[1] Assi GR (2014) Wake-induced vibration of tandem and staggered cylinders with two degrees of freedom. Journal of Fluids and Structures 50: 340-357. https://doi.org/10.1016/jjfluidstructs.2014.07.002
[2] Cao X, Liu Y, Yu H (2020) Investigation on flow characteristic of flowing around a circular cylinder under the pulsating flow condition. Science Technology and Engineering 20(15): 5926-5931
[3] Cui S, Jing H, Yu C, Zhang J, Liu Q (2023) Les study on aerodynamic characteristics and flow field of elliptical cylinder with small aspect ratio. The 32nd National Conference on Structural Engineering, 411-415
[4] Cheng Y, Duan D, Liu X, Yang X, Zhang H, Han Q (2022) Numerical study on hydrodynamic performance of underwater manipulator in the subcritical region. Ocean Engineering 262: 112214. https://doi.org/10.1016/j.oceaneng.2022.112214
[5] Ding H, Shu C, Yeo KS, Xu D (2007) Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods. International Journal for Numerical Methods in Fluids 53(2): 305-332. https://doi.org/10.1002/fld.1281
[6] Du X, Wang Y, Zhao Y, Sun Y, Dai Q (2018) On mechanisms of aerodynamic interference between two staggered circular cylinders at a high Reynolds number. Engineering Mechanics 35(9): 223-231. https://doi.org/10.6052/j.issn.1000-4750.2017.06.0443
[7] Guilmineau E, Queutey P (2004) Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow. Journal of Fluids and Structures 19(4): 449-466. https://doi.org/10.1016/j.jfluidstructs.2004.02.004
[8] Harichandan AB, Roy A (2010) Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme. International Journal of Heat and Fluid Flow 31(2): 154-171. https://doi.org/10.1016/j.ijheatfluidflow.2010.01.007
[9] Harimi I, Saghafian M (2012) Numerical simulation of fluid flow and forced convection heat transfer from tandem circular cylinders using overset grid method. Journal of Fluids and Structures 28: 309-327. https://doi.org/10.1016/j.jfluidstructs
[10] Hosseini N, Griffith MD, Leontini JS (2020) The flow past large numbers of cylinders in tandem. Journal of Fluids and Structures 98: 103103. https://doi.org/10.1016/j.jfluidstructs.2020.103103
[11] Hu X, Zhang X, You Y (2019) On the flow around two circular cylinders in tandem arrangement at high Reynolds numbers. Ocean Engineering 189: 106301. https://doi.org/10.1016/j.oceaneng.2019.106301
[12] He J, Wang W, Zhao W, Wan D (2022) Hybrid turbulence models for flows around a stationary smooth circular cylinder. Ocean Engineering 262: 112312. https://doi.org/10.1016/j.oceaneng.2021.109690
[13] Jiang H, Cheng L (2021) Large-eddy simulation of flow past a circular cylinder for Reynolds numbers 400 to 3900. Physics of Fluids 33(3): 034119. https://doi.org/10.1063/5.0041168
[14] Kim W, Yoo JY, Sung J (2006) Dynamics of vortex lock-on in a perturbed cylinder wake. Physics of Fluids 18(7): 074103.https://doi.org/10.1063/1.2221350
[15] Konstantinidis E, Balabani S (2008) Flow structure in the locked-on wake of a circular cylinder in pulsating flow: Effect of forcing amplitude. International Journal of Heat and Fluid Flow 29(6): 1567-1576. https://doi.org/10.1016/j.ijheatfluidflow.2008.08.002
[16] Konstantinidis E, Bouris D (2009) Effect of nonharmonic forcing on bluff-body vortex dynamics Physical Review E 79(4): 045303. https://doi.org/10.1103/PhysRevE.79.045303
[17] Konstantinidis E, Bouris D (2010) The effect of nonharmonic forcing on bluff-body aerodynamics at a low Reynolds number. Journal of Wind Engineering and Industrial Aerodynamics 98(6-7): 245-252. https://doi.org/10.1016/j.jweia.2009.10.003
[18] Konstantinidis E, Liang C (2011) Dynamic response of a turbulent cylinder wake to sinusoidal inflow perturbations across the vortex lock-on range. Physics of Fluids 23(7): 075102. https://doi.org/10.1063/1.3592330
[19] Konstantinidis E, Bouris D (2016) Vortex synchronization in the cylinder wake due to harmonic and non-harmonic perturbations. Journal of Fluid Mechanics 804: 248-277. https://doi.org/10.1017/jfm.2016.527
[20] Konstantinidis E, Bouris D (2017) Drag and inertia coefficients for a circular cylinder in steady plus low-amplitude oscillatory flows. Applied Ocean Research 65: 219-228. https://doi.org/10.1016/j.apor.2017.04.010
[21] Kim W, Yoo JY, Sung J (2018) Dynamics of vortex lock-on in a perturbed cylinder wake. Physics of Fluids 18(7): 074103. https://doi.org/10.1063/1.2221350
[22] Kolo? I, Michalcová V, Lausová L (2021) Numerical analysis of flow around a cylinder in critical and subcritical regime. Sustainability 13(4): 2048. https://doi.org/10.3390/su13042048
[23] Liu E, Chen W, Lin Y, Wang S, Li Y (2021) Numerical simulation of flow around a two-dimensional elliptical cylinder with different Reynolds numbers. Chinese Journal of Applied Mechanics 38(5): 2025-2031.
