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Abstract
With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications, an increasing 
number of studies have embraced data-driven approaches for modeling wind turbine wakes. These models leverage the ability to capture 
complex, high-dimensional characteristics of wind turbine wakes while offering significantly greater efficiency in the prediction process than 
physics-driven models. As a result, data-driven wind turbine wake models are regarded as powerful and effective tools for predicting wake 
behavior and turbine power output. This paper aims to provide a concise yet comprehensive review of existing studies on wind turbine wake 
modeling that employ data-driven approaches. It begins by defining and classifying machine learning methods to facilitate a clearer 
understanding of the reviewed literature. Subsequently, the related studies are categorized into four key areas: wind turbine power prediction, 
data-driven analytic wake models, wake field reconstruction, and the incorporation of explicit physical constraints. The accuracy of data-driven 
models is influenced by two primary factors: the quality of the training data and the performance of the model itself. Accordingly, both data 
accuracy and model structure are discussed in detail within the review.
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1  Introduction

1.1  Overview

To realize the vision of carbon neutrality by the mid-cen‐
tury, the deployment of wind energy, alongside other renew‐
able energy sources, must increase severalfold compared 
with current levels. As a result, over the past decade and in 
the foreseeable future, wind farms comprising multiple wind 
turbines have been and will continue to be established world‐
wide. However, achieving this goal requires not only an 
increase in the total number of wind farms but also signifi‐
cant improvements in power generation efficiency at both 

the individual turbine and wind farm levels. These enhance‐
ments are crucial for maximizing the total power that can 
be harnessed from wind energy. To optimize the overall 
efficiency of wind farms, employing robust modeling 
approaches for the wakes generated by individual or multi‐
ple wind turbines is essential. The accuracy and complexity 
of these modeling methods can significantly influence crit‐
ical outcomes, such as annual power production and wind 
farm layout design. Consequently, wind turbine wake mod‐
eling has remained a prominent research focus within the 
wind energy community, garnering substantial attention 
from researchers worldwide.

As in other areas of fluid mechanics, wind turbine wake 
modeling traditionally relies on two canonical approaches: 
analytical and numerical methods. However, with recent 
advancements in artificial intelligence, an emerging and 
rapidly evolving modeling framework leveraging modern 
machine learning techniques has gained increasing traction 
in this field. This framework, widely known as the data-
driven approach, is becoming a prominent tool in wind tur‐
bine wake modeling. Data-driven models, particularly arti‐
ficial neural networks (ANNs), can effectively represent 
high-dimensional and nonlinear flow phenomena. They 
can automatically identify patterns and learn from data with‐
out requiring the additional assumptions or simplifications 
typically introduced in analytical wake models. Moreover, 
they offer exceptional computational efficiency compared 
with numerical simulations, making them a promising alter‐
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native to traditional wake modeling methods. Considering 
this trend, the authors present a review of existing work, 
offering a comprehensive and clear overview of this research 
area for the wind energy community.

Given that the scope of this paper is to review state-of-
the-art research on machine learning-based wind turbine 
wake modeling, the authors believe that a solid understand‐
ing of the two foundational topics—wind turbine wake mod‐
eling and machine learning—is essential for a comprehen‐
sive grasp of this work. Therefore, we will first provide 
concise yet sufficient introductions to these two subjects to 
support the reader’s understanding of the paper.

1.2  Conical wind turbine wake modeling 
frameworks

As previously discussed, wind turbine wake modeling 
traditionally relies on two classic frameworks—analytical 
and numerical approaches—alongside the emerging data-
driven approach. The data used in data-driven wake model‐
ing is often derived from conical wake modeling methods. 
Readers should also bear in mind that, regardless of how 
advanced machine learning techniques may be, the accuracy 
of a data-driven wake model cannot exceed the quality of 
the data used to train it. Thus, the overall accuracy of these 
models is determined by two key factors: the quality of the 
input data and the performance of the model itself. To pro‐
vide context, a brief overview of the canonical wake mod‐
eling approaches—analytical and numerical—will be pre‐
sented in order of increasing fidelity.

1.2.1 Analytical wake models
An analytical wake model (AWM) represents the wake 

pattern of either a yawed or un-yawed turbine through sim‐
plified equations to estimate flow quantities, such as veloc‐
ity and turbulence, within the wind turbine wake. Regard‐
less of their complexity, AWMs aim to establish explicit for‐
mulations to describe the evolution of wind turbine wakes. 
However, owing to the numerous simplifications involved 
in their derivation, AWMs are considered low-fidelity com‐
pared with numerical simulations, which solve the govern‐
ing equations of fluid dynamics. Despite this, the high com‐
putational efficiency of AWMs makes them indispensable 
for wind farm optimization tasks (Shakoor et al., 2016), 
where a large number (on the order of 1 000 to 10 000) of 
wind-farm-scale wake calculations are required.

Early analytical modeling work began with Jensen (Sha‐
koor et al., 2016), who, based on the assumption of a “top-
hat” distribution for cross-wind variation, leveraged the 
conservation of mass and momentum to develop a simple 
linear model for the velocity deficit. Building on the Jen‐
sen model, researchers have made significant efforts to 
develop more realistic wake models that better represent 
the wake field of wind turbines. A comprehensive literature 
review of analytical wake models can be found in Amiri 

et al. (2024), and as such, it will be omitted from the cur‐
rent paper.

1.2.2 Numerical wake modeling
As mentioned earlier, wind turbine wakes can be simu‐

lated by solving the complete set of fluid governing equa‐
tions, namely the Navier–Stokes (N–S) equations. This ap‐
proach is known as computational fluid dynamics (CFD). 
Owing to the multiscale nature of fluid motion, particularly 
turbulence, a temporal or spatial filter can be applied to 
the original N–S equations to obtain the well-known Reyn‐
olds-averaged Navier–Stokes (RANS) equations or the Large 
Eddy Simulation (LES) equations, respectively. In general, 
results obtained using LES are considered to be of higher 
fidelity than those derived from RANS simulations. In 
addition, different blade modeling approaches with varying 
levels of accuracy are used in CFD simulations of wind 
turbine wakes, including reduced-order modeling (ROM) 
and fully resolved approaches. In CFD simulations based on 
ROM, the blade element method (BEM) and its enhanced 
variants, including the actuator disc model (ADM) (Calaf 
et al., 2010; Helvig et al., 2021) and the actuator line model 
(ALM) (Troldborg, 2009; Martínez-Tossas et al., 2015; 
Nilsson et al., 2015; Draper et al., 2018), simplify the 
wind turbine blades as equivalent integral forces over two-
dimensional airfoil cross-sections, thereby bypassing the 
need to resolve boundary-layer flow. In contrast, CFD sim‐
ulations using fully resolved turbine geometries (FRGs) 
directly resolve the details of the wind turbine blades, with 
turbulent flow in their vicinity calculated explicitly (Ye 
et al., 2024a).

According to the above discussions, the overall accuracy, 
or fidelity, of numerical modeling of wind turbine wakes 
depends on two factors: the accuracy of the solved govern‐
ing equations and the accuracy of the blade modeling meth‐
ods. Within the framework of CFD simulations, this review 
considers results from LES simulations with FRGs to have 
the highest accuracy (denoted as LES/FRG), while results 
from RANS simulations with ROM are considered to have 
the lowest accuracy (denoted as RANS/ROM). All other 
combinations are treated as having intermediate accuracy.

