[1] An X, Song B, Xia H, Ding Y, Jin Z, Lessard L (2019) Coupled numerical simulation and modal analysis of composite ducted propeller. Sixth International Symposium on Marine Propulsors, Rome, 1-8
[2] An X, Wang P, Song B, Lessard L (2020) Bi-directional fluid-structure interaction for prediction of tip clearance influence on a composite ducted propeller. Ocean Eng. 208: 107390. https://doi.org/10.1016/j.oceaneng.2020.107390
[3] Ashok KS, Anantha SV, Vijayakumar R (2020) Numerical study on the performance analysis and vibration characteristics of flexible marine propeller. In International Conference on Offshore Mechanics and Arctic Engineering, Florda, 84379. https://doi.org/10.1115/OMAE2020-18538
[4] Ashok KS, Vijayakumar R (2022) Numerical study on the performance of a composite marine propeller in self-propulsion condition using the FSI algorithm. Ocean. Conf. Rec. 1-6. DOI: 10.1109/OCEANSChennai45887.2022.9775126
[5] Blasques JP, Berggreen C, Andersen P (2010) Hydro-elastic analysis and optimisation of a composite marine propeller. Mar. Struct. 23: 22-38. https://doi.org/10.1016/j.marstruc.2009.10.002
[6] Chen BYH, Neely SK, Michael TJ, Gowing S, Szwerc RP, Buchler D, Schult R (2006) Design, fabrication and testing of pitch-adapting (Flex) propellers. Paper presented at the SNAME 11th Propeller and Shafting Symposium, Williamsburg, Virginia, USA, 1-12. https://doi.org/10.5957/PSS-2006-08
[7] Colclough WJ, Russell JG (1972) The development of a composite propeller blade with a carbon fibre reinforced plastics spar. Aeronautical Journal-New Series 76(733):53-57. DOI: 10.1017/S0001924000042408
[8] Das HN, Kapuria S (2016) On the use of bend-twist coupling in full-scale composite marine propellers for improving hydrodynamic performance. J. Fluids Struct. 61: 132-153. https://doi.org/10.1016/j.jfluidstructs.2015.11.008
[9] Ding G, Jiang N, Gao X, Wang F, Wu X (2022a) Deformation monitoring of propeller underwater operation based on fiber optic grating sensing network. Ocean Eng. 264: 112308. https://doi.org/10.1016/j.oceaneng.2022.112308
[10] Ding G, Yan X, Gao X, Zhang Y, Jiang S (2022b) Reconstruction of propeller deformation based on FBG sensor network. Ocean Eng. 249: 1-9. https://doi.org/10.1016/j.oceaneng.2022.110884
[11] Dubbioso G, Muscari R, Ortolani F, Di Mascio A (2022) Numerical analysis of marine propellers low frequency noise during maneuvering. Part II: Passive and active noise control strategies. Appl. Ocean Res. 106: 102461. https://doi.org/10.1016/j.apor.2022.103201
[12] Fuentes D, Cura Hochbaum A, Schulze R (2022) Numerical and experimental fluid - structure interaction analysis of a flexible propeller. Sh. Technol. Res. 1-11: 163-173. https://doi.org/10.1080/09377255.2022.2115241
[13] Georgiev DJ, Ikehata M (1998) Hydroelastic effects on propeller blades in steady flow. J. Soc. Nav. Archit. Japan 1-14: 116046253. https://doi.org/10.2534/jjasnaoe1968.1998.184_1
[14] Ghassabzadeh M, Ghassemi H, Saryazdi MG (2013) Determination of hydrodynamics characteristics of marine propeller using hydroelastic analysis. Brodogradnja 64: 40-45
[15] Ghose PJP, Gokarn RP (2015) Basic ship propulsion. KW Publisher Pvt Ltd, New Delhi, India, 216-217
[16] Gowing S, Coffin P, Dai C (1998) Hydrofoil cavitation improvements with elastically coupled composite materials. Paper presented at the SNAME 25th American Towing Tank Conference, Iowa, USA, 425-429. https://doi.org/10.5957/attc-1998-019
[17] Grasso N, Hallmann R, Scholcz T, Zondervan GJ, Maljaars P, Schouten R (2019) Measurements of the hydro-elastic behaviour of flexible composite propellers in non-uniform flow at model and full scale. Sixth International Symposium on Marine Propulsors, Rome, Itly, 1-10
