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Abstract
The present study focuses on simulating supercavitating projectile tail-slaps with an analytical method. A model of 3σ-normal distribution tail-
slaps for a supercavitating projectile is established. Meanwhile, the σ − κ equation is derived, which is included in this model. Next, the 
supercavitating projectile tail-slaps are simulated by combining the proposed model and the Logvinovich supercavity section expansion 
equation. The results show that the number of tail-slaps depends on where the initial several tail-slaps are under the same initial condition. If the 
distances between the initial several tail-slap positions are large, the number of tail-slaps will considerably decrease, and vice versa. Furthermore, a 
series of simulations is employed to analyze the influence of the initial angular velocity and the centroid. Analysis of variance is used to 
evaluate simulation results. The evaluation results suggest that the projectile’s initial angular velocity and centroid have a major impact on the 
tail-slap number. The larger the value of initial angular velocity, the higher the probability of an increase in tail-slap number. Additionally, the 
closer the centroid is to the projectile head, the less likely a tail-slap number increase. This study offers important insights into supercavitating 
projectile tail-slap research.
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1  Introduction

In liquid flow, when the pressure drops to the saturated 
vapor pressure at the corresponding temperature, the liquid 
can form vapor-filled cavities (Hu et al., 2013). This phenom‐
enon usually leads to damage to the engineering devices 
caused by collapse. People’s understanding of cavitation 
initially originated from the cavitation phenomenon of ship 
propellers, which was discovered in 1895 when Barnaby and 
Parsons studied the severe decrease in propeller thrust at 

high speeds. Subsequent researchers found that cavitation 
is commonly present in devices containing liquids, such as 
water pumps and turbines. The phenomenon of cavitation 
is a crucial research topic and has been studied for more 
than 100 years. From an engineering perspective, cavita‐
tion often reduces the performance of hydraulic machinery, 
generates vibration and noise, and can cause severe impact 
erosion in materials. However, it benefits underwater vehi‐
cles in high-speed motion. Utilizing technologies and theo‐
ries to improve the speed of underwater vehicles remains 
the focus of study for many domestic and overseas researchers 
(Wang et al., 2015). This research will greatly reduce the 
friction resistance between a vehicle and liquid when the 
vapor-filled cavity wraps the vehicle during movement. Thus, 
it will become the main method for resistance reduction of 
future underwater vehicles.

However, many difficult issues exist because of the cavi‐
ties, which accompany many complicated physical phenom‐
ena, such as multiphase flow (Nguyen and Park, 2022), 
unstable phase boundaries (Yoon et al., 2021), and cavity 
collapsing effects (Fan et al., 2021). Supercavitating vehicle 
research is hard to crack because of these factors. In partic‐
ular, it is difficult to establish a perfect mathematical model 
of vehicle motion that contains all the uncertainties. During 
the underwater motion of a supercavitating projectile, its 
navigation state completely depends on the initial conditions 
(Wang et al., 2020), hydrodynamic environment (Xu et al., 
2023), and structural parameters (Wang et al., 2023), which 
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directly determine whether the projectile can achieve the 
goal of damage. These three factors can be summarized into 
two categories: the influence of the dynamic parameters of 
the body itself and the external influence.

Recently, with the improvement of the accuracy of super‐
cavitating projectile models, researchers (Mirzaei and Tagh‐
vaei, 2019; Daijin et al., 2020; Zou et al., 2021; Wang et al., 
2023; Zou et al., 2023) have conducted a large amount of 
research on structural optimization design based on the estab‐
lished mathematical models. Accompanying this research 
is a dynamic analysis of the body. Rand (1997) conducted 
in-depth research on the flight dynamics characteristics of 
simplified supercavitating projectiles, focusing on the tail-
slap frequency of supercavitating projectiles, assuming that 
the body rotates in a plane around the head. The results indi‐
cate that the tail-slap frequency increases with decreasing 
navigation speed, and the collision frequency depends on 
the initial conditions. He (2013) combined Richard’s theo‐
retical method with the finite element method to establish 
a bidirectional fluid–structure coupling program. He obtained 
not only the dynamic behavior of the body but also the tail-
slap action load, and the dynamic results were consistent 
with Richard's results. Furthermore, Zhao et al. (2019) pro‐
posed the mirror hypothesis of tail-slap and simulated the 
motion of a supercavitating projectile based on Richard’s 
theory. As the number of tail-slaps increased, the tail force 
gradually decreased. The instability mechanism of super‐
cavitating vehicles was preliminarily analyzed in this work.

Although the Richard model has preliminarily revealed 
the motion laws of supercavitating projectiles, it is too sim‐
ple to deeply reveal the stability characteristics. Kulkarni and 
Pratap (2000) analyzed the force characteristics of the tail-
slap of a supercavitating projectile and proposed a three-
degree-of-freedom model in the longitudinal plane. The mass 
distribution characteristics of the body were studied. The 
results showed that although the projectile has a tail-slap 
effect, the motion trajectory remains essentially linear, the 
frequency shows a parabolic distribution throughout the 
motion process, and its maximum value decreases with the 
moment of inertia. On this basis, Nguyen Thai et al. (2018) 
considered the influence of attack angle and established a 
more accurate three-degree-of-freedom model, which was 
verified through launch experiments. The model’s velocity 
error was 1.1%, providing a theoretical basis for supercavi‐
tating projectile design.

Miezaei et al. (2015) further established a six-degree-of-
freedom mathematical model for supercavitating vehicles. 
The model combined different planning forces, Logvinovich 
(Mao, 2010), Hassan (Yen et al., 2011), and empirical 
(Mirzaei et al., 2015), with bubble models, Zhang (Guo et al., 
2012) and Vlasenko (Vlasenko, 2003), for comparison, 
proving that the empirical model is more accurate than 
existing models. Considering the applicability of the current 
model, Wang et al. (2020) combined the work of Mirzaei 

et al. (2015) and Semenenko and Naumova (2012) to fur‐
ther establish a dynamic model and structural optimization 
method for a high-speed supercavitating projectile.

In their model, the above researchers used the vertical 
assumption for the direction of the planning hydrodynamic 
force; that is, the force direction is vertical and upward 
with the axis of the projectile. In fact, the complexity of the 
fluid – structure interaction and the nonuniformity of the 
bubble makes it difficult to accurately predict the specific 
direction of the force on a supercavitating projectile during 
the fluid–structure interaction (Zhang et al., 2023). At the 
same time, because of the limitations of the current under‐
water measurement technology, it is difficult to completely 
and accurately capture the specific position of the tail-slap 
of a supercavitating projectile on the supercavity surface, 
and the randomness of the interaction between the super‐
cavity and the body is difficult to quantify, so the theoreti‐
cal research is still conducted under the premise of a hypoth‐
esis, an important factor restricting the theoretical break‐
through of the supercavitating projectile.

Thus, it is essential to establish a model that considers 
the randomness and instabilities of underwater environments. 
The main purpose of our research is to find a theoretical 
method for predicting these phenomena and help researchers 
recognize the nature of the issue clearly. Unfortunately, no 
such universal or commonly accepted model is available.