1.3  Machine learning in general

Machine learning is a framework that uses algorithms to 
extract or learn knowledge from data without relying on 
prior assumptions. To facilitate this, machine learning 
models are typically trained on large datasets. Because this 
approach theoretically requires only data and not physical 
knowledge, the approach is often referred to as data-driven 
modeling in the context of physical process modeling.

Machine learning methods can generally be categorized 
into three types: supervised learning, unsupervised learn‐
ing, and reinforcement learning (Moussaoui et al., 2023). 
Supervised learning is a type of machine learning where 
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the model is trained on a labeled dataset, meaning that the 
training data includes both the input features and the corre‐
sponding correct output labels. The goal of supervised 
learning is to learn a mapping between the input features 
and the output labels. Examples of supervised learning 
tasks include classification and regression. Common algo‐
rithms for supervised learning include linear regression, 
logistic regression, decision trees (DTs), support vector 
machines (SVMs), and neural networks. In contrast, unsu‐
pervised learning models are trained without labels. The 
primary goal of unsupervised learning is to explore the data 
and uncover hidden patterns or representations, such as in 
fault diagnosis tasks (Gao et al., 2015). Common algorithms 
for unsupervised learning include k-means clustering, hier‐
archical clustering, and principal component analysis 
(PCA). In addition, reinforcement learning is a type of 
machine learning where an agent learns to make decisions 
by taking actions within an environment to achieve a spe‐
cific goal. Unlike supervised learning, there are no labels 
provided by a teacher, and unlike unsupervised learning, 
the agent is guided by a clear objective it seeks to accom‐
plish. The agent learns by receiving feedback in the form 
of rewards or penalties based on its actions. Over time, the 
agent develops a policy that maximizes cumulative reward. 
Reinforcement learning proves particularly useful in situa‐
tions where the consequences of actions are not immedi‐
ately clear, requiring the agent to learn through trial and 
error. This approach finds common applications in areas 
such as game playing, robotics, and autonomous vehicles 
(Kober and Peters, 2014; Isele et al., 2018).

Each of these learning paradigms has its strengths and is 
suited to different types of problems and data. Given the 
nature of wind turbine wake-related tasks, supervised learn‐
ing is used in most, if not all, existing studies that apply 
data-driven methods. Therefore, in this review, we will 
focus exclusively on this category in the discussion of 
machine learning.

In supervised learning, regardless of the complexity of the 
machine learning model, the goal is to establish a mapping 
between the input data and the output labels, as mentioned 
earlier. Specifically, inspired by the function of human 
neurons, ANNs were developed to connect the input and 
output data. The efficient algorithms created for training 
ANNs have sparked significant growth in this field, hav‐
ing a profound impact on nearly every area of modern life.

1.4  Accuracy of data-driven models

According to the brief introductions above, readers should 
understand that the overall accuracy of data-driven models 
is determined by at least two main factors: the accuracy of 
the data used during the training process and the perfor‐
mance of the model itself. It is also important to note that 
the highest accuracy achievable by data-driven models is 
limited by the accuracy of the input data. Therefore, in this 

review, both the data-driven models and the data used will 
be discussed.

1.5  Structure of the current review paper

In this review, we focus on studies that apply machine 
learning techniques to investigate wind turbine wake-related 
topics, specifically wind turbine/farm power prediction and 
wind turbine wake modeling, with an emphasis on the latter. 
The remainder of the paper is organized as follows: Sec‐
tion 2 introduces the machine learning architectures com‐
monly used in wind turbine wake modeling, presented in 
order of increasing complexity. Section 3 provides a com‐
prehensive literature review of data-driven modeling stud‐
ies on wind turbine wake, organizing the studies into four 
categories: wind turbine power prediction, machine learn‐
ing-based analytical wake models, wake field reconstruc‐
tion, and the enforcement of explicit physical constraints.

2  Definition and classification of machine 
learning methods

In this section, machine learning methods commonly used 
in data-driven wake modeling are introduced. By the end 
of this section, readers should have a clear understanding 
of the key concepts frequently discussed in machine learn‐
ing-related studies. We begin by presenting an overview of 
non-neural network machine learning methods, which are 
also commonly used in data-driven wake modeling. After‐
ward, the dominant neural network approaches are dis‐
cussed, starting with basic architectures and progressing to 
more advanced structures built upon these foundational 
models. Finally, the concept of symbolic regression (SR) 
is introduced, typically combining ANNs with optimiza‐
tion algorithms.

2.1  Non-neural network machine learning 
approaches

2.1.1 SVM and support vector regression
SVMs (Hearst, 1998) are a class of supervised learning 

algorithms commonly used for classification and regres‐
sion tasks. The core concept of SVMs is to identify the 
optimal hyperplane that maximally separates different 
classes within the feature space. Support vector regression 
(SVR) is an extension of the SVM framework specifically 
designed for regression tasks. Similar to SVMs, SVR aims 
to find an optimal hyperplane that best fits the data. How‐
ever, instead of maximizing the margin between classes, 
SVR focuses on minimizing prediction error while balanc‐
ing the model’s complexity and its ability to generalize. In 
SVR, the goal is to find a hyperplane that minimizes the 
Euclidean distance between the observed values (i. e., the 
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ground truth) and the model predictions, subject to a toler‐
ance level known as the epsilon-insensitive tube. Data 
points falling within this tube are considered correctly pre‐
dicted, while those outside it are penalized. This approach 
makes SVR robust to outliers, as it focuses on minimizing 
the prediction error within a specified threshold rather than 
attempting to perfectly fit every data point. Despite its 
computational demands, particularly with large datasets, 
SVR remains a popular choice due to its ability to provide 
accurate and robust predictions, even in the presence of 
noise and outliers.

2.1.2 DT-based algorithms
A DT (Myles et al., 2004) is a fundamental class of super‐

vised learning algorithms used for both classification and 
regression tasks. It works by recursively partitioning the 
feature space into regions based on the values of input fea‐
tures, creating a tree-like model of decisions and their pos‐
sible consequences. Each internal node represents a test on 
an attribute, each branch represents the outcome of the 
test, and each leaf node represents a class label (in classifi‐
cation) or a predicted value (in regression). To overcome 
the limitations of basic DTs, more advanced algorithms 
based on DTs have been developed. For example, the ran‐
dom forest (RF) (Breiman, 2001) algorithm reduces over‐
fitting by combining multiple tree structures, and XGBoost 
(Chen and Guestrin, 2016) enhances DTs by applying gra‐
dient boosting.

2.2  Basic neural network architectures

2.2.1 Multilayer perceptron
The multilayer perceptron (MLP) (Popescu et al., 2009), 

also frequently referred to as ANNs, backpropagation neu‐
ral networks (BPNN), deep neural networks (DNN), or fully 
connected neural networks (FCNN) in other publications, 
is one of the most fundamental components of advanced 
NN architectures. The term ANN will be used to refer to 
ANNs in a general sense. For example, recurrent neural 
networks (RNN) and convolutional neural networks (CNN) 
can also be called as ANNs. An illustration of MLP is illus‐
trated in Figure 1.

It can be seen that an MLP consists of multiple layers of 
neurons, including an input layer, one or more hidden lay‐
ers, and an output layer. Each neuron is weighted and con‐
nected between layers, processing input signals through 
activation functions to perform nonlinear transformations. 
The training of an MLP involves two main stages: forward 
propagation and backpropagation. The details of these two 
stages are as follows. Suppose the input to a neuron is 
denoted as X ( x1, x2, …, xi ), where xi represents the input 

“features”. In forward propagation, for each neuron, the 
following two operations are performed:

1) Linear transformation:

output' = b +∑
i = 1

n

wi ⋅ xi (1)

where wi represents the weights of the neuron, and b denotes 
the bias in the linear transformation. Alternatively, this can 
be expressed as:

output' = b + dot (W, X ) (2)

where W is the weight matrix, X is the input vector, and 
dot denotes the dot product.