[18] Grigoropoulos GJ, Campana EF, Diez M, Serani A, G?ren O, Sari?z K, Danisman DB, Visonneau M, Queutey P, Abdel-Maksoud M, Stern F (2017) Mission-based hull form and propeller optimisation of a transom stern destroyer for best performance in the sea environment. 7th Int. Conf. Comput. Methods Mar. Eng., 83-94
[19] Han S, Lee H, Min Churl S, Chang BJ (2015) Investigation of hydro-elastic performance of marine propellers using fluid-structure interraction analysis. ASME International Mechanical Engineering Congress and Exposition, IMECE2015, Houston, Texas, 1-9. https://doi.org/10.1115/IMECE2015-51089
[20] Han S, Wang P, Jin Z, An X, Xia H (2022) Structural design of the composite blades for a marine ducted propeller based on a two-way fluid-structure interaction method. Ocean Eng. 259: 111872. https://doi.org/10.1016/j.oceaneng.2022.111872
[21] Hara Y, Yamatogi T, Murayama H, Uzawa K, Kageyama K (2011) Perfomrance evaluation of composite marine propeller for a fishing boat by fluid-structure interaction analysis. The 18th International Conference on Composites Materials, Jeju Island, Korea, 1-6
[22] He XD, Hong Y, Wang RG (2012) Hydroelastic optimisation of a composite marine propeller in a non-uniform wake. Ocean Eng. 39: 14-23. https://doi.org/10.1016/j.oceaneng.2011.10.007
[23] Hong Y, Hao LF, Wang PC, Liu WB, Zhang HM, Wang RG (2014) Structural design and multi-objective evaluation of composite bladed propeller. Polym. Polym. Compos. 22: 275-282. https://doi.org/10.1177/096739111402200308
[24] Hong Y, Wilson PA, He XD, Wang RG (2017) Numerical analysis and performance comparison of the same series of composite propellers. Ocean Eng. 144: 211-223. https://doi.org/10.1016/j.oceaneng.2017.08.036
[25] Huang Z, Xiong Y, Yang G (2016) Fluid-structure hydroelastic analysis and hydrodynamic cavitation experiments of composite propeller. Proceedings of the International Offshore and Polar Engineering Conference, Rhodes, Greece, 441-447
[26] Hussain M, Abdel-Nasser Y, Banawan A, Ahmed YM (2021) Effect of hydrodynamic twisting moment on design and selection of flexible composite marine propellers. Ocean Eng. 220: 108399. https://doi.org/10.1016/j.oceaneng.2020.108399
[27] International Maritime Organisation (2019) Citing electronic sources of information. International Maritime Organisation. Available from https://www.imo.org/en/MediaCentre/HotTopics/Pages/Cutting-GHG-emissions.Aspx [Accessed on Apr. 11, 2023]
[28] ITTC (2019) Citing electronic sources of information International towing tank conference ITTC. Available from https://ittc.info/media/8372/index.pdf [Accessed on Apr. 11, 2023]
[29] Kawakita C (2019) An experimental study on hydrodynamic performance of flexible composite model propellers. 6th International Symposium on Marine Propulsors, Rome, Italy, 247595999
[30] Kim JH, Ahn BK, Ruy WS, Kim GD, Lee CS (2019) Numerical prediction of hydroelastic performance of the flexible propeller. Int. J. Offshore Polar Eng. 29(3): 339-346. https://doi.org/10.17736/ijope.2019.mk64
[31] Kim JH, Lee H, Kim SH, Choi HY, Hah ZH, Seol HS (2022) Performance prediction of composite marine propeller in non-cavitating and cavitating flow. Appl. Sci. 12: 5170. https://doi.org/10.3390/app12105170
[32] Kumar A, Lal Krishna G, Anantha Subramanian V (2019) Design and analysis of a carbon composite propeller for podded propulsion. Lecture Notes in Civil Engineering. Springer, Chennai, 203-215. https://doi.org/10.1007/978-981-13-3119-0_13
[33] Kumar A, Vijayakumar R, Subramanian V (2021) Numerical fluid-structure interaction analysis for a flexible marine propeller using co-simulation method. Int. J. Marit. Eng. 163: 83-92. https://doi.org/10.5750/ijme.v163ia2.759
[34] Kumar J, Wurm FH (2015) Bi-directional fluid-structure interaction for large deformation of layered composite propeller blades. J. Fluids Struct. 57: 32-48. https://doi.org/10.1016/j.jfluidstructs.2015.04.007