Some supercavitating projectile experiments demonstrate 
that tail-slaps occur from beginning to end for high-speed 
projectiles. In this paper, a normal distribution (ND) model 
of tail-slaps is established to describe the dynamic behavior 
of a supercavitating projectile underwater. The randomness 
and uncertainty of the underwater environment are consid‐
ered by the variance of the ND. The slap effects are simu‐
lated successfully, revealing the influence factors of the num‐
ber of tail-slaps. A tail-slap diagram is obtained by combin‐
ing the Logvinovich expansion equation, the Gaussian dis‐
tribution model, and Kulkarnis’s (Kulkarni and Pratap, 2000) 
results. Moreover, this tail-slap diagram accords well with 
Richard’s research. Meanwhile, the results of a single-fac‐
tor ANOVA analysis of the simulation indicate that the 
closer the centroid is to the projectile nose, the fewer the 
tail-slap numbers will be. The projectile has better stability 
under this condition. Additionally, the initial angular veloc‐
ity is larger, and the number of tail-slaps is much greater.

2  The ND model for a supercavitating 
projectile

2.1  Statistical law of supercavitating projectile 
tail-slaps

The tail-slap is a fluid– structure coupling and strongly 
nonlinear process, whose essence is a series of impacts 
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between projectile and cavity. Although extensive research 
has been conducted on tail-slaps, studies investigating them 
in space are scarce because of their complexity. Moreover, 
the current test equipment cannot obtain the required results, 
such as tail-slap motion in the cavity cross section. From 
this aspect, the tail-slaps must be studied in space.

Most researchers believe that supercaviting projectile 
tail-slap motion is mainly on the top and bottom of the cavity 
cross-section. However, this belief is valid for supercavit‐
ing projectiles but for supercavitating projectiles. Broadly 
speaking, supercavitating projectiles have large mass and 
control systems. The tail-slap force can be weakened by 
controlling the posture of the supercaviting projectiles. In 
addition, the tail-slap motion will be restrained in the vertical 
direction because of the large mass. Contemporary research‐
ers do not fully understand underwater projectile motion. 
However, much of the experimental data and simulation 
results from previous literature (Schaffar et al., 2012) sug‐
gest that the tail-slaps are not on a plane, but a random motion 
with some statistical law in the cavity. Figure 1 shows under‐
water projectile tail-slaps captured from the side of the pro‐
jectile. It is obvious that the tail-slaps mainly occur on the side 
of the cavity rather than in a vertical plane.

Figure 2 was also captured from the side of the projec‐
tile. Obviously, the adjacent slap positions are not in a verti‐
cal plane, which is the same phenomenon experimentally 
observed in the paper (Chuang, 2017). This evidence proves 
that the supercavitating projectile slaps in the cavity are a 
series of space motions with strong randomness and uncer‐
tainty. For adjacent tail-slaps, the second position is not 
strictly rotating the first one 180° but distributes near the 

first one added 180°. Therefore, the adjacent tail-slap posi‐
tions have the characteristic of an ND. Therefore, it is 
meaningful to conduct theoretical research on this phenom‐
enon to propose a mathematical model for it.

According to the experimental results, the most likely 
latter tail-slap position is to rotate 180° at the former. How‐
ever, the probability gradually decreases to 0 from the latter 
position to the former position along the cavity boundary, 
which approximately obeys an ND. Therefore, a 3σ-NDSM 
in the cavity can be established on the basis of the ND, as 
shown in Figures 3 and 4. As the ND is defined on (−∞, +∞), 
it must be redefined to make it physically meaningful. Thus, 
a 3σ- NDSM is established on a random process. In terms 
of universality and accuracy, the study of this model is more 
important than that of the two-dimensional model.

Figure 5 is a sketch of tail-slaps, which is a cavity cross-
section at the projectile's tail. The former tail-slap occurred 
at this moment, and thus, the latter tail-slap position depends 
on the direction of the exciting force. There are many mod‐
els for calculating the magnitude of this force, but it is dif‐
ficult to determine the direction of the force because of the 
complexity of fluid-structure coupling. Therefore, the 3σ-NDSM 
is proposed to determine the direction of the exciting force, 
which is based on the statistical law of the experiment.

2.2  ND and 3σ-NDSM

The ND is the general law of many random events in 
nature, such as human height, weight, measurement error, 
and crop yield. All mentioned above have the characteris‐
tics of an ND. Therefore, the ND is widely used for practi‐

Figure 1　Supercavitating projectile tail-slap

Figure 2　Supercavitating projectile tail-slap motion (Li et al., 2018)
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cal problems and has a universal importance in nature.
Generally, the ND probability density function of ran‐

dom variable X is

f ( x) =
1

2π σ
e
− ( )x − μ 2

2σ2 ,      −∞ < x < +∞ (1)

where μ and σ > 0 are constant, and the random variable X 
obeys an ND. μ and σ2 are ND parameters, recorded as X~ 
N(μ, σ2).

Because the tail-slap position distribution and the ND 
are very similar, it is assumed that the random variable of 
slap direction θ obeys an ND; that is, θ~N (μ, σ2), where μ is 
the mean, and σ2 is the variance. The random variable θ is 
defined as each time tail-slap direction, which is shown in 
Figure 6. The probability density function of X is defined 
on the real field R. In fact, the tail-slap direction θ must 
change in the range of [0° , 360° ] for a physics problem. 
Therefore, θ must be constrained in the interval [0, 360]. 
Obviously, the mathematical ND model is not suitable 

here. A 3σ-NDSM that matches the actual problem must be 
adopted.

According to the 3σ principle of an ND, if θ~N (μ, σ2), 
the probability of θ is 0.997 3 when we let X change in (μ−3σ, 
μ+3σ); otherwise, the probability is only 0.002 7; that is, θ 
can hardly be selected from the interval (μ−3σ, μ+3σ). In 
Figure 6, the cavity cross-section at the projectile tail is 
divided into several equal parts from 0 to 360, which are 
set as the 3σ intervals. The ND probability density function 
of X is defined on [0, 360], omitting those cases outside 
the interval, which is defined as 3σ -NDSM. Therefore, 
3σ-NDSM has more actual meaning.

2.3  The ND assumption of tail-slaps

For convenient analysis, the following descriptions of tail-
slap are made according to the experimental results: The ini‐
tial slap position is difficult to determine because of the uncer‐
tainty produced by the initial factors. These factors include 
the disturbance of gunpowder gas during the middle trajec‐
tory, the change in the cavity layer from cloud cavity to 
supercavity, and so on. All the abovementioned disturbances 
are the reasons why the initial slap position is uncertain.

Figure 7 shows the inhomogeneity of the cavity. This 
figure shows that the disturbance is as complex as the flow. 
The disturbance for the projectile is mainly about the tra‐
jectory of the projectile motion in the cavity. According to 
the Euler dynamic equations, the projectile trajectory relies 
on the Euler angles. The Euler angles depend on the angular 
velocity. Since the projectile impacts the cavity continually 
from beginning to end, angular velocity is a vital parameter 
in supercaviting projectile research. Given the complexity of 
the initial disturbance, the initial slap position is not located 
in the cavity’s top or bottom.