2) Nonlinear transformation:
Then, the output of the neuron is “activated” by apply‐

ing a nonlinear function σ, (e.g., the tanh function) to the 
result of the linear transformation, allowing the model 
to capture the nonlinearity in the data. Note that output' 
denotes the intermediate result from the linear transforma‐
tion, while output refers to the final result of the neuron.

output = σ (output') (3)

The two operations within a single neuron are illustrated 
in Figure 2.

In an MLP model, multiple layers of neurons are used, 
with the above two operations performed repeatedly. The 
final output of the entire MLP is denoted as ypredict.

In backpropagation, the loss function is first calculated Figure 1　Illustration of an MLP model

Figure 2　Illustration of a single neuron in an MLP model
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by comparing the predicted output, ypredict, with the ground 
truth, ylabel, using a specific method, such as mean square 
error (MSE). Then, the weights and biases—i.e., the train‐
able parameters—of the MLP model are adjusted, typically 
using the gradient descent method (Rumelhart et al., 1986), 
to minimize the loss function. By feeding the MLP with 
data, the model is trained to describe the mapping rela‐
tionship between input features and output labels. This 
process allows the model to “learn” the underlying pat‐
terns in the data.

2.2.2 RNNs
RNNs are a class of ANNs designed to recognize pat‐

terns in sequential data, such as time series data or natural 
language. Unlike MLP models, which process inputs inde‐
pendently of sequence, an RNN model captures dependen‐
cies within a sequence by introducing an internal state. 
The mathematical representation of an RNN model can be 
written as:

outputT = σ [dot (Wi, inputT ) + dot (Ws, stateT ) + b] (4)

with

stateT = outputT − 1 (5)

In the above two equations, the superscript T denotes 
the time step T or the position in the sequence. Wi and Ws 
are the weight matrices for the inputT and stateT respectively. 
By introducing the concept of an internal state, informa‐
tion within a time sequence can be carried forward, enabling 
the model to capture dependencies within the sequence. To 
enhance the performance of the basic RNN structure, 
advanced RNN architectures such as long short-term mem‐
ory (LSTM) networks (Hochreiter and Schimidhuber, 1997) 
and gated recurrent units (GRUs) (Chung et al., 2014) 
have been developed. Further details of RNN-based archi‐
tectures are beyond the scope of this review, and readers 
are encouraged to refer to Chung et al. (2014) for more 
information.

2.2.3 CNNs
CNNs are a family of deep learning models designed 

for processing grid-like data (LeCun and Bengio, 1998), 
such as images. Originally developed to automatically and 
adaptively learn spatial hierarchies of features from visual 
data, CNNs typically consist of convolutional layers, pool‐
ing layers, and fully connected layers. The convolutional 
layers use filters that slide over the input image to detect 
local features, such as edges. These features are then 
“pooled” (e.g., using max pooling) to reduce spatial dimen‐
sions and highlight the most important features. This pool‐
ing process is repeated with increasingly complex filters, 
allowing the network to build a hierarchy of features. The 
output from the final pooling layer is flattened and passed 

into an MLP, which connects to the output labels. CNNs 
have revolutionized the field of computer vision, driving 
significant advances in image recognition, object detec‐
tion, and image segmentation tasks (Lecun et al., 2015; 
Naranjo-Torres et al., 2020). Notably, due to their excel‐
lent capability for local feature extraction, CNNs are often 
used as local-dependency extractors in advanced ANNs. A 
schematic representation of a CNN model is illustrated in 
Figure 3.

2.2.4 Attention mechanism
The attention mechanism is a method designed to enhance 

the global feature extraction capabilities of ANNs, particu‐
larly when handling sequential data, such as in natural lan‐
guage processing (NLP). It typically involves three main 
components: query, key, and value. The mechanism gener‐
ates a weighted representation of the values by calculating 
the similarity between the query and the keys. By doing so, 
it can effectively capture long-term dependencies, improve 
the model’s ability to focus on key information and enable 
it to concentrate on the most important parts of the input. 
For more details on the attention mechanism, please refer 
to Vaswani et al. (2017).

2.2.5 Graph neural networks
Graph neural networks (GNNs) are a class of deep learn‐

ing models designed to process data represented as graphs, 
which consist of nodes and edges that encode relationships 
between entities. GNNs are particularly effective at captur‐
ing the rich relational information inherent in graph-struc‐
tured data, making them versatile for a wide range of tasks 
across different domains. GNNs operate on graph data by 
aggregating and transforming information at each node 
through a series of neural network layers. This enables the 
model to learn representations that encode both the fea‐
tures of individual nodes and the structure of the graph 
itself. For more information on GNNs, please refer to Scar‐
selli et al. (2009), Xu et al. (2019), Zhou et al. (2020), 
and Wu et al. (2021).

2.3  Advanced ANN structures

According to the aforementioned fundamental ANN 
architectures, advanced ANN structures can be designed 
to enhance the overall performance of machine learning 

Figure 3　Illustration of a CNN model
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models. In this review paper, we categorize these approaches 
for improving ANN performance into three groups: enhanced 
feature extraction, physics-informed neural networks, 
and operator learning, based on their methods of improv‐
ing ANNs.

2.3.1 Enhanced feature extraction
The first approach to improving ANN performance is by 

increasing the complexity of their structures. By stacking 
or connecting different fundamental ANN architectures, 
advanced structures can be designed with enhanced fea‐
ture extraction capabilities. While the term ‘feature extrac‐
tion’ can be defined from various perspectives, in this 
review, it refers to the process by which ANN models ‘per‐
ceive’ or ‘detect’ hidden patterns within input data. In this 
context, elementary ANN architectures can be considered 
feature extractors, and careful design of ANN structures—
by combining different feature extractors to better fit a spe‐
cific dataset or task—becomes possible. One of the most 
representative examples in this category is the U-Net struc‐
ture (Ronneberger et al., 2015), which was initially designed 
for biomedical image segmentation and has since inspired 
many other advanced ANN architectures. It consists of an 
encoder (down-sampling path) and a decoder (up-sam‐
pling path), constructed by stacking multiple CNN layers 
with skip connections. An illustration of the U-Net struc‐
ture is illustrated in Figure 4.

2.3.2 Physics-informed neural networks
In addition to enhancing the feature extraction capability 

of ANN models, the second approach to improving overall 
model performance involves incorporating explicit physi‐
cal constraints, such as the N‒S equations for fluids, into 
the loss functions of ANN models. This approach was first 

proposed by Raissi and Karniadakis (Raissi and Karniada‐
kis, 2018) and quickly garnered attention from researchers 
across various science and engineering disciplines, where 
black-box ANN models often raise concerns regarding their 
lack of interpretability and explainability. By integrating 
governing equations into the training process, the resulting 
ANN models can be viewed as models that simultaneously 
satisfy both the observed data and the underlying physics. 
In this way, the concern that an ANN model may fit only 
the data points but fail to accurately represent the underly‐
ing physical process is mitigated. Additionally, the general‐
ization ability (i.e. the ability to predict unseen data) of the 
ANN model is often improved. This method will be dis‐
cussed in detail later in Section 3.4.1 and is therefore omit‐
ted here for the sake of brevity.