[24] Mentese A, Bayraktar S (2021) Numerical investigation of flow over tandem and side-by-side cylinders. Seatific Journal 1(1): 15-25. https://doi.org/10.14744/seatific.2021.0003
[25] Mikheev NI, Molochnikov VM, Mikheev AN, Dushina OA (2017) Hydrodynamics and heat transfer of pulsating flow around a cylinder. International Journal of Heat and Mass Transfer 109: 254-265. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.12
[26] Molochnikov VM, Mikheev NI, Mikheev AN, Paereliy AA, Dushin NS, Dushina OA (2019) SIV measurements of flow structure in the near wake of a circular cylinder at ite=3900. Fluid Dynamics Research 51(5): 055505. https://doi.org/10.1088/1873-7005/ab2c27
[27] Muddada S, Hariharan K, Sanapala VS, Patnaik BSV (2021) Circular cylinder wakes and their control under the influence of oscillatory flows: A numerical study. Journal of Ocean Engineering and Science 6(4): 389-399. https://doi.org/10.1016/j.joes.2021.04.002
[28] Norberg C (2003) Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures 17(1): 57-96. https://doi.org/10.1016/S0889-9746(02)00099-3
[29] Qu S, Liu S, Ong MC (2021) An evaluation of different RANS turbulence models for simulating breaking waves past a vertical cylinder. Ocean Engineering 234: 109195. https://doi.org/10.1016/j.oceaneng.2021.109195
[30] Rodríguez I, Lehmkuhl O, Chiva J, Borrell R, Oliva A (2015). On the flow past a circular cylinder from critical to super-critical Reynolds numbers: Wake topology and vortex shedding. International Journal of Heat and Fluid Flow 55: 91-103. https://doi.org/10.1016/j.ijheatfluidflow.2015.05.009
[31] Shi X, Alam M, Bai H (2020) Wakes of elliptical cylinders at low Reynolds number. International Journal of Heat and Fluid Flow 82: 108553. https://doi.org/10.1016/j.ijheatfluidflow.2020.108553
[32] Shukla S, Singh SN, Sinha SS, Vijayakumar, R (2021) Comparative assessment of URANS, SAS and DES turbulence modeling in the predictions of massively separated ship airwake characteristics. Ocean Engineering 229: 108954. https://doi.org/10.1016/j.oceaneng.2021.108954
[33] Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press
[34] Willden RHJ, Graham JMR (2004) Multi-modal vortex-induced vibrations of a vertical riser pipe subject to a uniform current profile. European Journal of Mechanics-B/Fluids 23(1): 209-218. https://doi.org/10.1016/j.euromechflu.2003.09.011
[35] Wu Y, Zhang X, Wu H (2022) Flow characteristics of elliptical column under subcritical Reynolds number. Journal of Shanghai University (Natural Science Edition) 28(5): 1-14
[36] Yagmur S, Dogan S, Aksoy MH, Goktepeli I (2020) Turbulence modeling approaches on unsteady flow structures around a semicircular cylinder. Ocean Engineering 200: 107051. https://doi.org/10.1016/j.oceaneng.2020.107051
[37] Zhai H, Wang Z, Li Z, Li Q (2018) The effects of laminar separation on heat transfer in flow past an elliptic cylinder. In IOP Conference Series: Mat Sci Eng 452(2): 022035. https://doi.org/10.1088/1757-899X/452/2/022035
[38] Zhang H, Yang J, Xiao L, Lu H (2013) Hydrodynamic performance of flexible risers subject to vortex-induced vibrations. Journal of Hydrodynamics 25: 156-164. https://doi.org/10.1016/S1001-6058(13)60349-2
[39] Zhang A, Li S, Cui P, Li S, Liu Y (2023) A unified theory for bubble dynamics. Physics of Fluids 35(3): 033323. https://doi.org/10.1063/5.0145415
[40] Zhao G, Meng S, Che C, Fu S (2023) Internal flow effect on the coupled CF and IL VIVs of a flexible marine riser subject to a uniform current. Ocean Engineering 269: 113502. https://doi.org/10.1016/j.oceaneng.2022.111487