Abdoos AA (2016) A new intelligent method based on combination of VMD and ELM for short term wind power forecasting. Neurocomputing 203: 111-120
Ali N, Calaf M, Cal RB (2021) Cluster-based probabilistic structure dynamical model of wind turbine wake. Journal of Turbulence 22(8): 497-516
Amiri MM, Shadman M, Estefen SF (2024) A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes. Renewable and Sustainable Energy Reviews 193: 114279
Anagnostopoulos S, Piggott M (2022) Offshore wind farm wake modelling using deep feed forward neural networks for active yaw control and layout optimisation. Journal of Physics 2151: 012011
Anagnostopoulos SJ, Bauer J, Clare MCA, Piggott MD (2023) Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models. Renewable Energy 218: 119293
Arbel J, Pitas K, Vladimirova M, Fortuin V (2023) A primer on Bayesian neural networks: Review and debates. arXiv preprint, arXiv: 2309.16314, Sep 2023
Ashwin Renganathan S, Maulik R, Letizia S, Iungo GV (2022) Data-driven wind turbine wake modeling via probabilistic machine learning. Neural Comput & Applic 34(8): 6171-6186
Bastankhah M, Porté-Agel F (2014) A new analytical model for wind-turbine wakes. Renewable Energy 70: 116-123
Bentsen L?, Warakagoda ND, Stenbro R, Engelstad P (2022) Wind park power prediction: Attention-based graph networks and deep learning to capture wake losses. Journal of Physics 2265: 022035
Breiman L (2001) Random forests. Machine Learning 45: 5-32
Burmester S, Vaz G, el Moctar O (2020) Towards credible CFD simulations for floating offshore wind turbines. Ocean Engineering 209: 107237
Cakiroglu C, Demir S, Ozdemir MH, Aylak BL, Sariisik G, Abualigah L (2024) Data-driven interpretable ensemble learning methods for the prediction of wind turbine power incorporating SHAP analysis. Expert Systems With Applications 237: 121464
Calaf M, Meneveau C, Meyers J (2010) Large eddy simulation study of fully developed wind-turbine array boundary layers. Physics of Fluids 22(1): 015110
Chen T, Chen H (1995) Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans Neural Netw 6(4): 911-917
Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, 785-794
Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint, arXiv: 1412.3555, Dec 2014
Draper M, Guggeri A, Mendina M, Usera G, Campagnolo F (2018) A Large Eddy Simulation-Actuator Line Model framework to simulate a scaled wind energy facility and its application. Journal of Wind Engineering and Industrial Aerodynamics 182: 146-159
Gajendran MK, Kabir IFSA, Vadivelu S, Ng EYK (2023) Machine learning-based approach to wind turbine wake prediction under yawed Conditions. Journal of Marine Science and Engineering 11: 2111
Gao Z, Cecati C, Ding SX (2015) A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans Ind Electron 62(6): 3757-3767
Ge M, Wu Y, Liu Y, Li Q (2019) A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes. Applied Energy 233: 975-984
Geibel M, Bangga G (2022) Data reduction and reconstruction of wind turbine wake employing data driven approaches. Energies 15: 3773
Gu B, Zhang T, Meng H, Zhang J (2021) Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation. Renewable Energy 164: 687-708
Guo NZ, Shi KZ, Bo L, Qi LW, Wu HH, Zhang ZL, Xu JZ (2022a) A physics-inspired neural network model for short-term wind power prediction considering wake effects. Energy 261: 125208
Guo NZ, Zhang MM, Li B (2022b) A data-driven analytical model for wind turbine wakes using machine learning method. Energy Conversion and Management 252: 115130
Guo Z, Xu L, Zhou G, Zhang K (2023) A non-intrusive reduced-order model for wind farm wake analysis based on SPOD-DNN. Wind Engineering 47(4): 852-866
He R, Yang H, Shilin S, Lu L, Sun H, Xiaoxia G (2022) A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control. Applied Energy 326: 120013
Hearst MA (1998) Support vector machines. IEEE Intell Syst Their Appl 13(4): 18-28
Helvig S de J, Vinnes MK, Segalini A, Worth NA, Hearst RJ (2021) A comparison of lab-scale free rotating wind turbines and actuator disks. Journal of Wind Engineering and Industrial Aerodynamics 209: 104485
Hochreiter S, Schimidhuber J (1997) Long short-term memory. Neural Computation 9: 1835-1780
Hong YY, Rioflorido CLPP (2019) A hybrid deep learning-based neural network for 24-h ahead wind power forecasting. Applied Energy 250: 530-539