2.3.3 Operator networks
The third approach to improving the overall performance 

of ANNs is the concept of operator learning. Although the 
studies reviewed in this paper did not utilize operator net‐
works (ONs) in their models, they are included here for 
completeness. Strictly speaking, the concepts underlying 
ONs, such as DeepOnets and FNOs, differ from the previ‐
ously introduced ANN architectures. However, since ONs 
also leverage elementary ANN architectures to realize their 
functionality, they are presented here as part of subsection 
2.3. If we treat an ANN model as a function mapping that 
relates input and output data, ONs can be viewed as an 
operator mapping that connects the functions generating the 
input data to those generating the output data. Theoretically, 
this assumption of underlying relations among observed 
data should be more general and offer improved perfor‐
mance in representing higher-dimensional data. The detailed 

Figure 4　Illustration of the U-Net model
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mathematical background of ONs can be found in Chen 
and Chen (1995). Illustrations of typical ON structures 
are illustrated in Figure 5. For more information on ONs, 
readers are encouraged to refer to the original papers (Lu 
et al., 2021).

2.4  SR

SR is a subset of regression analysis that aims to identify 
an explicit mathematical formula representing the relation‐
ship between variables in a dataset. Unlike numerical regres‐
sion methods, which provide a set of coefficients for mod‐
els (such as linear or polynomial regression), SR seeks to 
uncover the underlying functional form of the relationship. 
As a result, SR is considered a promising approach for 
tasks such as wind turbine modeling. SR is typically per‐
formed using techniques like genetic programming (GP), 
where a population of candidate equations is evolved over 
time through operations such as mutation, crossover, and 
selection, mimicking the process of natural selection. The 

advantage of SR lies in its ability to produce interpretable 
models that offer insights into the underlying processes 
generating the data. The resulting models are not only pre‐
dictive but also explainable, as they can be analyzed to 
understand how changes in one variable affect another. 
However, SR also has limitations, such as the risk of over‐
fitting the training data and the need for careful specifica‐
tion of the function set from which the model is derived. 
An illustration of SR is illustrated in Figure 6.

3  Literature review

In this review, research on data-driven modeling of wind 
turbine wakes is categorized into four areas based on the 
goal of prediction: analytical wake models, wind turbine/
farm power prediction, wake reconstruction, and physics-
informed neural networks (PINNs). Given the rapid rise of 
PINNs as a research focus in science and engineering 
since their introduction, we have chosen to discuss related 
work in the context of wind turbine wake modeling as a 
separate category. In this category, PINNs are considered a 
specific approach for incorporating physical constraints 
into data-driven modeling processes.

3.1  Data-driven AWMs

The first category of work implements a data-driven 
framework to either 1) improve the accuracy of existing 
wind turbine wake models or 2) derive new analytical (i.e., 
explicit) mathematical expressions for wind turbine wake. 
In the first case, certain coefficients—often highly empirical 
or variable across different wind scenarios, such as incom‐
ing wind velocity, turbine type, and atmospheric boundary 

Figure 6　Flow diagram of GP-based SR

Figure 5　Illustration of ONs
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layer (ABL) stability—are replaced or improved using an 
ANN. This approach significantly enhances the accuracy 
and generalizability of the analytical model.

In particular, the wake expansion rate (Ge et al., 2019) 
in engineering wake models significantly influences the 
overall performance of these models, which has attracted 
the attention of researchers. Guo et al. (2022b) improved 
the Gaussian wake model developed by Bastankhah and 
Porté -Agel (2014) by incorporating local inflow informa‐
tion. A machine learning model using RF was trained with 
field SCADA data to establish the nonlinear relationship 
between local inflow information and the wake expansion 
feature. The resulting wake model was tested in real wind 
farms, demonstrating a 20% improvement over the origi‐
nal wake model. Pujari et al. (2023) incorporated the non‐
linear expansion effect into the Jensen wake model using 
MLP. In the study, the linear wake expansion in the Jensen 
model was corrected using a neural network that takes 
downstream distance and linear expansion as input param‐
eters. The training data were collected from field measure‐
ments. The results showed that the wake predictions made 
by the improved Jensen model outperformed those of the 
original model.

As a side note, the authors would like to further explain 
the concept of 1) by drawing an analogy with studies aimed 
at improving the accuracy of RANS turbulence models. In 
those studies, the complex relationship between Reynolds 
stresses and mean flow, which would traditionally be 
obtained by solving additional artificial turbulence trans‐
port equations, was replaced by ANNs. For readers familiar 
with data-driven turbulence modeling, the idea of 1) dis‐
cussed here can be readily seen as an application of this 
method in wind turbine wake modeling.

Regarding the second subset, i. e., 2) mentioned above, 
the SR technique introduced in Section 2.4 is used to derive 
new analytical expressions for wind turbine wake from 
observed datasets. In studies following this framework, 
large datasets are first generated through CFD simulations 
or measurements, containing various input features such as 
inflow velocity, inflow angle, ambient turbulence level, and 
more. SR is then employed to generate or search for the 
best mathematical formulation that fits the entire dataset, 
typically using optimization algorithms such as GP.

Kabir et al. (2020) used a GP algorithm to derive new 
AWMs that account for ABL. In their study, the training 
data were obtained through RANS/BEM simulations. The 
resulting analytical wake model was then compared with 
traditional models using a CFD dataset, showing a clear 
improvement. Gajendran et al. (2023) developed an SR 
approach combined with a simulated annealing (SA) opti‐
mization method to obtain an explicit wake model for 
yawed conditions, specifically addressing velocity deficit 
and wake deflection. The training dataset was obtained 
from ALM/LES simulations, and a set of potential input 

parameters was fed into the algorithm for SR. The balance 
between accuracy and simplicity of the resulting mathe‐
matical representation was achieved using a multi-objec‐
tive combinatorial optimization (MOCO) method. The new 
explicit wake models obtained were found to align well 
with the CFD data.

It is worth mentioning that while the analytical expres‐
sions of the wind wake field significantly enhance the 
interpretability of data-driven models and are easier to 
implement in wake estimations compared with black-box 
or gray-box models (which will be discussed later), they 
may be less generalizable. Therefore, greater effort should 
be dedicated to selecting appropriate input features.

3.2  Wind turbine/farm power prediction

The research works in this category share a common 
characteristic: they can all be considered classical machine 
learning tasks, specifically time sequence analysis (TSA), 
which has been a key focus in NLP for many years. Conse‐
quently, research in wind turbine/farm power prediction 
has been heavily inspired by advancements in NLP. The 
primary objective of TSA is to predict future values of a 
sequence based on its historical data. For example, in NLP, 
an ANN model can be trained to generate an abstract for 
an article by feeding the model the article content. Similarly, 
in wind turbine/farm power prediction, many concepts and 
techniques are either directly inherited from or strongly 
influenced by the field of NLP.

In this review paper, we further categorize TSA into two 
types for a clearer understanding of its capabilities and lim‐
itations: 1) pure TSA and 2) correlation TSA. In the case of 
pure TSA, for example, an ANN model can be trained to 
predict the temperature of a location on the 51st day by 
feeding it the temperature history from the 1st to the 50th 
day for that location. In pure TSA, the ANN model takes 
only the time history of the target variable as input. Read‐
ers may immediately recognize that a strong assumption 
must hold for a pure TSA model to work: future values of 
a variable should be exclusively and sufficiently deter‐
mined by its history. However, this assumption is often 
unrealistic in the real world. Taking the temperature exam‐
ple again, the temperature on the 51st day can also be influ‐
enced by other variables, such as humidity, pressure, wind 
speed, and the temperature at other locations. Therefore, 
studies that include other correlated variables as inputs will 
be referred to as “correlation TSA” in this review paper.

