jngse.2019.102924
Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49(8): 1259-1266. https://doi.org/10.1190/1.1441754
Tromp J, Tape C, Liu Q (2005) Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International 160(1): 195-216. https://doi.org/10.1111/j.1365-246X.2004.02453.x
Vandeweijer V, Van Der Meer B, Hofstee C, Mulders F, D’Hoore D, Graven H (2011) Monitoring the CO2 injection site: K12-B. Energy Procedia 4: 5471-5478. https://doi.org/10.1016/j.egypro.2011.02.532
Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6): WCC1-WCC26. https://doi.org/10.1190/L3238367
Wang J, Dong L, Huang C, Wang Y (2023) Crosscorrelation-based dynamic time warping and its application in wave equation reflection traveltime inversion. Geophysics 88(6): R737-R749. https://doi.org/10.1190/geo2023-0089.1
Wang Y, Morozov IB (2020) Time-lapse acoustic impedance variations during CO2 injection in Weyburn oilfield, Canada. Geophysics 85(1): M1-M13. https://doi.org/10.1190/geo2019-0221.1
Zhang Z, Alkhalifah T, Wu Z, Liu Y, He B, Oh J (2019) Normalized nonzero-lag crosscorrelation elastic full-waveform inversion. Geophysics 84(1): R1-R10. https://doi.org/10.1190/geo2018-0082.1
Zhao J, Itti L (2018) ShapeDTW: Shape dynamic time warping. Pattern Recognition 74: 171-184. https://doi.org/10.1016/j.patcog.2017.09.020

Memo

Memo:
Received date:2023-12-31;Accepted date:2024-3-6。
Corresponding author:Jianhua Wang,E-mail:wjh2017@tongji.edu.cn
Last Update: 2024-09-29