Therefore, in the current literature, such as the nonlinear 
dynamic analysis of supercavitating projectiles (Lv et al.,  
2017), initial values usually are set as arbitrary. These ini‐
tial values are selected blindly; that is, researchers select a 
certain range for initial parameters to calculate dynamic 

Figure 3　Normal distribution model

Figure 4　Improved 3σ-NDSM

Figure 6　Cavity cross-section scale

Figure 5　Supercavity section at the tail of a projectile
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systems in this range. To make the results have general im‐
portance, the following assumptions are made:

1) The period from the time when the projectile exits the 
bore to the time when it is in free flight from gunpowder 
and various disturbances is called the aftereffect period of 
the projectile in the intermediate ballistics. In the aftereffect 
period, the airflow continues to accelerate the projectile 
and exert new interference, forming the initial disturbance 
of free flight and increasing the dispersion of the projectile. 
Aftereffect period disturbance is an important factor affect‐
ing projectile dispersion and has been introduced into the 
concept of initial disturbance as a research topic of exterior 
ballistics for many years. The lateral disturbance to the pro‐
jectile has many causes, such as projectile motion in the bore 
and the aftereffect period.

It is proved theoretically and experimentally that the lat‐
eral disturbance is a main cause of projectile dispersion. In 
particular, the core of the fin-stabilized shelling penetrator 
is a thin rod with a large aspect ratio. When the projectile 
moves in the bore, various disturbance factors are more 
complex, including the lateral vibration caused by the pro‐
jectile bore gap, the deflection caused by the longitudinal 
acceleration of the projectile, the lateral movement of the 
core clip relative to the bore wall, and the yaw of the core 
relative to the clip. Because of the complex stress condition, 
once the design is improper, the projectile body will be 
deformed or even fractured, severely affecting the normal 
flight. Particularly in an underwater environment, in addi‐
tion to the disturbance of gas to the projectile, there are also 
many bubbles at the muzzle, and the complex fluid–solid 
coupling effect is generated between the bubbles and the 
projectile. Driven by so many complex forces, the projec‐
tile will initially be in a random distribution state, so a uni‐
form distribution is the most convenient for describing this 
type of disturbance.

The initial tail-slap location obeys a uniform distribution 
on the cavity cross-section of the projectile tail and is influ‐
enced by fluid disturbance. That is, the initial slap position 
may occur anywhere in the cavity cross-section [0°, 360°], 
and the opportunity is equal.

2) Because water is 800 times denser than air, and the 
supercavitating projectile moves at a high-speed underwater, 
the hydrodynamic force is 100 orders of magnitude higher 
than the aerodynamic force. The supercavitating projectile 
given in the literature (Zhu and Li, 2022) is 0.056 kg, and 
its planning resistance can reach 550 N, which can be con‐

verted to a mass of approximately 56 kg, 1 000 times that of 
the supercavitating projectile. Therefore, the mass of the 
supercavitating projectile can be ignored in a simulation 
calculation.

It is assumed that the trajectory of the projectile tail at 
the cavity cross-section is a straight line.

3) In the interaction between a supercavitating projectile 
and a supercavity wall, the supercavity will generate a re‐
storing force on the projectile, causing the projectile to pro‐
duce the effect of a tail-slap. However, the author believes 
that there are many uncertainties in the fluid–structure inter‐
action, which is difficult to predict completely and accu‐
rately. Therefore, the “vertical hypothesis” on the planning 
force cannot truly reflect the direction of force that acts on 
a projectile. At the same time, in many test results, the high-
speed images captured are observed on a plane, which cannot 
truly capture the specific position of the tail of a supercavi‐
tating projectile. However, the nonplanar characteristics 
of the tail-slap motion can also be observed from a two-
dimensional plane.

The latter tail-slap position is most likely to be rotated 
180° around the former’s position, which has the property 
of an ND. Therefore, the adjacent tail-slap positions are 
always correlated. Suppose the tail-slap position k obeys 
the ND of parameters μ and σ2, which is recorded as k~ 
N (μi, σ

2). When a consecutive tail-slap process is considered, 
μi + 1 = k+180, σ = f (ρ, R), μi + 1 is the angle of the expected 
later slap position, ρ is the curvature radius of the cavity, 
and R is the curvature radius of the projectile tail, where 
the standard deviation σ is proportional to ρ. σ is inversely 
proportional to R.

4) After the supercavitating projectile interacts with the 
supercavity, the supercavity shape will be distorted. Accord‐
ing to Logvinovich’s cavity independent expansion principle, 
the independent deformation of the distorted supercavity 
section will not transmit disturbance forward or backward. 
Therefore, the newly formed supercavity will remain undis‐
turbed after the next tail-slap. This conclusion is clearly 
reflected in Figure 1(a).

It is assumed that the cavity deformation-caused tail-slaps 
are neglected. Meanwhile, the section of the projectile tail 
is simplified as a point during the plotting of the tail-slap 
image.

Figure 8 demonstrates a tail-slap diagram of a super‐
cavitating projectile. During the tail-slaps, the cavity cross-
section shrinks at the projectile tail because of the attenua‐

Figure 7　Disturbance of multi-factors for supercavitating projectile (Liu et al., 2015)
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tion of projectile velocity. The ND law still holds on the 
cavity cross-section after shrinkage. The mean value μ of 
the ND is the former angle added with 180° . In addition, 
the standard deviation σ, which depends on the cavity radius 
at the projectile tail, needs to be recalculated each time. 
That is, σ needs to be updated according to the reduction 
of the cavity. Based on hypothesis 3), σ will be smaller 
after each tail-slap. The angle of the latter tail-slap is close 
to that of the former tail-slap but rotated by 180°. Because 
of the motion of the projectile, the tail-slap direction is 
more concentrated, and the randomness is weakened.

3  Tail-slap stochastic mathematic model and 
simulations

3.1  Tail-slap stochastic mathematic model

1) Initial tail-slap uniform distribution model
According to hypothesis 1), the initial tail-slap position 

is random, so it is considered to create a mapping between 
angles and real numbers from 0 to 360. The initial opportu‐
nity of the tail-slap position is equal at every position, and 
the uniform distribution probability density function of x is 
set in the range of [0, 360]. Thus, the uniform distribution 

probability density function is defined as follows:

f ( x) =
ì
í
î

ïïïï

ïïïï

1
360

,    0 < x < 360

0 ,                   others
(2)

where x is the image of angle θ mapped on the real num‐
ber field R.

2) The 3σ-NDSM
The 3σ-NDSM can simulate the tail-slap phenomena. In 

this model, μ reflects an average level of the latter tail-slap 
position. That is, the value of μ at the current position is k+
180. The parameters ki and μi can be obtained using the fol‐
lowing procedure.

The first step: k1~U (0, 360)
The second step: μ2 = k1+180, k2~N (μ2, σ

2)
The third step: μ3 = k2+180, k3~N (μ3, σ

2)
…
The formula of the algorithm is μi+1 = ki+180, ki + 1~ 

N (μi+1, σ
2)

σ reflects the deviation of the latter tail-slap from μ. To 
determine the parameter σ, much experimental statistical data 
is required. This requirement is unrealistic, so this paper pro‐
poses two methods for determining σ from estimation and 
analysis.