Isele D, Rahimi R, Cosgun A, Subramanian K, Fujimura K (2018) Navigating occluded intersections with autonomous vehicles using deep reinforcement learning. arXiv preprint, arXiv: 1705.01196v2, Feb 2018
Kabir IFSA, Safiyullah F, Ng EYK, Tam VWY (2020) New analytical wake models based on artificial intelligence and rivalling the benchmark full-rotor CFD predictions under both uniform and ABL inflows. Energy 193: 116761
Kim H, Kim J, Won S, Lee C (2021) Unsupervised deep learning for super-resolution reconstruction of turbulence. J Fluid Mech 910: A29
Kisvari A, Lin Z, Liu X0 (2021) Wind power forecasting-A data-driven method along with gated recurrent neural network. Renewable Energy 163: 1895-1909
Kober J, Peters J (2014) Reinforcement learning in robotics: A Survey. In: Learning Motor Skills. Springer International Publishing, Cham, pp 9-67
Kou P, Wang C, Liang D, Cheng S, Gao L (2020) Deep learning approach for wind speed forecasts at turbine locations in a wind farm. IET Renew Power Gener 14(13): 2416-2428
LeCun Y, Bengio Y (1998) Convolutional networks for images, speech, and time-series. In: The handbook of brain theory and neural networks. MIT Press, Cambridge, pp 255-258
Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553): 436-444
Lejeune M, Moens M, Chatelain P (2022) A meandering-capturing wake model coupled to rotor-based flow-sensing for operational wind farm flow prediction. Front Energy Res 10: 884068
Li B, Ge M, Li X, Liu Y (2024a) A physics-guided machine learning framework for real-time dynamic wake prediction of wind turbines. Physics of Fluids 36(3): 035143
Li H (2022) Short-term wind power prediction via spatial temporal analysis and deep residual networks. Frontiers in Energy Research 10: 920407
Li H, Yang Q, Li T (2024b) Wind turbine wake prediction modelling based on transformer-mixed conditional generative adversarial network. Energy 291: 130403
Li R, Zhang J, Zhao X (2022a) Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data. Energy 258: 124845
Li R, Zhang J, Zhao X (2022b) Multi-fidelity modeling of wind farm wakes based on a novel super-fidelity network. Energy Conversion and Management 270: 116185
Li S, Zhang M, Piggott MD (2023) End-to-end wind turbine wake modelling with deep graph representation learning. Applied Energy 339: 120928
Liu B, Tang J, Huang H, Lu XY (2020) Deep learning methods for super-resolution reconstruction of turbulent flows. Physics of Fluids 32(2): 025105
Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE (2021) Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat Mach Intell 3(3): 218-229
Luo Z, Luo W, Xie J, Xu J, Wang L (2022) A new three-dimensional wake model for the real wind farm layout optimization. Energy Exploration & Exploitation 40(2): 701-723
Luo Z, Wang L, Xu J, Wang Z, Yuan J, Tan ACC (2024) A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements. Energy 294: 130772
Martínez-Tossas LA, Churchfield MJ, Leonardi S (2015) Large eddy simulations of the flow past wind turbines: actuator line and disk modeling. Wind Energy 18: 1047-1060
Moussaoui H, El Akkad N, Benslimane M (2023) Reinforcement Learning: A review. IJCDS 13(1): 1465-1483
Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD (2004) An introduction to decision tree modeling. Journal of Chemometrics 18: 275-285
Nakhchi ME, Naung SW, Rahmati (2023) Wake and power prediction of horizontal-axis wind farm under yaw-controlled conditions with machine learning. Energy Conversion and Management 296: 117708
Naranjo-Torres J, Mora M, Hernández-García R, Barrientos RJ, Fredes C, Valenzuela A (2020) A review of convolutional neural network applied to fruit image processing. Applied Sciences 10: 3343
Nascimento EGS, de Melo TAC, Moreira DM (2023) A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy. Energy 278: 127678
Nilsson K, Shen WZ, S?rensen JN, Breton S-P, Ivanell S (2015) Validation of the actuator line method using near wake measurements of the MEXICO rotor. Wind Energy 18: 499-514
Optis M, Perr-Sauer J (2019) The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production. Renewable and Sustainable Energy Reviews 112: 27-41
Pawar S, Sharma A, Vijayakumar G, Bay CJ, Yellapantula S, San O (2022) Towards multi-fidelity deep learning of wind turbine wakes. Renewable Energy 200: 867-879