3.2.1 Pure TSA
For pure TSA applied to wind turbine/farm power pre‐

diction, the goal is to establish the following mapping 
relationship:

Pt = ANN (Pt − 1, Pt − 2, Pt − 3, …, Pt − n ) (6)
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where P is the power output of a wind turbine or farm, t 
denotes the time label, and n represents the length of the 
input sequence.

According to the authors’ experience, as discussed in a 
previous paper (Ye et al., 2024b), this task is extremely 
challenging for two main reasons: 1) as mentioned earlier, 
the history of the target variable may not be sufficient to 
predict its future values, and 2) the multi-dimensional tem‐
poral characteristics of time sequences are difficult, if not 
impossible, to capture. For example, consider using a 50-day 
power sequence to predict the power output on the 51st 
day. The first question that may arise is whether a 50-day 
history is long enough to capture the temporal patterns in 
the variation of power output. In fact, to accurately predict 
the power output of a wind turbine or farm on the 51st day, 
one might feel that the power output from the past several 
years should be considered in the time sequence. However, 
if longer-term variations in power output exist, such as those 
caused by global warming trends, how can these oscilla‐
tions with contrasting time scales be effectively captured?

To address the challenges mentioned above, many efforts 
have been made to enhance the feature extraction and pat‐
tern recognition capabilities of ANN models in power out‐
put prediction. For example, Abdoos (2016) trained a sin‐
gle-layer MLP using measured data from two real wind 
farms in Spain and the U.S. During the training process, 
the variational mode decomposition technique was applied 
to the wind farm power output time series to improve the 
feature extraction performance of the MLP. However, owing 
to the intrinsic limitations of MLPs in predicting sequen‐
tial data, studies in wind turbine/farm power prediction 
typically use CNN or RNN-based ANN architectures to 
capture the temporal or spatiotemporal correlations in the 
input data sequences.

Although CNN is commonly used in image processing 
tasks, where the input is a two-dimensional matrix, it can 
also be applied to TSA with the manipulation of time 
sequence datasets. Zhu et al. (2017) trained a CNN model 
for wind farm power output using real power data collected 
in Belgium. Wang et al. (2017) also adopted CNN for the 
TSA model in power prediction tasks. In their work, the 
wind farm power history was preprocessed using wavelet 
transformation into different frequency components, which 
enhanced the feature extraction performance of the CNN 
model. Later, Hong and Rioflorido (2019) extended the 
use of CNN for wind farm power prediction to a 24-hour 
ahead wind power forecast, while Yu et al. (2019b) further 
enhanced the CNN approach by interpreting the spatial 
arrangement of turbines as two-dimensional images and 
treating the temporal variation of wind farm power as 
channels.

Although using CNN for TSA tasks is possible, directly 
adopting RNN-based architectures, such as LSTM and 
GRU, appears to be a more natural option (Yu et al., 2019a; 

Zhang et al., 2019). These architectures can also be easily 
extended to bi-directional models by feeding both the time 
sequence and its inverse into the model (Wang et al., 2023a; 
Xiong et al., 2023).

However, RNN-based architectures often suffer from 
insufficient sequential pattern recognition and difficulty in 
capturing long-term dependencies. To address these issues, 
a more robust approach that combines both CNN and RNN 
architectures has been developed. In these studies, CNN is 
used to efficiently extract temporal or spatial correlations 
from time sequences (Yu et al., 2020). In addition, the hybrid 
CNN-RNN architecture can be fed with preprocessed data 
to further enhance its feature extraction capability (Zhang 
et al., 2022; Zhao et al., 2023; Qu et al., 2024).

3.2.2 Correlation TSA
As introduced earlier, although performing a pure TSA 

in wind turbine/farm power prediction tasks is possible—
i. e., predicting future power values purely from historical 
data—it is inherently challenging. This is because the power 
output of a wind turbine or farm can also be influenced by 
other factors or variables, which means these correlated 
variables should also be included as input features in the 
ANN models. For correlation TSA applied to wind turbine/
farm power predictions, the goal is to establish the follow‐
ing mapping relation:

Pt = ANN{(V1, V2, …, VM ) t − 1
, …, (V1, V2, …, VM ) t − N} (7)

where V represents a variable, with subscripts used to dif‐
ferentiate among various correlated variables.

Typically, the velocity and direction of the incoming 
wind are critical factors to consider. Yan et al. (2019) 
trained an MLP model using wind speed and direction as 
input features, with the power output of wind farms (the 
Lillgrund wind farm in Sweden and the Nørrekær onshore 
wind farm in Denmark) as the output. A transfer learning 
technique was applied, demonstrating the model’s poten‐
tial for application across different wind farms. Similarly, 
Sun et al. (2020) trained an MLP model to predict the power 
generation of a real wind farm in China, incorporating wind 
velocity, wind direction, and turbine yaw angle as input 
features. Under this framework, geometrical features like 
blockage ratio (BR) and blockage distance (BD) (Yan, 2018) 
or atmospheric characteristics (Optis and Perr-Sauer, 2019) 
can also be easily integrated into the input data, and the over‐
all performance of the trained model could be enhanced.

The aforementioned studies predominantly utilized the 
fundamental MLP architecture for predictions. However, 
these MLP models can also be substituted with CNN or 
RNN-based architectures to enhance feature extraction per‐
formance. For example, Kou et al. (2020) developed an 
ANN model to forecast wind speed at specific turbine loca‐
tions within a wind farm. Their study introduced a hybrid 
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ANN architecture that combined CNN and GRU, where 
incoming wind characteristics such as velocity and direction 
were represented as sequences of three-channel images. 
Kisvari et al. (2021) expanded the input features to include 
generator and gearbox temperatures, which were fed into a 
GRU network. This inclusion significantly improved the 
ANN model’s overall performance. Similarly, Gu et al. 
(2021) employed an LSTM model to establish a mapping 
relation between various input features—wind speed, wind 
direction, air pressure, temperature, and humidity—and 
the output label, i.e., wind farm power.

Recent advancements in ANN architectures designed for 
NLP applications, such as the self-attention mechanism, 
have also been adopted by researchers for wind turbine and 
power prediction tasks. Nascimento et al. (2023) developed 
a novel transformer-based ANN architecture combined with 
wavelet transform to predict wind speed and power for the 
next six hours using multiple meteorological variables as 
input features. Similarly, Wang et al. (2023b) enhanced the 
forecasting accuracy of an LSTM-based encoder-decoder 
model for wind farm power output by integrating static 
information about wind turbines with meteorological data.

In addition to the attention mechanism, GNNs have also 
been employed in wind turbine and wind farm power pre‐
diction tasks, leveraging their flexibility in representing 
spatial characteristics. Bentsen et al. (2022) integrated an 
attention mechanism into GNN models to predict the power 
production of wind turbines within wind farms. The train‐
ing dataset was generated using AWMs through the open-
source package FLORIS (https://github.com/NREL/floris). 
The model used turbine locations, wind speed, and direc‐
tion as input features, with turbine power output as the out‐
put variable. Results demonstrated that the GNN-based 
model outperformed bi-LSTM and MLP models in accu‐
racy. Similarly, Li (2022) applied GNNs to short-term wind 
power forecasting tasks, highlighting their potential in this 
domain. The input features of the GNN model include 
wind speed, air density, historical wind power, and the his‐
torical wind power of adjacent turbines. Santos et al. 
(2024) trained a GNN model using layout geometries and 
inflow conditions as input features, with the outputs being 
power production and fatigue loads. In this study, the train‐
ing data was generated from AWMs using the FLORIS 
open-source package.