Figure 8　The tail-slap diagram of supercavitating projectile
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a. Approximate solutions of σ
For 3σ-NDSM, the integral value of the probability den‐

sity function is greater than 0.997 3 in the interval [k, k+
360] according to the 3σ principle of the ND. Its expres‐
sion is as follows:

∫
k

k + 360 1

2π σ
exp

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú− ( )x − μ 2

2σ2
dx ≥ 0.997 3 (3)

For Equation (3), let t = (x−μ)/σ:

1

2π
∫

k − μ
σ

k − μ + 360
σ

exp ( )− t2

2
dt ≥ 0.997 3 (4)

Letting m = 20.5t/2, Equation (4) can be written as

1

π
∫

k − μ
2 σ

k − μ + 360

2 σ exp ( )− m2 dm ≥ 0.997 3 (5)

As μ is in the interval [k, k+360], the inequality k < μ < 
k+360 is established and μ satisfies:

μ =
1
2 (2k + 360) (6)

That is

μ = k + 180 (7)

Therefore, the inequality in Equation (5) can be expressed 
as

k − μ
2 σ

< 0 <
k − μ + 360

2 σ
(8)

According to the property of integral, Equation (5) can 
be rewritten as follows:

∫
k − μ

2 σ

0

exp ( )− m2 dm + ∫
0

k − μ + 360

2 σ exp ( )− m2 dm ≥ 0.997 3 π

(9)

Generally, the Gauss error function with variable m can 
be defined as

erf (m) =
2

π
∫

0

m

exp ( − η2 )dη (10)

The term on the left side of Equation (9) is replaced by 
Equation (11), which is obtained from the properties of the 
Gauss error function.

erf ( k − μ + 360

2 σ ) − erf ( k − μ
2 σ ) ≥ 1.994 6 (11)

Equation (7) is substituted into Equation (11):

erf ( 180

2 σ ) − erf ( − 180

2 σ ) ≥ 1.994 6 (12)

Since the Gauss error function is an odd function, Equa‐
tion (12) can be arranged as follows:

erf ( 180

2 σ ) ≥ 0.997 3 (13)

By consulting the Gauss error function table, we see that

ì
í
î

erf ( )2.10 = 0.997 02

erf ( )2.15 = 0.997 53
(14)

If linear interpolation is applied to Equation (14), we 
obtain:

erf ( 180

2 σ ) ≥ erf (2.127) ≈ 0.997 3 (15)

Because the Gauss error function is monotonically increas‐
ing on [0, +∞], the following inequality holds:

180

2 σ
≥ 2.127 (16)

σ is the standard deviation of the ND and σ > 0. The 
range of the standard deviation in a mathematical sense can 
be obtained as follows:

0 < σ ≤ 59.84 (17)

Finally, a 3σ-NDSM is established.

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

f ( )x =
1

2π σ
e
− ( )x − μ 2

2σ2

  k < x < k + 360
μ = k + 180

0 < σ ≤ 59.84

(18)

b. Analytical formula of σ
It is considered that the variable x of the ND probability 

density function is limited to the interval (−∞, +∞) to [k, k+
360]; then, Equation (3) can be written as

∫
k

k + 360 1

2π σ
exp

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú− ( )x − μ 2

2σ2
dx = 1 (19)
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For Equation (19), let t=(x−μ)/σ:

1

2π
∫

k − μ
σ

k − μ + 360
σ

exp ( )− t2

2
dt = 1 (20)

Letting a = t−(k−μ)/σ, Equation (20) be written as

1

2π
∫

0

360
σ

exp
é

ë

ê
êê
ê ù

û

ú
úú
ú− 1

2 ( )a +
k − μ
σ

2

da = 1 (21)

By simplifying Equation (21), we obtain:

∫
0

360
σ

exp
é

ë

ê
êê
ê ù

û

ú
úú
ú− a2σ − 4a ( )k − μ

2σ
da = 2π exp

é

ë

ê
êê
ê
ê
ê( )k − μ 2

2σ2

ù

û

ú
úú
ú
ú
ú

(22)

The left-hand side of Equation (22) is expanded using a 
power series. It is expressed as

∑
n = 0

∞ ì
í
î

ïï

ïï

ü
ý
þ

ïïïï

ïï
( )− 1

n

n!( )2σ
n ∫

0

360
σ [ ]a2σ + 4a ( )k − μ n

da = 2π exp
é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú( )k − μ 2

2σ2
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Equation (7) is substituted into Equation (23):

∑
n = 0
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16 200
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ù
û
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(24)

In theory, the value of σ can be obtained by solving 
Equation (24) for σ, which is difficult to do, so the estima‐
tion interval value of σ in a can be used to solve for σ.

c. σ −κ estimation equation
To obtain σ conveniently, a σ estimation equation is pro‐

posed based on the σ approximate solution and the experi‐
mental phenomenon that adjacent tail-slap positions are 
always nearly symmetric about a cavity diameter. Dimen‐
sionless κ is defined according to hypothesis (3):

κ =
δ
R

(25)

where δ is the supercavity radius at the body’s tail, and R 
is the radius of the projectile’s tail. When the cavity cross-
section at the projectile tail is equal to the projectile tail cross-
section, the value of κ is set as 1. At this moment, the pro‐
jectile tail-slaps will not occur, which is equivalent to the 
ND with zero standard deviation. Therefore, σ and κ have 
a functional relation. The maximum cavity cross-section at 
the projectile tail corresponds to the maximum kinetic energy 
of the projectile. Currently, the value of the σ is 59.84 and 
κ is κ0. There are two groups of data, which are composed 

of κ and σ, (1,0), (κ0, 59.84). Suppose the equation of σ−κ 
can be obtained using a linear relationship because σ and κ 
are positively correlated:

σ =
59.84 ( )κ − 1

κ0 − 1
(26)

where κ is the updated value at each tail-slap, and κ0 is the 
value of the initial tail-slap.

3) Logvinovich independent expansion model of cavity
Suppose the fluid is incompressible potential flow, the 

linear motion of the projectile underwater is considered, and 
the projectile moves at an initial velocity v0 and attenuates 
according to the law of inverse proportional function 
(Wang et al., 2019). The velocity expression is as follows:

v (t ) =
2mv0

2m + v0 ρACx0t
(27)

where m is the mass of the projectile, ρ is the fluid density, 
A is the section area of the cavitator, Cx0 is the drag coeffi‐
cient, which is set as 0.82, and t is the flight time of the 
projectile.

The saturated vapor pressure inside the cavity is pv , the 
ambient pressure is p, and the cavity cross-section is S. 
Logvinovich derived the independent expansion equation 
of the cavity based on the potential flow theory according 
to the energy conservation equation (Wang et al., 2019).

ì

í

î

ïïïï

ïïïï

∂2S ( )x', t
∂t2

=− k'( )p − pv

ρ
 

x'( )t − l ( )t ≤ x' ≤ x'( )t
(28)

where the coefficient k′ weakly depends on the number of 
cavitations σ = Δp/(0.5ρv2). Generally, k′ = 4π/(A2) and 
A ≈ 2 is an empirical constant, x′ is a certain cavity cross-
section along the cavity length, and l is the cavity length.

To simulate tail-slaps, the cavity cross-section of the pro‐
jectile tail must be calculated. When a cavitator moves 
through a region of space, the cavity expansion time is equal 
to the time that the projectile moves a length of L. There‐
fore, there is

∫
0

tk

v (t )dt = L (29)

where tk is the expansion time of the cavity at a certain posi‐
tion, that is, the time in which the projectile moves a length 
of L, and L is the length of the projectile.

