[1] Chuang H (2017) Research of trajectory characteristics of supersonic-supercavitating projectile. PhD thesis, Northwestern Polytechnical University, Xi’an, 30-35. (in Chinese)
[2] Fan CY, Li ZL, Du MC, Yu R (2021) Numerical study on the influence of vehicle diameter reduction and diameter expansion on supercavitation. Applied Ocean Research 116: 102870. DOI: 10.1016/j.apor.2021.102870
[3] Guo ZT, Zhang W, Wang C (2012) Experimental and theoretical study on the high-speed horizontal water entry behaviors of cylindrical projectiles. Journal of Hydrodynamics 24(2): 217-225. DOI: 10.1016/S1001-6058(11)60237-0
[4] He QK, Wei YJ, Wang CH, Zhang JZ (2013) Impact dynamics of supercavitating projectile with fluid/structure interaction. Journal of Harbin Institute of Technology 20(1): 101-106
[5] Hu ZM, Khoo BC, Zheng JG (2013) The simulation of unsteady cavitating flows with external perturbations. Computers and Fluids 77: 112-124. DOI: 10.1016/j.compfluid.2013.02.006
[6] Kulkarni SS, Pratap R (2000) Studies on the dynamics of a supercavitating projectile. Applied Mathematical Modelling 24(2): 113-129. DOI: 10.1016/S0307-904X(99)00028-1
[7] Li DJ, Li FJ, Shi YZ, Dang JJ, Luo K (2020) A novel hydrodynamic layout of front vertical rudders for maneuvering underwater supercavitating vehicles. Ocean Engineering 215: 107894. DOI: 10.1016/j.oceaneng.2020.107894
[8] Li Tianxiong, Feng Juntao, Xie Yuxin, Sun Yuxi (2018) Experimental investigation on projectiles high-speed water entry. Proceedings of the 1st International Conference on Defence Technology, Beijing
[9] Liu CL, Zhang YW, Wang YD, Qi XB (2015) Investigation into load characteristics of submarine-launched missile being ejected from launch tube considering the adapter elasticity. Binggong Xuebao/Acta Armamentarii 36(2): 379-384. DOI: 10.3969/j.issn.1000-1093.2015.02.027. (in Chinese)
[10] Lv Y, Xiong T, Yi W (2017) Multistability in a simplified underwater supercavity system. International Journal of Bifurcation and Chaos 27(8): 1-16. DOI: 10.1142/S0218127417501218
[11] Mao X (2010) Nonlinear robust control design for a high-speed supercavitating vehicle. PhD thesis, The Pennsylvania State University, State Collage, 40-42
[12] Mirzaei M, Alishahi MM, Eghtesad M (2015) High-speed underwater projectiles modeling: a new empirical approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering 37(2): 613-626. DOI: 10.1007/s40430-014-0190-7
[13] Mirzaei M, Taghvaei H (2019) A novel configuration optimization for high-speed ventilated supercavitating vehicles. Ocean Engineering 179: 13-21. DOI: 10.1016/j.oceaneng.2019.03.013
[14] Nguyen Thai D, Horák V, Nguyen Van D, Dao Van D, Nguyen Van H, Do Duc L (2018) Ballistics of supercavitating projectiles. Advances in Military Technology 13(2): 237-248. DOI: 10.3849/aimt.01243
[15] Nguyen VT, Park WG (2022) Numerical study of the thermodynamics and supercavitating flow around an underwater high-speed projectile using a fully compressible multiphase flow model. Ocean Engineering 257: 111686. DOI: 10.1016/j.oceaneng.2022.111686
[16] Rand RH, Rudra P (1997) Impact dynamics of a supercavitating underwater projectile. Proceedings of the ASME Design Engineering Technical Conference, Sacramento, DETC97/VIB-3929. DOI: 10.1115/DETC97/VIB-3929
[17] Schaffar M, Rey C, Boeglen G (2012) Behavior of supercavitating projectiles fired horizontally in a water tank: Theory and experiments-CFD computations with the OTi-HULL Hydrocode. 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, AIAA 2005-5010. DOI: 10.2514/6.2005-5010
[18] Semenenko VN, Naumova YI (2012) Study of the supercavitating body dynamics. In Supercavitation: Advances and Perspectives A Collection Dedicated to the 70th Jubilee of Yu.N. Savchenko, 1-230. DOI: 10.1007/978-3-642-23656-3
[19] Vlasenko YD (2003) Experimental investigation of supercavitation flow regimes at subsonic and transonic speeds. Proceedings of the Fifth International Symposium on Cavitation, Osaka, 1-8
[20] Wang KJ, Rong G, Mu Q, Yi WJ, Chen ZH (2019) Double slapping effects on a supercavitation projectile. AIP Advances 9(1): 015104. DOI: 10.1063/1.5053143
[21] Wang KJ, Rong G, Yin HQ, Yi WJ (2020) Dynamic features of kinetic energy supercavitating vehicles. Applied Ocean Research 102: 102304. https://doi.org/10.1016/j.apor.2020.102304
[22] Wang KJ, Wu YL, Hao SP, Rong G (2023) Structural optimization and stability analysis for supercavitating projectiles. Journal of Marine Science and Application 22(3): 527-544. DOI: 10.1007/s11804-023-00352-8
[23] Wang Y, Sun XJ, Dai YJ, Wu GQ, Cao Y, Huang DG (2015) Numerical investigation of drag reduction by heat-enhanced cavitation. Applied Thermal Engineering 75: 193-202. DOI: 10.1016/j.applthermaleng.2014.09.042
[24] Xu HY, Wang C, Wei YJ, Cao W (2023) On the nonlinear hydrodynamic characteristic of a ventilated supercavitating vehicle with high Froude number. Ocean Engineering 268: 113457. DOI: 10.1016/j.oceaneng.2022.113457
[25] Yen T, Morabito MG, Imas L, Dzielski JE, Datla R (2011) Investigation of cylinder planing on a flat free surface. Proceedings of the 11th International Conference on Fast Sea Transportation, FAST 2011-Proceedings, Hawaii, 396-403
[26] Yoon K, Li JQ, Shao SY, Karn A, Hong JR (2021) Investigation of ventilation demand variation in unsteady supercavitation. Experimental Thermal and Fluid Science 129: 110472. DOI: 10.1016/j.expthermflusci.2021.110472
[27] Zhang AM, Li SM, Cui P, Li S, Liu YL (2023) A unified theory for bubble dynamics. Physics of Fluids 35(3): 033323. DOI: 10.1063/5.0145415
[28] Zhao X, Lyu X, Li D (2019) Modeling of the tail slap for an underwater projectile within supercavitation. Mathematical Problems in Engineering 2019(4): 1-10. DOI: 10.1155/2019/1290157
[29] Zhu X, Li J (2022) Numerical simulation research on six-degree-of-freedom tail-slap of supercavitating projectile. Chinese Journal of Hydrodynamics 37(4): 474-482. DOI: 10.16076/j.cnki.cjhd.2022.04.005
[30] Zou W, Liu TX, Tang ZH, Shi YK (2023) Optimized design of the overall shapes of supercavitating vehicles based on a multi-objective adaptive genetic algorithm. Ocean Engineering 286: 115523. DOI: 10.1016/j.oceaneng.2023.115523
[31] Zou W, Liu T, Shi Y (2021) Optimization of the maximum range of supercavitating vehicles based on a genetic algorithm. Ocean Engineering 239: 109892. DOI: 10.1016/j.oceaneng.2021.109892