Non-neural network machine learning techniques have 
also been successfully applied to power prediction tasks. 
Yin and Zhao (2019) predicted both the power output and 
structural fatigue of an offshore wind farm using various 
machine learning approaches, including MLP, RF, SVM, 
and RNN. The training dataset was generated from AWMs 
using FLORIS. He et al. (2022) employed SVR to predict 
the fatigue load and power output of wind turbines, using 
the velocity and turbulence intensity of incoming wind and 
the turbine yaw angle as input features. Additionally, the 

XGBoost algorithm, introduced earlier, has been applied 
to power prediction tasks (Nakhchi, 2023; Cakiroglu et al., 
2024), demonstrating high accuracy and significant prom‐
ise in this domain.

3.3  Wake field reconstruction

The studies categorized here involve a reconstruction 
process of the wake field, where a complete wake field is 
predicted or visualized using a trained data-driven model. 
Within this category, two subgroups are identified and dis‐
cussed separately in this review: ROM-based methods and 
direct field reconstruction methods.

3.3.1 ROM-based methods
In this subgroup of wake field reconstruction methods, 

lower-order representations of the actual flow field are 
employed during the training of ANNs. Typically, a mode-
decomposition technique is applied to the flow field, allow‐
ing the complete spatial-temporal wake field to be repre‐
sented as a combination of time-independent modes and 
their corresponding time-dependent coefficients. This 
approach simplifies the initial time-dependent wake field 
reconstruction task into a TSA task, where only the time-
varying variables need to be predicted by the ANNs.

This approach has been successfully applied to recon‐
struct wake fields for simple geometries. For example, 
Yousif and Lim (2024) developed a reduced-order model 
for the turbulent wake of a finite wall-mounted square cyl‐
inder using ANNs. The training data was generated through 
RANS simulations incorporating an IDDES turbulence 
model. The proper orthogonal decomposition (POD) method 
was utilized to extract the time coefficients of each mode, 
and an LSTM architecture was subsequently employed to 
predict the evolution of these coefficients based on their 
historical sequences.

In the field of wind turbine wake prediction, this analyti‐
cal framework has also been effectively utilized. Zhang and 
Zhao (2020) employed SOWFA to generate an unsteady 
wake field for nine wind turbines under neutral ABL con‐
ditions. The POD method was applied to represent the wake 
field as separate modes, and an LSTM model was used to 
predict the time coefficients of each POD mode. The POD-
LSTM method exhibited a higher accuracy than AWMs. 
Similar studies within this framework can be found in Ali 
et al. (2021), Geibel and Bangga (2022), Guo et al. (2023), 
Zhou et al. (2023), Luo et al. (2024). An illustration of this 
framework is illustrated in Figure 7.

Despite effectively representing the initial complex wake 
field, these ROM-based methods for wake reconstruction 
suffer from limited generalization ability. Specifically, the 
trained ANN models may be highly case-specific and diffi‐
cult to apply to different wind turbine scenarios.

Instead of relying on traditional mode-decomposition 
methods, ANNs can be used directly to reduce the order of 
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the initial flow field. For example, Ashwin Renganathan 
et al. (2022) designed a deep convolutional autoencoder 
neural network to effectively map high-dimensional LiDAR 
measurements into a lower-dimensional space. An MLP 
was then used to learn the mapping relationship between 
the wind turbine state and the lower-dimensional features. 
These lower-dimensional features were subsequently trans‐
formed back into the original dimensional space using a 
decoder network with multiple layers of CNNs. This alter‐
native ROM-based method, which leverages ANNs for 
reduced-order representation of high-dimensional data, 
shows great promise and warrants further investigation.

3.3.2 Direct wake reconstruction
Leveraging the capability of ANNs to learn and repre‐

sent nonlinear, high-dimensional mapping relationships, 
direct reconstruction of wind turbine wakes is achievable 
by designing an ANN that maps spatial and temporal coor‐
dinates directly to flow quantities, such as velocity and tur‐
bulence. Specifically, an ANN model can be trained to use 
( x, y, z, t ) as input and produce (U, V, W, TKE ) of the flow 
field as output. This allows the complete wake field at any 

given time to be reconstructed using the trained ANN model 
with arbitrary ( x, y, z, t ) inputs. This mapping relationship 
can be expressed as:

( )U, V, W, TKE = ANN ( x, y, z, t ) (8)

A straightforward approach for this task is to utilize an 
MLP architecture. Ti et al. (2020) employed an MLP 
model for wind turbine wake prediction, where the inflow 
wind velocity and turbulence intensity at the turbine hub 
height were selected as inputs, and the velocity deficit and 
added TKE in the wake field were used as outputs. The 
dataset for training the NN was generated using RANS 
simulations, with the ADM applied for rotor modeling. A 
specialized training technique, termed sub-model training, 
was employed. This technique involves using multiple ANN 
models (2000 in the study) to predict different regions 
of the wake field individually, which are subsequently 
merged to reconstruct the complete wake field. The map‐
ping relationship established in this work is illustrated in 
Figure 8.

Figure 7　Illustration of the ROM-based models, specifically a POD-LSTM model, for the wake field reconstruction (Zhou et al., 2023)
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However, while this technique can effectively improve 
the learning efficiency and prediction accuracy of ANN 
models, its theoretical foundation warrants further investi‐
gation. This is because the entire wake field is fundamen‐
tally governed by a unified model, namely the N‒S equa‐
tions. Consequently, the use of the sub-model training tech‐
nique raises questions regarding its interpretability. In 
addition, wake superposition models were employed in that 
study to predict the wake fields of multiple wind turbines.

Subsequent studies within the framework of direct wake 
reconstruction have mainly focused on enhancing the fea‐
ture extraction capabilities of models by employing more 
advanced ANN architectures, such as CNNs, GANs, and 
encoder-decoder frameworks. However, as discussed in Ti 
et al. (2020) and mentioned at the outset of this review, 
the overall accuracy of an ANN model designed for wind 
turbine wake prediction is determined by at least two criti‐
cal factors: 1) the accuracy of the dataset used for training 
the network and 2) the performance of the designed ANN 
architecture. A summary of studies utilizing the direct wake 
reconstruction framework, along with relevant informa‐
tion, is presented in Table 1.

3.4  Incorporation of physical knowledge

All the studies mentioned above related to wind turbine 
wake modeling can be classified as pure data-driven mod‐
eling. This is because they focus solely on learning the 
mapping relationship between input features and output 
labels from the data without incorporating any further infor‐
mation about the physical processes that govern the data 
generation. In other words, the trained neural networks 
(NNs) only capture the mapping relationship in the data 

but do not necessarily represent the true underlying phys‐
ics. For example, in the case of incompressible fluids, the 
velocity field (U) at any given spatial and temporal coordi‐
nates can be obtained by numerically solving the RANS 
equations, provided the initial and boundary conditions are 
known. Thus, the relationship between ( x, y, z, t ) and U 
can be regarded as a mapping relation governed by the 
RANS which can be written as:

U = RANS ( x, y, z, t ) (9)

However, under the pure data-driven approach, the 
trained NN mapping can be expressed as:

U = NN ( x, y, z, t ) (10)

Readers can immediately recognize that the two map‐
ping relations—RANS and NN—are not necessarily equiv‐
alent. This raises a concern that the trained ANN models 
may not accurately reflect the real physics, which could 
undermine their reliability in predicting unseen datasets. 
To address this issue, researchers have sought to incorpo‐
rate knowledge of physical processes into NN, ensuring 
that the trained models not only represent the mapping 
relation between input and output data but also capture the 
underlying physical processes governing the data.