By integrating Equation (29), tk can be obtained (Wang 
et al., 2019):

tk =
2m

v0 ρACx0

é

ë

ê
êê
êexp ( v0 ρACx0 L

2mv0 ) − 1
ù

û

ú
úú
ú (30)
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3.2  Simulation method for supercavitating 
projectile tail-slaps

1) Initial conditions
a. The initial velocity of the supercavitating projectile is 

300 m/s when it is launched underwater;
b. The mass m of the supercavitating projectile is 0.1 kg;
c. The length L of the supercavitating projectile is 

156.81 mm;
d. The fluid medium is water with a density of 1 000 kg/m3;
e. The maximum diameter D of the supercavitating pro‐

jectile is 12.67 mm;
f. The diameter of the projectile cavitator is 4.49 mm;
g. The gravitational acceleration g is 9.8 m/ s2;
h. The atmospheric pressure P0 is 101 325 Pa;
i. The projectile motion depth h is 2.3 m;
j. The saturated vapor pressure Pv is 3 025 Pa at 24 ℃;
k. The rotational inertia of the projectile around the cen‐

ter of mass on the plane is 1.46×10−4 N/m;
l. The distance xcm between the center of mass and the 

projectile tail is 80 mm;
m. The time step t is 10−5 s;
n. The total calculation time is 0.5 s.
2) Determination of the initial tail-slap position
According to the experiments and analysis in Section 1, 

the initial position can be influenced by many factors, and 
the uncertainties are often complicated. During the initial 
tail-slap, the cavity at the projectile tail transfers from a 
cloudy or stratified cavity to a supercavity, and the integral 
cavity surface will form gradually. The initial slap position 
may occur in any position of cavity. Therefore, the initial 
position can be selected using the generated random num‐
bers on [0, 360], which obey a uniform distribution.

3) Calculation of the cavity cross-section at the projec‐
tile tail position

Since the pressure used in Logvinovich’s bubble expan‐
sion equation is not near the bubble pressure but infinite, 
we have p = p0 + ρgh;

Supposing that τ is the formation time of section x, the 
integral of the Logvinovich bubble expansion equation can 
be obtained:

S (τ, t ) = S0 +
d
dt

S0(t − τ ) − k
ρ ∫ τt ( )t − u ( )p − pv du (31)

Let tm = t, n ≤ i ≤ m, discretize Equation (31) using the 
complex Simpson formula, and let f = ( t − u ) ( p − pv ):

S (τ, t ) = S0 +
d
dt

S0(t − τ ) − k
6ρ∑i = n

m ( )fi + f
i +

1
2

+ fi + 1 Δt

(32)

The formula for calculating the cavity section area of the 
projectile tail can be obtained by substituting Equation (30) 

into Equation (32):

S (τ, tk ) = S0 +
d
dt

S0
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1
2
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(33)

4) Calculation of the tail-slap positions
The initial tail-slap position is determined using the uni‐

form distribution. This information is used to calculate the 
next tail-slap expectation μi + 1, μi + 1 = ki+180 (i = 1, 2, 3, …, 
n); then, σ is determined using Equation (26), where ki is 
the angular value of the current tail-slap position.

The value range of ki and μi+1 is [0, 360]. When 180 is 
added to ki, the result might exceed the range of [0, 360], 
and it has lost physical meaning. Therefore, every μi+1 must 
be limited and then recorded as μ*

i . The limited calculation 
method is as follows:

μ*
i = μ i − 360n (34)

where n is a left integer function expressed as follows:

n = é
ë
êêêê
μ i

360
ù
û
úúúú (35)

Meanwhile, a negative mathematical expectation may also 
occur when calculating the next time step. Applying the 
geometry method to the cavity cross-section at the projec‐
tile tail position, the negative angle can be defined as posi‐
tive from 0° to 360° so that the calculation results have 
physical meaning. Based on the above, an algorithm is per‐
formed as follows:

Step 1: When |μi + 1| > 360 go to step 2, else go to step 7;
Step 2: n = [|μi + 1|];
Step 3: ξi = |μi + 1|−360n;
Step 4: μi + 1 = ξi sign(μi + 1);
Step 5: If sign(μi + 1) = −1 is true μi + 1 = 360−ξi, else go to 

step 6;
Step 6: μi + 1 = ξi;
Step 7: If sign(μi + 1) = −1 is true μi + 1 = 360+ξi, else go to 

step 8;
Step 8: μi + 1 = μi + 1.
The polar coordinate system is established by setting the 

origin at the center of the cavity cross-section at the projec‐
tile tail, in which the polar center is O and the axis is r, and 
the position of each tail-slap can be determined by ki:

ì
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î
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ïï
ï
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ï

ï
ïï
ï
ï
ï

xi =
S ( )τ, tk

π
cos ki

yi =
S ( )τ, tk

π
sin ki

(36)
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where ki is the last tail-slap position based on polar coordi‐
nates. The unit “degree” in the original image is used to 
calculate ki, in which only the unit needs to be changed 
and the value need not be changed. xi and yi are the current 
tail-slap coordinates in a polar coordinate system.

5) Determination of the relation between adjacent 
tail-slaps

The supercavitating projectile experiences two stages in 
the process of underwater motion, which are the motion 
completely inside the supercavity and the motion interac‐
tion between the projectile and the supercavity. Conse‐
quently, the angular velocity curve of the tail-slap of the 
supercavitating projectile is oscillatory. To explain this varia‐
tion, a map that relates the angular velocity before impact 
to the angular velocity after impact is established by Kulkarni 
(Kulkarni and Pratap, 2000). Figure 9 shows the results of 
a tail-slap.

Kulkarni and Pratap (2000) established the 3-DOF tail-
slap equation of a supercavitating projectile in a plane, 
which calculated the tail-slap angular velocity curve of two 
types of projectiles. On the basis of the dynamic analysis 
results, Kulkarni derived the angular velocity formula before 
and after the tail-slaps:

Q+ = Q− [ ]1 −G ( )1 + e (37)

This equation has considered all the dynamic factors, 
including projectile parameters and exciting force, so there 
is no need to present the exciting force formula. The detailed 
work is in the literature (Kulkarni and Pratap, 2000):

G =
mxcm L

I + mx2
cm

(38)

Q− and Q+ are the angular velocity of the supercavitating 
projectile before and after a tail-slap, respectively. e is the 
compensation coefficient, and its expression is

e = exp ( − L2Q−

xcmU −α ) (39)

where U− is the velocity of a supercavitating projectile, 
and α is the pitch angle, that is, the angle between the pro‐
jectile axis and the wall of the cavity when the projectile 
tail-slaps. α can be expressed as

α = arcsin

S ( )τ, tk

π
L

(40)

If the coordinates of the first and second tail-slaps are 
(x1, y1) and (x2, y2), respectively, the plane distance between 
the two positions is

Ld = ( )x1 − x2

2
+ ( )y1 − y2

2
(41)

The linear velocity at the projectile tail is

vL = |Q+ |L (42)

Thus, the time interval between two tail-slaps is obtained 
as follows:

td =
Ld

vL

=
( )x1 − x2

2
+ ( )y1 − y2

2

||Q+ L
(43)

Salil S. Kulkarni’s results (Kulkarni and Pratap, 2000)
are proposed on a plane. According to hypothesis 2), a 
supercavitating projectile has a linear tail trajectory, so a 
plane is approximately formed between two tail-slap posi‐
tions. It is effective to apply Salil S. Kulkarni’s conclusion 
(Kulkarni and Pratap, 2000) between two tail-slaps.