[35] Lee H, Song MC, Han S, Chang BJ, Suh JC (2017) Hydro-elastic aspects of a composite marine propeller in accordance with ply lamination methods. J. Mar. Sci. Technol. 22: 479-493. https://doi.org/10.1007/s00773-016-0428-4
[36] Lee H, Song MC, Suh JC, Chang BJ (2014) Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm. Int. J. Nav. Archit. Ocean Eng. 6: 562-577. https://doi.org/10.2478/IJNAOE-2013-0198
[37] Lee YJ, Lin CC (2004) Optimised design of composite propeller. Mech. Adv. Mater. Struct. 11: 17-30. https://doi.org/10.1080/15376490490257639
[38] Li G, Li W, You Y, Yang C, Hu T (2013) Study on fluid-structure interaction characteristics of composite marine propeller. Proceedings of the International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers (ISOPE), Alaska, USA, 554-559
[39] Li J, Qu Y, Hua H (2017a) Hydroelastic analysis of underwater rotating elastic marine propellers by using a coupled BEM-FEM algorithm. Ocean Eng. 146: 178-191. https://doi.org/10.1016/j.oceaneng.2017.09.028
[40] Li J, Qu Y, Zhang Z, Hua H (2020) Parametric analysis on hydroelastic behaviors of hydrofoils and propellers using a strongly coupled finite element/panel method. J. Mar. Sci. Technol. 25: 148-161. https://doi.org/10.1007/s00773-019-00638-z
[41] Li J, Rao Z, Su J, Qu Y, Hua H (2018a) A numerical method for predicting the hydroelastic response of marine propellers. Appl. Ocean Res. 74: 188-204. https://doi.org/10.1016/j.apor.2018.02.012
[42] Li S, Zhang AM, Han R (2018b) Counter-jet formation of an expanding bubble near a curved elastic boundary. Phys. Fluids 30: 127237132. https://doi.org/10.1063/1.5081786
[43] Li S, Zhang AM, Han R, Liu YQ (2017b) Experimental and numerical study on bubble-sphere interaction near a rigid wall. Phys. Fluids 29: 092102. https://doi.org/10.1063/1.4993800
[44] Lin CC, Lee YJ (2004) Stacking sequence optimisation of laminated composite structures using genetic algorithm with local improvement. Compos. Struct. 63: 339-345. https://doi.org/10.1016/S0263-8223(03)00182-X
[45] Lin CC, Lee YJ, Hung CS (2009) Optimisation and experiment of composite marine propellers. Compos. Struct. 89: 206-215. https://doi.org/10.1016/j.compstruct.2008.07.020
[46] Lin HJ, Lai WM, Kuo YM (2010) Effects of stacking sequence on nonlinear hydroelastic behavior of composite propeller blade. J. Mech. 26: 293-298. https://doi.org/10.1017/S1727719100003841
[47] Lin HJ, Lin JJ (1997) Effects of stacking sequence on hydroelastic behavior of composite propeller blade. Proceedings of Eleventh International Conference on Composite Materials, Gold Coast, Australia, 757-761. https://doi.org/10.1017/S1727719100003841
[48] Lin HJ, Lin JJ, Chuang TJ (2005) Strength evaluation of a composite marine propeller blade. J. Reinf. Plast. Compos. 24: 1791-1807. https://doi.org/10.1177/0731684405052199
[49] Liu Z, Young YL (2007) Utilisation of deformation coupling in self-twisting composite propellers. 16th International Conference on Composite Materials, Kyoto, Japan, 1-7
[50] Maljaars P, Bronswijk L, Windt J, Grasso N, Kaminski M (2018) Experimental validation of fluid-structure interaction computations of flexible composite propellers in open water conditions using BEM-FEM and RANS-FEM methods. J. Mar. Sci. Eng. 6: 1-23. https://doi.org/10.3390/jmse6020051
[51] Maljaars PJ, Dekker JA (2014) Hydro-elastic analysis of flexible marine propellers. 2nd International Conference on Maritime Technology and Engineering (MARTECH). Taylor & Francis (CRC Press), Lisbon, Portugal, 705-715. DOI: 10.1201/b17494-94
[52] Maljaars PJ, Grasso N, den Besten JH, Kaminski ML (2020) BEM-FEM coupling for the analysis of flexible propellers in nonuniform flows and validation with full-scale measurements. J. Fluids Struct. 95: 102946. https://doi.org/10.1016/j.jfluidstructs.2020.102946