In this review paper, two distinct frameworks for incor‐
porating physical process information are identified and 
discussed: the physics-guided approach and the physics-
informed approach. While both frameworks integrate phys‐
ical knowledge into NN, they differ fundamentally in how 
the physical information is incorporated—either into the 
input features or the output labels.

Figure 8　Illustration of the ANN architecture proposed in Ti et al. (2020) for direct wake field reconstruction
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3.4.1 Physics-guided NNs (PGNNs)
The physics-guided approach incorporates physical infor‐

mation by adding additional input features, allowing the 
trainable parameters of the NN model to be adjusted accord‐
ing to, or guided by, these features. In these studies, simpli‐
fied mathematical models, such as AWMs, are often used 
to generate a lower-fidelity representation of the real out‐
put label. The initial input features are then combined with 
this lower-fidelity representation and fed into the NNs to 
establish the mapping relation with the real output label. In 
this way, physical knowledge is embedded into the result‐
ing NN model.

Here, we use the work of Guo et al. (2022a) as an exam‐

ple to explain this framework in detail. Guo et al. (2022a) 
designed a physics-guided NN to predict the short-term 
wind power output of a real wind farm. For the NN, the 
input consisted of the 24-hour historical time sequences of 
incoming wind velocity (U ) and wind direction (dir), while 
the output was the corresponding 24-hour time sequence 
of power output. For pure data-driven modeling approaches, 
this task could be achieved using an RNN-based NN archi‐
tecture, as discussed in Section 3.2.2, and the mapping 
relation can be written as:

NN (U t, dir t, U t + 1, dir t + 1, …, U t + 24, dir t + 24 ) =

P t
real, P

t + 1
real , …, P t + 24

real

(11)

Table 1　Summary of studies under the framework of direct wake reconstruction

Literature

Ti et al. (2020)
Ti et al. (2021)

Zhang et al. (2021)

Anagnostopoulos 
and Piggott (2022),
Anagnostopoulos 
et al. (2023)

Li et al. (2022a)

Lejeune et al. 
(2022)

Zhang and Zhao 
(2022)

Luo et al. (2022)

Yang et al. (2022)

Pawar et al. (2022)

Purohit et al. 
(2022)

Yang et al. (2023b)

Nakhchi (2023)

Li et al. (2023)

Yang et al. 
(2023a)

Romero et al. 
(2024)

Li et al. (2024b)

Training data

RANS/ADM

LES/ASM

AWMs: Gaussian 
model and cur model

LES/ALM

LES/BEM

LES/ALM

LES/ADM

LES/ALM

AWMs: Gaussian 
model and cur model

RANS/BEM

RANS/ALM

ALM/LES

RANS/ADM

RANS/ADM

RANS/ADM

RANS/ADM & 
AWMs

NN structure

MLP

Autoencoder CNN

CNN

BiCNN

MLP

Deep Convolutional 
Conditional Generative 
Adversarial Network 
(DC-CGAN)

MLP

MLP

MLP

SVR, XGBoost, MLP

MLP

XGBoost, MLP

GNN

MLP

Deep convolutional 
hierarchical encoder-
decoder neural network

Transformer-mixed 
conditional GAN

Input

Inflow wind velocity; 
turbulence intensity (TI) at 
the hub height

Five snapshots of the 
instantaneous velocity field.

Wind velocity, TI, and yaw 
angle

Historical flow fields and 
inflow velocity

Turbine loads and operating 
settings

Inflow wind profiles and yaw 
angle

Inflow velocity

Inflow hub-height velocity, 
TI, and yaw angle

Inflow wind speed, TI, and 
yaw angle

Inflow wind speed, thrust, 
turbulence intensity, and 
spatial coordinates

Hub-height wind speed and 
turbulence intensity

Inflow, yaw angle, TI, and CP

Inlet velocity, TI, yaw angle

Inlet velocity, TI

2D top-view of turbine 
locations,
undisturbed (free stream) 
wind velocity

Inflow velocity, turbulence, 
and yaw angle

Output

Velocity deficit; 
added TKE

3D time-averaged 
velocity fields

Wake velocity

Future flow field

Transverse 
velocity 
component

Streamwise and 
spanwise velocity 
fields

Wake velocity

Velocity deficit; 
TI

Wake velocity

Wake velocity, TI

Wake velocity, TI

Wake velocity

Wake velocity

Wake velocity, TI

Wake velocity

Wake velocity, TI

Training technique

Sub-model training

Transfer learning

Wind-multiplier 
method

Sub-model training

Sub-model training

Pretraining-
finetuning
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However, in this work (Guo et al., 2022a), the authors 
further fed the neural networks with a power sequence pre‐
dicted by a physical model, using AWMs combined with 
wind turbine power curves. The new mapping relation can 
then be formulated as:

NN (U t, P t
model, U

t + 1, P t + 1
model, …, U t + 24, P t + 24

model ) =

P t
real, P

t + 1
real , …, P t + 24

real

(12)

In which the P t
model was calculated using AWMs based 

on U t and dir t. By doing this, the physical information of 
the power sequence is incorporated into the NNs, and the 
model variables can be adjusted with the guidance of this 
physical knowledge during the training process. Studies 
that adopted the same framework are summarized in the 
following table.

3.4.2 Physics-informed NNs (PINNs)
Instead of incorporating physical knowledge by adding 

lower-fidelity models to the input features, as in PGNNs, 
physical knowledge or constraints can be applied to an 
ANN model by modifying the loss function. Specifically, 
in addition to the label loss, which represents the differ‐
ence between the NN prediction and the true label, a physi‐
cal loss can be added to the total loss. This physical loss 
compares the true governing equations of the physical pro‐
cess with the NN-reconstructed governing equations. There‐
fore, the total loss of the NN can be written as:

Loss = Losslabel + Lossphysics (13)

Therefore, with the backpropagation of the loss func‐
tion, a trained PINN can not only represent the mapping 
relation between the input features and output labels but 
also serve as an NN surrogate for the underlying physics. 
As a result, the likelihood of overfitting in the trained NN 
model is greatly reduced, while its generalization perfor‐
mance is significantly enhanced (Raissi and Karniadakis, 
2018; Raissi et al., 2019).

It is also worth mentioning that the construction of the 
physical loss, often referred to as PDE loss, requires per‐
forming differential operations on the NN predictions. This, 
however, can be easily accomplished by leveraging the 
automatic differentiation (AD) functionality available in 
deep learning frameworks such as TensorFlow, PyTorch, 
and PaddlePaddle. In general, in the field of wind turbine 

wake reconstruction, the process of constructing the total 
loss can be described as follows:

1) Establish an ANN model with input variables ( x, y,  

)z, t  and output variables ( )U, V, W, p ;
2) Perform forward propagation through the NN;
3) Calculate the label loss by directly comparing the pre‐

dicted and actual values of ( )U, V, W, p ;
4) Calculate the first and second derivatives of (U, V,  

)W, p  with respect to ( )x, y, z, t  using AD;
5) Combine the derivatives to form the governing PDE, 

i.e., the N‒S equations;
6) Move all terms of the governing equations to one 

side, with the residuals representing the physical losses;
7) Combine the label loss and the physical loss to obtain 

the total loss.
A schematic representation of this procedure is illustrated 

in Figure 9.
According to the previous discussion of PINNs, readers 

may wonder whether an NN model can be trained using 
only physical losses at randomly sampled points within the 
domain of interest. The answer is yes, which leads to the 
framework of solving a PDE using PINNs. However, the 
details of this approach are beyond the scope of this review, 
and readers are encouraged to refer to Ref (Raissi et al., 
2019). In theory, for wind turbine wake prediction tasks, 
training NNs without label losses is also possible. However, 
based on the authors’ experience, owing to the complexity 
of wind turbine flow, label loss is essential—at least to 
expedite the training process. Further research is needed to 
validate this assertion.