Popescu MC, Balas VE, Perescu-Popescu L, Mastorakis N (2009) Multilayer Perceptron and Neural Networks. Wseas Transactions on Circuits and Systems 8(7): 579-588
Pujari KN, Miriyala SS, Mitra K (2023) Jensen-ANN: A machine learning adaptation of jensen wake model. IFAC-PapersOnLine 56(2): 4651-4656
Purohit S, Ng EYK, Syed Ahmed Kabir IF (2022) Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake. Renewable Energy 184: 405-420
Qu Z, Hou X, Li J, Hu W (2024) Short-term wind farm cluster power prediction based on dual feature extraction and quadratic decomposition aggregation. Energy 290: 130155
Raissi M, Karniadakis GE (2018) Hidden physics models: Machine learning of nonlinear partial differential equations. Journal of Computational Physics 357: 125-141
Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378: 686-707
Romero DA, Hasanpoor S, Antonini EGA, Amon CH (2024) Predicting wind farm wake losses with deep convolutional hierarchical encoder-decoder neural networks. APL Machine Learning 2(1): 016111
Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. arXiv preprint, arXiv: 1505.04597, May 2015
Rumelhart DE, Hintont GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(9): 533-536
Santoni C, Zhang D, Zhang Z, Samaras D, Sotiropoulos F, Khosronejad A (2024) Toward ultra-efficient high-fidelity predictions of wind turbine wakes: Augmenting the accuracy of engineering models with machine learning. Physics of Fluids 36(6): 065159
Santos FDN, Duthé G, Abdallah I, Réthoré P-é, Weijtjens W, Chatzi E, Devriendt C (2024) Multivariate prediction on wake-affected wind turbines using graph neural networks. J Phys: Conf Ser 2647(11): 112006
Scarselli F, Gori M, Ah Chung Tsoi, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Trans Neural Netw 20(1): 61-80
Shakoor R, Hassan MY, Raheem A, Wu YK (2016) Wake effect modeling: A review of wind farm layout optimization using Jensen’s model. Renewable and Sustainable Energy Reviews 58: 1048-1059
Sun H, Qiu C, Lu L, Gao X, Chen J, Yang H (2020) Wind turbine power modelling and optimization using artificial neural network with wind field experimental data. Applied Energy 280: 115880
Sun S, Cui S, He T, Yao Q (2024) An integrated deep neural network framework for predicting the wake flow in the wind field. Energy 291: 130400
Ti Z, Deng XW, Yang H (2020) Wake modeling of wind turbines using machine learning. Applied Energy 257: 114025
Ti Z, Deng XW, Zhang M (2021) Artificial neural networks based wake model for power prediction of wind farm. Renewable Energy 172: 618-631
Troldborg N (2009) Actuator line modeling of wind turbine wakes. PhD thesis, Technical University of Denmark, Copenhagen
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. 31st Conference on Neural Information Processing Systems, NIPS 2017, Long Beach, USA
Veers P, Dykes K, Lantz E, Barth S, Bottasso CL, Carlson O, Clifton A, Green J, Green P, Holttinen H, Laird D, Lehtom?ki V, Lundquist JK, Manwell J, Marquis M, Meneveau C, Moriarty P, Munduate X, Muskulus M, Naughton J, Pao L, Paquette J, Peinke J, Robertson A, Rodrigo JS, Sempreviva AM, Smith JC, Tuohy A, Wiser R (2019) Grand challenges in the science of wind energy. Science 366(6464): eaau2027
Vogel CR, Willden RHJ (2020) Investigation of wind turbine wake superposition models using Reynolds-averaged Navier-Stokes simulations. Wind Energy 23(3): 593-607
Wang D, Yang M, Zhang W (2023a) Wind power group prediction model based on multi-task learning. Electronics 12(17): 3683
Wang H, Li G, Wang G, Peng J, Jiang H, Liu Y (2017) Deep learning based ensemble approach for probabilistic wind power forecasting. Applied Energy 188: 56-70
Wang L, Chen M, Luo Z, Zhang B, Xu J, Wang Z, Tan ACC (2024) Dynamic wake field reconstruction of wind turbine through physics-informed neural network and sparse LiDAR data. Energy 291: 130401
Wang Q, Wang Y, Zhang K, Liu Y, Qiang W, Han Wen Q (2023b) Artificial intelligent power forecasting for wind farm based on multi-source data fusion. Processes 11(5): 1429
Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learning Syst 32(1): 4-24
Xiong J, Peng T, Tao Z, Zhang C, Song S, Nazir MS (2023) A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction. Energy 266: 126419
Xu K, Hu W, Leskovec J, Jegelka S (2019) How Powerful are Graph Neural Networks? arXiv preprint, arXiv:1810.00826, Feb 2019.