6) Determination of the initial slap angular velocity
The initial tail-slap angular velocity is disturbed by many 

uncertainties, so it can be set arbitrarily. When the actual 
tail-slaps are simulated, the initial angular velocity of the 
tail-slap can be selected as any number. When the influence 
of some parameters is studied during the projectile motion, 
the same initial slap angular velocity of the projectile can 
be used.

7) Computing termination condition
When the cavity cross-section of the projectile tail is less 

than or equal to the projectile tail cross-section, the cavity 
collapses completely, and the tail-slap phenomena disap‐
pear. The theory in this paper is no longer applied. There‐
fore, when Equation (44) is satisfied, the calculation will 
terminate.

δ ≤ R (44)

Figure 9　Tail-slap process of a supercavitating projectile (Kulkarni 
and Pratap, 2000)
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4  Analysis of the simulation results

The tail-slap simulation method proposed in this paper 
can predict and simulate the tail motion of a supercavitat‐
ing projectile. Because this model is based on probability 
theory, the results of each calculation are different. There‐
fore, much data must be employed for statistical analysis.

4.1  Tail-slap difference at the same initial angular 
velocity

To study the tail-slap difference of projectiles at the same 
initial velocity, the initial angular velocity Q− is set as 2 rad/s, 
the flight distance x is set to 20 m, and the centroid xcm is 
set as 80. Based on the tail-slap model proposed above, 
Figures 10, 11, and 12 are the diagrams of tail-slaps under 
an initial velocity of 300 m/s, in which the number of tail-
slaps in cases 1, 2, and 3 is 20, 3, and 15, respectively. The 
x and y axes represent the magnitude of the cavity cross-
section on the plane. The different colors of the circle are 
the cavity cross-section outline at different times. The mark 
of the start is the projectile tail position.

These data indicate that under the same initial conditions, 
the tail-slap cases are inconsistent, which shows that the 
same initial conditions have different results for a certain 
projectile. Comparing the distance between the beginning 
two tail-slap positions in Figures 10, 11, and 12, we find that 
the distances of case 1 and case 3 are much smaller than 
that of case 2. Therefore, the tail-slap time interval will ini‐
tially be longer for case 2, and the projectile will fly farther, 
which could give the cavity enough time to reduce. From the 
σ−κ equation, we see that the standard deviation σ decreases 
with the dimensionless κ. From a physical view, σ will 
decrease along with the cavity radius. Meanwhile, the pos‐
sibility of the adjacent tail-slap distance increasing will grow 
continuously. In general, the number and frequency of tail-
slaps will be reduced when the supercavitating projectile 
flies a certain distance. This result is undoubtedly benefi‐
cial to the stability of supercavitating projectiles. Therefore, 
it can be concluded that the tail-slap frequency of super‐
cavitating projectiles is greatly influenced by the distance 
between the beginning two tail-slaps. The distance of the ini‐
tial several tail-slaps determines the tail-slap frequency of 
the later period. When this distance is large, the tail-slap fre‐
quency will largely reduce, and vice versa. In 1997, Rand 
et al. (1997) proposed successive impacts from a sample sim‐
ulation (Figure 13), which was based on oscillation theory. 
This theory makes significant simplifications about super‐
cavitating projectiles, but we put a three-degree-of-freedom 
dynamic equation into this simulation. The simulation 
results are very similar to Richard’s (Rand et al., 1997).

Remark: In this study, the σ -NDSM tail-slap dynamic 
model is proposed, so every simulation result is random, 
and the results given in the literature are obtained under 
the assumption. The randomness of the model theoretically 
includes all the results in the literature, including the mirror 
reflection model of Zhao et al. (2019) and Zhu and Li 
(2022) results obtained by CFD. In essence, the model is 
more universal. Therefore, the author believes that the results 
of stochastic dynamics simulations are similar and not com‐
pletely consistent with those in the literature.

Figure 10　Tail-slap case 1 at an initial velocity of 300 m/s

Figure 11　Tail-slap case 2 at an initial velocity of 300 m/s

Figure 12　Tail-slap case 3 at an initial velocity of 300 m/s
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Figures 14 and 15 show the tendency of κ and σ, respec‐
tively. To present the data tendency, a curve fit is used to 
fit these data. The equation of σ − κ indicates that σ is pro‐
portional to κ, so the tendency of the κ − t curve is consistent 
with σ − t, which shows a monotonically decreasing trend. 
However, the meanings differ. The κ − t curve shows that 
with the motion of a supercavitating projectile, the cavity 
radius cross-section at the projectile tail decreases gradually. 
The variation tendency does not change with tail-slap con‐
ditions. The σ − t curve shows that with the movement of 
the supercavitating projectile, the dispersion of the tail-slap 
decreases gradually, and the possibility of the distance between 
adjacent tail-slaps increasing becomes larger. Figure 16 shows 
the expectation curve of the tail-slaps. The expectations 
reflect the dispersion of the tail-slaps from the side by the 
fitting curves. At the beginning of the tail-slaps, the fluctu‐
ation of the expectation curve is smoother. This fluctuation 
increases with time. This behavior shows that the possibility 
of tail-slap positions being far from the expectation is greater 
in the early tail-slap stage, which is caused by the larger σ. 
At the later stage of the tail-slaps, with the decrease in σ, 
the dispersion of the tail-slaps greatly decreases and the expec‐
tation difference between before and after a slap becomes 
quite large. The maximum and minimum limitations of the 
expectation gap are calculated to be 180 and 0, respectively.

Q1
− , Q2

− , and Q3
− given in Figure 16 are the angular 

velocity curves corresponding to the three cases in Figures 10, 

11, and 12, respectively. The number of tail-slaps in Figures 10, 
11, and 12 is 20, 3, and 15, respectively.

Figure 15　σ curves in the three tail-slap cases

Figure 14　κ variation curve in the three tail-slap cases

Figure 13　The tail-slap results of literatures

Figure 16　μ curves in the three tail-slap cases

Figure 17　 Q− curve of the angular velocity of the three tail-slap 
cases
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For supercavitating projectiles with more tail-slaps, i.e., 
Q1

− and Q3
− curves, because the planning force consumes 

projectile energy in the motion, it affects the range of super‐
cavitating projectiles. The Q1

− and Q3
− curves showed a trend 

of first rising and then falling. In the rising stage, the body 
stability gradually weakened with the continuous tail-slap‐
ping, the energy consumption increased, the kinetic energy 
of the projectile decreased, and the supercavity section at 
the projectile tail gradually decreased. When the angular 
velocity exceeds the peak value, there is a sharp downward 
trend. At the same time, the number of tail-slaps increases 
sharply in a short time, indicating that the small attitude 
change produces a tail-slap that is caused by the supercavity 
section reduction. Moreover, the stability of the projectile 
drops sharply, and finally, the projectile loses stability. 
Therefore, the relationship between angular velocity and 
the number of slaps is mutually reinforcing, so the extre‐
mum of the case 3 curve lags that of the case 2 curve.