[53] Maljaars PJ, Kaminski ML, den Besten JH (2017) Finite element modelling and model updating of small scale composite propellers. Compos. Struct. 176: 154-163. https://doi.org/10.1016/j.compstruct.2017.04.023
[54] Marsh G (2004) A new start for marine propellers? Reinf. Plast. 48: 34-38. https://doi.org/10.1016/S0034-3617(04)00493-X
[55] Motley MR, Young YL (2011) Performance-based design and analysis of flexible composite propulsors. J. Fluids Struct. 27: 1310-1325. https://doi.org/10.1016/j.jfluidstructs.2011.08.004
[56] Motley MR, Young YL (2012) Scaling of the transient hydroelastic response and failure mechanisms of self-adaptive composite marine propellers. Int. J. Rotating Mach., 56248193. https://doi.org/10.1155/2012/632856
[57] Motley MR, Young YL, Baker JW (2009) Reliability-based design and optimisation of self-twisting composite marine rotors. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering (OMAE), 777-783. https://doi.org/10.1115/OMAE2009-80067
[58] Mouritz AP, Gellert E, Burchill P, Challis K (2001) Review of advanced composite structures for naval ships and submarines. Compos. Struct. 53: 21-42. https://doi.org/10.1016/S0263-8223(00)00175-6
[59] Mulcahy NL, Prusty BG, Gardiner CP (2010) Hydroelastic tailoring of flexible composite propellers. Ships Offshore Struct. 5: 359-370. https://doi.org/10.1080/17445302.2010.481139
[60] Mulle P, Pécot F (2017) Development of a fluid structure coupling for composite tidal turbines and marine propellers. VII International Conference on Computational Methods in Marine Engineering (MARINE), Nantes, France, 15-17
[61] Nakashima Propeller Company (2015) Benefits of carbon composite marine propeller. Available from https://www.classnk.or.jp/classnkrd/assets/pdf/katsudou201511_D.pdf [Accessed on Apr. 11, 2023]
[62] Nouri NM, Mohammadi S, Neyestanaki MK, Beygi E (2018) Hydroelastic effects of the camber ratio on a ducted marine propeller in a wake flow. J. Appl. Mech. Tech. Phys. 59: 445-450. https://doi.org/10.1134/S0021894418030070
[63] Ortolani F, Dubbioso G (2019a) Experimental investigation of blade and propeller loads: Steady turning motion. Appl. Ocean Res. 91: 101874. https://doi.org/10.1016/j.apor.2019.101874
[64] Ortolani F, Dubbioso G (2019b) Experimental investigation of single blade and propeller loads by free running model test. Straight ahead sailing. Appl. Ocean Res. 87: 111-129. https://doi.org/10.1016/j.apor.2019.03.005
[65] Ortolani F, Dubbioso G, Muscari R, Mauro S, Di Mascio AD (2018) Experimental and numerical investigation of propeller loads in off-design conditions. J. Mar. Sci. Eng. 6(2): 45. https://doi.org/10.3390/jmse6020045
[66] Paik BG, Kim GD, Kim KY, Seol HS, Hyun BS, Lee SG, Jung YR (2013) Investigation on the performance characteristics of the flexible propellers. Ocean Eng. 73: 139-148. https://doi.org/10.1016/j.oceaneng.2013.09.005
[67] Pourmostafa M, Ghadimi P, Pham D (2020) Applying boundary element method to simulate a high-skew Controllable Pitch Propeller with different hub diameters for preliminary design purposes. Cogent Engineering 7(1). https://doi.org/10.1080/23311916.2020.1805857
[68] Prini F, Benson SD, Dow RS (2017) The effect of laminate, stud geometry and advance coefficient on the deflection of a composite marine propeller. Prog. Anal. Des. Mar. Struct, 753-762. https://doi.org/10.1201/9781315157368-97
[69] Radtke L, Lampe T, Abdel-Maksoud M, Düster A (2020) A partitioned solution approach for the simulation of the dynamic behaviour of flexible marine propellers. Sh. Technol. Res. 67: 37-50. https://doi.org/10.1080/09377255.2018.1542782
[70] Rama krishna V, Sanaka SP, Pardhasaradhi N, Raghava Rao B (2021) Hydro-elastic computational analysis of a marine propeller using two-way fluid structure interaction. J. Ocean Eng. Sci. 7(3): 280-291. https://doi.org/10.1016/j.joes.2021.08.010