Yan C (2018) Wind turbine wakes: from numerical modeling to machine learning. PhD thesis, University of Delaware, Newark
Yan C, Pan Y, Archer CL (2019) A general method to estimate wind farm power using artificial neural networks. Wind Energy 22(11): 1421-1432
Yang K, Deng X, Ti Z, Yang S, Huang S, Wang Y (2023a) A data-driven layout optimization framework of large-scale wind farms based on machine learning. Renewable Energy 218: 119240
Yang S, Deng X, Ti Z, Yan B, Yang Q (2022) Cooperative yaw control of wind farm using a double-layer machine learning framework. Renewable Energy 193: 519-537
Yang S, Yang K, Deng X, Yang J (2023b) Smart cooperative control scheme for large-scale wind farms based on a double-layer machine learning framework. Energy Conversion and Management 285: 116949
Ye M, Chen H, Wan D, Ye M, Chen H, Wan D (2024a) Quantification of numerical uncertainties of CFD-predicted wind turbine performance with overset grids. Ocean Engineering 298(December 2023): 117231
Ye M, Chen HC, Koop A (2023a) Verification and validation of CFD simulations of the NTNU BT1 wind turbine. Journal of Wind Engineering and Industrial Aerodynamics 234(February): 105336
Ye M, Chen HC, Koop A (2023b) High-fidelity CFD simulations for the wake characteristics of the NTNU BT1 wind turbine. Energy 265(November 2022): 126285
Ye M, Ma C, Wan D, Chen HC (2024b) A comparative study of different artificial neural-network architectures in the prediction of riser VIV. Proceedings of the Thirty-fourth International Ocean and Polar Engineering Conference, Rhodes, 2770-2777
Yin X, Zhao X (2019) Big data driven multi-objective predictions for offshore wind farm based on machine learning algorithms. Energy 186: 115704
Yousif MZ, Lim HC (2024) Reduced-order modeling for turbulent wake of a finite wall-mounted square cylinder based on artificial neural network. Physics of Fluids 34: 015116
Yu R, Gao J, Yu M, Lu W, Xu T, Zhao M, Zhang J, Zhang R, Zhang Z (2019a) LSTM-EFG for wind power forecasting based on sequential correlation features. Future Generation Computer Systems 93: 33-42
Yu R, Liu Z, Li X, Lu W, Ma D, Yu M, Wang J, Li B (2019b) Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space. Applied Energy 238: 249-257
Yu Y, Han X, Yang M, Yang J (2020) Probabilistic prediction of regional wind power based on spatiotemporal quantile regression. IEEE Trans on Ind Applicat 56(6): 6117-6127
Zehtabiyan-Rezaie N, Iosifidis A, Abkar M (2023) Physics-guided machine learning for wind-farm power prediction: Toward interpretability and generalizability. PRX Energy 2(1): 013009
Zhang J, Yan J, Infield D, Liu Y, Lien F (2019) Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Applied Energy 241: 229-244
Zhang J, Zhao X (2020) A novel dynamic wind farm wake model based on deep learning. Applied Energy 277: 115552
Zhang J, Zhao X (2022) Wind farm wake modeling based on deep convolutional conditional generative adversarial network. Energy 238: 121747
Zhang J, Zhao X (2021) Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements. Applied Energy 288(February): 116641
Zhang J, Zhao X (2023) Digital twin of wind farms via physics-informed deep learning. Energy Conversion and Management 293: 117507
Zhang W, Lin Z, Liu X (2022) Short-term offshore wind power forecasting-A hybrid model based on Discrete Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving Average (SARIMA), and deep-learning-based Long Short-Term Memory (LSTM). Renewable Energy 185: 611-628
Zhang Z, Santoni C, Herges T, Sotiropoulos F, Khosronejad A (2021) Time-averaged wind turbine wake flow field prediction using autoencoder convolutional neural networks. Energies 15(1): 41
Zhao Z, Yun S, Jia L, Guo J, Meng Y, He N, Li X, Shi J, Yang L (2023) Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features. Engineering Applications of Artificial Intelligence 121: 105982
Zhou H, Qiu Y, Feng Y, Liu J (2022) Power prediction of wind turbine in the wake using hybrid physical process and machine learning models. Renewable Energy 198: 568-586
Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2020) Graph neural networks: A review of methods and applications. AI Open 1: 57-81
Zhou L, Wen J, Wang Z, Deng P, Zhang H (2023) High-fidelity wind turbine wake velocity prediction by surrogate model based on d-POD and LSTM. Energy 275: 127525
Zhu A, Li X, Mo Z, Wu R (2017) Wind power prediction based on a convolutional neural network. 2017 International Conference on Circuits, Devices and Systems, ICCDS, IEEE, Chengdu, 131-135