The peak value and the number of tail-slaps are much 
smaller for the Q2

− curve than for the Q1
− and Q3

− curves, 
which shows that the supercavitating projectile moves 
smoothly. Because the number of tail-slaps is smaller, the 
supercavitating projectile can maintain its stability better, 
with a low energy decay rate and large range. The above 
discussion shows that for supercavitating projectiles under 
the same conditions, the uncertainty of the hydrodynamic 
direction of the tail-slap will make the same structure pro‐
jectiles show different dynamic characteristics, which is also 
a phenomenon found by the author in many underwater 
projectile tests.

4.2  The ANOVA analysis of the initial difference 
angular velocities

Because the tail-slaps have great randomness, statistical 
analysis is necessary to study the motion. However, some 
projectile parameters cannot be obtained because of imper‐
fect test equipment, which makes statistical analysis difficult. 
At the same time, statistical analysis needs a large amount 
of test data as a basis, which is unrealistic for expensive 
supercavitating projectile tests. Therefore, it is necessary to 
propose a numerical model from the theoretical analysis to 
simulate the tail-slaps of supercavitating projectiles and then 
conduct statistical analysis.

Table 1 presents the simulation results under the condition 
that flight distance x is 20 m, initial velocity v0 is 300 m/s, 
and centroid xcm is 80 mm. Suppose the sequence of ran‐
dom variables of the tail-slap number under different angu‐
lar velocities is recorded as ξi (i = 1, …, 5), and meanwhile, 
it is a normal population with the same independent vari‐
ance. There is test event H0: For random variable sequence 
ξi (i = 1, … , 5), the expectation is consistency. The mean 
and variance of sample i of five populations can be calcu‐
lated using Equations (45) and (46) (the results are listed 
in Table 2):

ξ̄i =
1
ni
∑
j = 1

ni

ξij   ( )i = 1, 2, 3 (45)

S 2
i =

1
ni
∑
j = 1

ni ( )ξij − ξ̄i

2

  ( )i = 1, 2, 3 (46)

The mean and variance of all subsamples can be calcu‐
lated from Equations (47) and (48) as 11.36 and 50.35, 
respectively.

ξ̄ =
1
n∑i = 1

r ∑
j = 1

ni

ξij =
1
n∑i = 1

r

ni ξ̄i (47)

S2 =
1
n∑i = 1

r ∑
j = 1

ni ( )ξij − ξ̄ 2

(48)

Equation (48) can be expressed as

nS2 = Qe + u1 (49)

where Qe is intragroup deviation, reflecting the fluctuation 
degree in r groups, and u1 is intergroup deviation, reflecting 
the difference degree of εi. Their expressions are as follows:

Table 2　Subsample means and variances

Parameter

ξ̄i

S 2
i

i = 1

4.70

13.06

i = 2

7.85

31.39

i = 3

11.40

58.14

i = 4

14.75

23.46

i = 5

18.10

19.35

Table 1　Number of tail-slaps for different initial angular velocities

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2 rad/s

4

3

18

3

9

3

3

3

3

7

3

3

8

3

4

4

3

3

3

4

2.5 rad/s

4

4

4

19

6

5

9

6

14

24

6

6

4

5

4

7

4

14

8

4

3 rad/s

7

7

36

11

9

8

10

7

13

11

15

6

10

9

29

9

7

8

8

8

3.5 rad/s

12

13

11

13

12

12

15

12

17

11

20

14

13

30

24

11

16

13

14

12

4 rad/s

16

15

16

17

16

21

14

20

32

16

16

19

23

15

17

23

22

14

16

14
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Qe =∑
i = 1

r ∑
j = 1

ni ( )ξij − ξ̄i

2

(50)

u1 =∑
i = 1

r

ni( )ξ̄i − ξ̄ 2
(51)

The intragroup deviation Qe and intergroup deviation u1 
were 2 763.1 and 2 271.9, respectively.

According to Cochran’s decomposition theorem, when 
event H0 holds, Equation (52) can be used in the test statis‐
tic of H0:

F =
u1( )n − r
Qe( )r − 1

≥ Fα(n − 1, n − r ) (52)

Testing the observed values of statistics:

F =
2 271.9 × ( )100 − 5
2 763.1 × ( )5 − 1

= 19.52 (53)

Here, α = 0.05. Then:

F0.05(99, 95) = 1.399 (54)

Because the observation value is much larger than the 
look-up table value, with a confidence level of 95%, event 
H0 is negated; that is, the expectation of random variable ξi

(i = 1, …, 5) is inconsistent. Thus, it is reasonable to believe 
that the initial angular velocity of the tail-slap is propor‐
tional to the number of tail-slaps.

Proofof this conclusion:
Assume that the supercavity cross-sectional area at adja‐

cent tail-slap positions are Si and Si + 1. Substituting Equa‐
tion (36) into Equation (43), we obtain Equation (55):

td =
( )Si( )τ, tk

π
cos ki − Si + 1( )τ, tk

π
cos ki + 1

2

+ ( )Si( )τ, tk

π
sin ki − Si + 1( )τ, tk

π
sin ki + 1

2

||Q− [ ]1 −G ( )1 + e L
(55)

Omitting the parentheses for simplicity, this equation can be rewritten:

td =

Si + Si + 1

π
− 2

SiSi + 1

π
cos ki cos ki + 1 − 2

SiSi + 1

π
sin ki sin ki + 1

||Q− [ ]1 −G ( )1 + e L
(56)

If the tail-slap frequency of a supercavitating projectile 
is high, then a short time interval between each impact makes 
the supercavity cross section slightly vary, so further simpli‐
fications can be made:

Si ≈ Si + 1 ⇒ Si = Si + 1 = S (57)

For an ideal condition, the adjacent impact expectation can 
be expressed as

ki + 1 = ki + 180 (58)

td =

2S
π
− 2S

π
cos ki cos( )ki + 180 − 2S

π
sin ki sin ( )ki + 180

||Q− [ ]1 −G ( )1 + e L

(59)

Therefore, Equation (59) can be simplified as follows:

td ≈
2

2S
π

||Q− [ ]1 −G ( )1 + e L
(60)

Obviously, when increasing Q− decreases the tail-slap 

interval, the number of tail-slaps will increase.

4.3  ANOVA analysis of the different centroids

Several constant values must be set. The flight distance 
x is 20 m, the initial velocity v0 is 300 m/s, and the tail angu‐
lar velocity Q− is 4 rad/s. Each supercavitating projectile 
with a different centroid is tested 20 times. The results are 
presented in Table 3. They mark ξi (i = 1, … , 5) as the 
sequence of random variables of the tail-slap numbers at 
different angular velocities, and they are the normal popu‐
lation with the same independent variance. There is testing 
event H1: For the random variable sequence ψi (i = 1, …, 5), 
the expectation is consistency. The observed values of the 
test statistics are obtained as follows using the method of 
ANOVA:

F =
848.26 × ( )100 − 5
2 260.3 × ( )5 − 1

= 8.91 > 1.399 (61)

Therefore, with a confidence level of 95%, event H1 is 
negated; that is, random variable ψi (i = 1, …, 5) is incon‐
sistent. It is reasonable to believe that the centroids will 
affect the tail-slap phenomena. It can be inferred that the 
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tail-slap effect will be weakened as the centroids move for‐
ward, which benefits the stability of the supercavitating 
projectiles. In terms of penetration, the closer the centroid 
of the bullet is to the head, the better the penetration effect 
is. This conclusion is of great importance for guiding the 
design of supercavitating projectiles.

