[1] Bessho M (1973) Feasibility study of a floating-type wave absorber. 34th JTTC, 48–65359
[2] Clement A, Maisondieu C (1993) Comparison of time domain control law for a piston wave absorber. 1993 European Wave Energy Symposium, Edinburgh, 117–122
[3] Chatry G, Clement AH, Gouraud T (1998) Self adaptive control of a piston wave-absorber. Proc. of 8th ISOPE Conference, Montreal, 127–133
[4] Christensen M, Frigaard P (1994) Design of absorbing wave maker based on digital filters. IAHR: Proc. International Symposium: Waves—Physical and Numerical Modelling, Vancouver, 100–109
[5] Faltinsen O (1993) Sea loads on ships and offshore structures. Vol. 1, Cambridge University Press
[6] Havelock TH (1929) LIX. Forced surface-waves on water. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 8(51): 569–576
[7] Hirakuchi H, Kajima R, Kawaguchi T (1990) Application of a piston-type absorbing wavemaker to irregular wave experiments. Coastal Engineering in Japan 33(1): 11–24. https://doi.org/10.1080/05785634.1990.11924520
[8] Mahjouri S, Shabani R, Rezazadeh G, Badiei P (2020). Active control of a piston-type absorbing wavemaker with fully reflective structure. China Ocean Engineering 34: 730–737. https://doi.org/10.1007/s13344-020-0066-9
[9] Milgram JH (1970) Active water-wave absorbers. Journal of Fluid Mechanics 42(4): 845–859. https://doi.org/10.1017/S0022112070001635
[10] Naito S (2006) Wave generation and absorption in wave basins: Theory and application. International Journal of Offshore and Polar Engineering 16(2): 81–89
[11] Salter SH (1981) Absorbing wave-makers and wide tanks. Proceedings of ASCE & ECOR International Symposium on Directional Wave Spectra Applications, Berkley, 81, 182–202
[12] Sch?ffer HA (1996) Second-order wavemaker theory for irregular waves. Ocean Engineering 23(1): 47–88. https://doi.org/10.1016/0029-8018(95)00013-B
[13] Skourup J (1996) Active absorption in a numerical wave tank. The Sixth International Offshore and Polar Engineering Conference, Los Angeles, 3, 31–38
[14] Spinneken J, Swan C (2009a) Second-order wave maker theory using force-feedback control. Part I: A new theory for regular wave generation. Ocean Engineering 36(8): 539–548. https://doi.org/10.1016/j.oceaneng.2009.01.019
[15] Spinneken J, Swan C (2009b) Second-order wave maker theory using force-feedback control. Part II: An experimental verification of regular wave generation. Ocean Engineering 36(8): 549–555. https://doi.org/10.1016/j.oceaneng.2009.01.007
[16] Spinneken J, Swan C (2009c) Wave generation and absorption using force-controlled wave machines. Proc. 19th Int. Offshore and Polar Eng. Conf., Osaka, ISOPE-2009-TPC-540
[17] Ursell F, Dean RG, Yu YS (1960) Forced small-amplitude water waves: a comparison of theory and experiment. Journal of Fluid Mechanics 7(1): 33–52. https://doi.org/10.1017/S0022112060000037
[18] Wang J, Faltinsen OM (2013) Numerical investigation of air cavity formation during the high-speed vertical water entry of wedges. Journal of Offshore Mechanics and Arctic Engineering 135(1): 011101. https://doi.org/10.1115/1.4006760
[19] Wang J, Lugni C, Faltinsen OM (2015) Experimental and numerical investigation of a freefall wedge vertically entering the water surface. Applied Ocean Research 51: 181–203. https://doi.org/10.1016/j.apor.2015.04.003
[20] Yang HQ, Li MG, Liu SX, Zhang Q, Wang J (2015) A piston-type active absorbing wavemaker system with delay compensation. China Ocean Engineering 29(6): 917–924. https://doi.org/10.1007/s13344-015-0064-5