[71] Reuters (2019) Citing electronic sources of information Reuters. Available from https://www.reuters.com/article/us-shippingenvironment-imo-idUSKCN2502AY [Accessed on Apr. 11, 2023]
[72] Rokvam S?, Vedvik NP, Mark L, Romcke E, ?lnes JS, Savio L, Echermeyer A (2021) Experimental verification of the elastic response in a numeric model of a composite propeller blade with bend twist deformation. Polymers (Basel) 13(21): 3766. https://doi.org/10.3390/polym13213766
[73] Sagaut P, Deck S, Terracol M (2013) Multiscale and multiresolution approaches in turbulence. Imperial College Press, London, 448
[74] Sajedi H, Mahdi M (2022) Investigation of the effect of propeller flexibility on cavitation formation and hydrodynamic coefficients. J. Mar. Sci. Technol. 27: 1116-1129. https://doi.org/10.1007/s00773-022-00892-8
[75] Sivakumar P, Devi RSS, Shree SV, Keerthanaa K (2018) Electric vehicles-benefits and challenges. Ecol. Environ. Conserv. J. 24: 410-414
[76] Vidya Sagar M, Venkaiah M, Sunil D (2013) Static and dynamic analysis on composite propeller of ship using FEA. Int. J. Eng. Res. Technol. 7(2): 310-315. DOI: 10.17577/IJERTV2IS70418
[77] Yamatogi T, Murayama H, Uzawa K, Mishima T, Ishihara Y (2011) Study on composite material marine propellers. J. Japan Inst. Mar. Eng. 46: 330-340. https://doi.org/10.5988/jime.46.330
[78] Young YL (2003) Fluid and structural modeling of cavitating propeller flows. Fifth International Symposium on Cavitation, Osaka, 220597561
[79] Young YL (2008) Fluid-structure interaction analysis of flexible composite marine propellers. J. Fluids Struct. 24: 799-818. https://doi.org/10.1016/j.jfluidstructs.2007.12.010
[80] Young YL (2007a) Hydroelastic behavior of flexible composite propellers in wake inflow. ICCM International Conferences on Composite Materials. Japan Society for Composite Materials, Kyoto, Japan, 113885634
[81] Young YL (2007b) Time-dependent hydroelastic analysis of cavitating propulsors. J. Fluids Struct. 23: 269-295. https://doi.org/10.1016/j.jfluidstructs.2006.09.003
[82] Young YL, Arbor A, Motley M (2009) Rate-dependent hydroelastic response of self-adaptive composite propellers in fully wetted and cavitating flows. Proceedings of the 7th International Symposium on Cavitation CAV2009, Ann Arbor, Michigan, USA, 1-10
[83] Young YL, Liu Z (2007) Hydroelastic tailoring of composite naval propulsors. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering (OMAE), 777-787. https://doi.org/10.1115/OMAE2007-29648
[84] Young YL, Motley MR, Barber R, Chae EJ, Garg N (2017) Adaptive composite marine propulsors and turbines: Progress and challenges. Appl. Mech. Rev. 68: 1-34. https://doi.org/10.1115/1.4034659
[85] Zhang AM, Li S, Cui J (2015) Study on splitting of a toroidal bubble near a rigid boundary. Phys. Fluids 27: 062102. https://doi.org/10.1063/1.4922293
[86] Zhang AM, Li SM, Cui P, Li S, Liu YL (2023) A unified theory for bubble dynamics. Phys. Fluids 35: 033323. https://doi.org/10.1063/5.0145415
[87] Zhang AM, Ni BY (2014) Three-dimensional boundary integral simulations of motion and deformation of bubbles with viscous effects. Comput. Fluids 92: 22-33. https://doi.org/10.1016/j.compfluid.2013.12.020
[88] Zhang AM, Wu WB, Liu YL, Wang QX (2017) Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model. Phys. Fluids 29:082111. https://doi.org/10.1063/1.4999478
[89] Zhang F, Ma J (2018) FSI analysis the dynamic performance of composite propeller. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Madrid, Spain, 1-6. https://doi.org/10.1115/OMAE2018-77108
[90] Zondervan G, Grasso N, Lafeber W (2017) Hydrodynamic design and model testing techniques for composite ship propellers. Proceedings of the Fifth International Symposium on Marine Propulsors, Espoo, Finland, 1-9