Proofof this conclusion:
For Equation (60), we expand e with a Taylor series:

e = exp ( )− L2Q−

xcmU − α
= 1 − L2Q−

xcmU− α
+

1
2! ( )− L2Q−

xcmU− α

2

+ ⋯
(62)

The variables of Equation (62) have the following orders 
of magnitude:

L → 10−1

Q−→ 100

xcm → 10−2

U −→ 103  or  102

α → 10−1 (63)

We obtain:

L2Q−

xcmU −α
→ 10−2

1
(64)

Thus, Equation (62) can be simplified as follows:

e = exp ( − L2Q−

xcmU − α ) ≈ 1 − L2Q−

xcmU − α
(65)

Substituting Equation (65) and Equation (38) into Equa‐
tion (60), we obtain:

td ≈
2

2S
π

|

|

|
||
|
|
||

|

|
||
|
|
|
Q− é

ë

ê
êê
ê ù

û

ú
úú
ú1 − mxcm L

I + mx2
cm ( )2 − L2Q−

xcmU − α
L

(66)

td ≈
2

2S
π

|

|

|
||
|
|
||

|

|
||
|
|
|
Q− é

ë

ê
êê
ê ù

û

ú
úú
ú1 − mL

I + mx2
cm ( )2xcm − L2Q−

U − α
L

(67)

Analysis using the order of magnitude gives:

xcm → 10−2 >>
L2Q−

U − α
→ 10−2

102
= 10−4 (68)

Equation (67) can be collected as follows:

td ≈
2

2S
π

|

|

|
||
|
|
||

|

|
||
|
|
|
Q− ( )1 − 2xcmmL

I + mx2
cm

L

=
2

2S
π

|

|

|

|

|

|
||
|
|

|

||

|

|

|

|

|
||
|
|

|

|

Q− 
æ

è

ç

ç

ç

ç
ççç
ç

ç

ç
ö

ø

÷

÷

÷

÷
÷÷÷
÷

÷

÷
1 − 2L

I
xcmm

+ xcm

L

(69)

When the denominator is zero, the function has a singu‐
lar point, which can be expressed as

2xcmmL

I + mx2
cm

= 1 (70)

x2
cm − 2Lxcm +

I
m

= 0 (71)

xcm1 = L + L2 − I
m

xcm2 = L − L2 − I
m

(72)

In this study, the value of xcm is 0.308 9 and 0.004 7, respec‐
tively. The function can be defined, and the minimum value 
can be solved as follows:

h ( xcm ) =
I

xcmm
+ xcm ≥ 2

I
m

       A   ( I
m

, 2
I
m ) (73)

where A is the minimum coordinates. In this study, A is 

Table 3　Number of slaps in numerical experiments with different 
centroids

Number

1

2

3

4

5

6

7

8

9

1

11

12

13

14

15

16

17

18

19

20

70 mm

23

20

34

20

24

23

18

20

24

19

36

30

18

30

25

32

19

23

19

19

75 mm

21

20

19

19

16

17

18

19

31

39

17

23

18

17

19

19

20

17

29

21

80 mm

16

15

16

17

16

21

14

20

32

16

16

19

23

15

17

23

22

14

16

14

85 mm

15

16

26

19

14

14

14

12

22

18

15

19

13

13

17

13

17

19

17

29

90 mm

12

15

12

17

17

11

13

14

17

13

22

13

22

12

13

15

22

24

13

16
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(0.038 2, 0.076 4). In general, the center of mass of a pro‐
jectile is designed to be located at half the body length or 
closer to the head. Therefore, the center of mass range is 
selected as [0.038 2, 0.156]. This interval is greater than 
the minimum value of 0.038 2. The function h (xcm) is mono‐
tonically increasing. Thus, we can obtain the equation:

2L
I

xcmm
+ xcm

> 1          xcm ∈ [0.038 2,   0.156] (74)

Therefore:

td ≈
2

2S
π

Q− 
æ

è

ç

ç

ç

ç
ççç
ç

ç

ç
ö

ø

÷

÷

÷

÷
÷÷÷
÷

÷

÷2L
I

xcmm
+ xcm

− 1 L

(75)

For the high-frequency tail-slap state, the adjacent tail-
slap time td is smaller, and xcm is smaller by equation analy‐
sis, which indicates that the position of the projectile’s cen‐
ter of mass is close to the fin, proving the statistical con‐
clusion of the ANOVA method, and vice versa.

5  Conclusions

The purpose of the current study is to determine a super‐
cavitating projectile tail-slap model. The most obvious 
contribution from this study is that a 3σ -NDSM is estab‐
lished. Overall, this study used the idea that the tail-slaps 
are random, which obeys a ND. This project is a compre‐
hensive, statistically significant investigation of a tail-slap 
model on a plane. The following conclusions are drawn:

1) Through many experimental observations, it is found 
that the same supercavitating projectile has the problem of 
partial projectile instability. A random tail-slap model is 
proposed in this paper. Using 3σ theory, the direction force 
of the tail-slap is introduced into the interior of the super‐
cavity as a normal distribution, and the integral inequality 
and probability distribution equation are used to establish 
the 3σ-NDSM model. A series equation for the variance of 
the ND is given by the series expansion method. To solve 
the problem easily, the linear approximation method is 
used to discretize the variance, and the tail-slap process of 
the supercavitation projectile is simulated and analyzed by 
combining the supercavity equation and the simplified expres‐
sions of dynamics.

2) The tail-slap motion characteristics under identical 
initial conditions are numerically simulated on the basis of 
the 3σ-NDSM. It has been shown that the tail-slap features 

differ remarkably. In addition, these features are greatly influ‐
enced by the distance between the initial several tail-slap 
positions, which determines the projectile’s later motion. 
When the time interval between the initial few tail-slaps is 
large, the supercavitating projectile can move more steadily. 
The projectile spends a long time inside the supercavity 
and has a long range with low drag compared to the projec‐
tile with more tail-slaps. For a low tail-slap projectile, the 
section of the supercavity at the projectile tail shrinks greatly 
compared to a projectile with more tail-slaps within an adja‐
cent tail-slap time interval. Therefore, the total number of 
tail-slaps is smaller.

3) The model was analyzed using stochastic dynamics 
simulations, and the study found that the larger the angular 
velocity of the initial tail-slap is, the larger the number of 
tail-slaps. Meanwhile, the closer the projectile mass center 
is to the projectile head, the smaller the tail-slap number. 
These conclusions are validated using the ANOVA method, 
which has high reliability. Synchrony verified the accuracy 
of the statistical analysis using theoretical analysis methods. 
This model provides a new perspective for studying the tail-
slaps of supercavitating projectiles and a new means for ana‐
lyzing the stability of supercavitating projectiles.
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