Zhang and Zhao (2021) trained a PINN model using data 
collected from LiDAR measurements. The data points were 
sparsely distributed on a horizontal plane in the wind field, 
and the two-dimensional N‒S equations were employed to 
construct the physical loss in the PINN. The accuracy of 
the trained PINN model was then evaluated by comparing 
the NN-predicted wind field with LES simulations, with 
good agreement reported. A similar study was conducted 
by Wang et al. (2024), focusing on the wake trajectory under 
wind turbine yaw conditions. Subsequently, three-dimen‐
sional N‒S equations and the effect of wind turbines were 
incorporated into the physical loss to further enhance the 
model accuracy and performance within the same frame‐
work (Zhang and Zhao, 2023). In that work, the influence 
of the wind turbine blades on the surrounding airflow was 

Table 2　Summary of studies within the framework of PGNNs

Literature

Li et al. (2022b)

Li et al. (2024a)

Zehtabiyan-Rezaie et al. 
(2023)

Santoni et al. (2024)

Input

Wake field generated by AWM

Incoming wind velocity and turbulent fluctuation field

Incoming wind velocity, block ratio, and efficiency of 
wind turbines derived from analytical wake models

Wake field generated by AWM

NN structure

CNN

CNN

XGBoost

CNN

Output

Wake field generated by LES+ALM

Wake field generated by LES+ADM

Efficiency of turbines calculated by 
RANS+ADM

Wake field generated by LES+ASM
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modeled using the ADM, and an additional body force 
term was added to the physical loss. As a result, the 
trained PINN model could predict the wake field at the 
hub height of multiple wind turbines with reasonable accu‐
racy. Sun et al. (2024) trained a PINN model to reconstruct 
the three-dimensional wake field behind a wind turbine. 

The training dataset was generated by LES/ALM simula‐
tions, and the three-dimensional N‒S equations were used 
to derive the physical loss. During the training stage, only 
data from sparse spatial locations were fed into the model. 
The predicted wake field, obtained using the trained model, 
was compared with the results from MLP and LSTM mod‐
els, revealing that the incorporation of the physical loss 
significantly enhanced the model accuracy. An illustration 
of this framework applied to wind turbine wake predic‐
tions is illustrated in Figure 10.

Although using the precise PDEs that govern the physi‐
cal process is common practice under the framework of 
PINNs, the use of simplified equations is also possible. 
Zhou et al. (2022) designed a PINN model that incorporated 
AWMs in the construction of the physical loss. Although 
the authors referred to their model as “physics-guided”, in 
this review it will still be considered “physics-informed”, 
as the physical knowledge was introduced into the NNs by 
modifying its loss function. The study found that using 
AWMs also allowed the NN to regulate the optimization 
direction (Zhou et al., 2022). An illustration of this type of 
PINN model is illustrated in Figure 11.

Figure 9　Schematic of loss construction in PINNs
Note that B.C. represents the boundary condition, and I.C. represents 
the initial condition.

Figure 10　Application of PINNs in the wind turbine wake reconstructions using governing PDEs as physical constraints

Figure 11　Application of PINNs in wind turbine wake reconstruction using AWMs as physical constraints
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4  Prospects

The adoption of data-driven approaches has opened new 
technical pathways for wind turbine wake modeling. While 
researchers have achieved promising results using various 
machine learning frameworks, several key issues that directly 
impact the applicability of data-driven models remain 
unsolved, or at least insufficiently discussed, and thus 
require further investigation. Some of these issues are 
identified and summarized below:

1) Prediction of three-dimensional wind turbine wake: 
Most existing studies have focused on two-dimensional 
wake prediction at the turbine hub height. However, with 
the increasing blade length of wind turbines, three-dimen‐
sional effects resulting from large turbulence structures in 
the ABL are becoming increasingly important. Therefore, 
adopting three-dimensional wake models is crucial for 
accurately predicting the wake field of single or multiple 
wind turbines. Predicting a three-dimensional fluid field, 
however, remains an extremely challenging task for data-
driven approaches. Although some studies (Liu et al., 2020; 
Kim et al., 2021; Pawar et al., 2022) have shown promis‐
ing results for predicting three-dimensional flows, these are 
limited to simple flow scenarios. When it comes to the three-
dimensional wake fields of wind turbines, the presence of 
rotating tip helical vortices and the interactions among var‐
ious flow scales (Veers et al., 2019) make this task highly 
challenging. Therefore, more research efforts are needed 
to improve the prediction of three-dimensional wind tur‐
bine wakes using data-driven approaches.

2) NN-based wake superposition models. Most existing 
data-driven wind turbine wake models have been trained 
on datasets from a single wind turbine wake, with the wake 
field of multiple wind turbines then obtained by combin‐
ing the single turbine model with analytical wake super‐
position models (AWSMs), such as linear superposition, 
root-sum-square superposition, and largest deficit superpo‐
sition (Vogel and Willden, 2020). However, the applica‐
bility and accuracy of these AWSMs are heavily dependent 
on their underlying assumptions, and their performance 
can be enhanced by integrating data-driven approaches. For 
example, GNNs are well known for their ability to repre‐
sent graph data. This capability can be effectively applied 
to wake superposition problems by training a GNN model 
that takes the relative locations of different wind turbines 
as one of the input features and outputs the complete 
wake field. Furthermore, developing NN-based superpo‐
sition models for three-dimensional wind turbine wakes 
could be the next step, building on the two-dimensional 
AWSMs, though the complexity of this task could be sig‐
nificantly higher.

3) Uncertainty quantification. Another major issue that 
affects the overall reliability of a trained data-driven model 
is the uncertainty in its predictions. As mentioned at the 

beginning of this review, the accuracy of a trained data-
driven model is influenced by at least two factors: the qual‐
ity of the data and the performance of the model. While 
uncertainties in the data, such as those generated by CFD 
simulations, can be readily assessed in wake studies (Bur‐
mester et al., 2020; Ye et al., 2023a, 2023b), and the uncer‐
tainties in NN models can be partially quantified (e.g., by 
adopting a Bayesian NN structure) (Arbel et al., 2023), no 
existing framework effectively integrates these two sources 
of uncertainty. Therefore, further research is needed to 
address this issue and enhance the overall credibility of 
data-driven wind turbine wake models.

5  Conclusions

In this paper, existing studies on data-driven modeling 
of wind turbine wakes were comprehensively reviewed. 
After a brief introduction to the fundamental machine 
learning concepts, the reviewed works were classified into 
four categories: data-driven analytical wake models, wind 
turbine power prediction, wake field reconstruction, and 
incorporation of physical knowledge. For each of the cate‐
gories, it can be summarized as follows:

• Data-driven analytical wake models: the goal of this 
category is to obtain explicit mathematical wake models;

• Wind turbine power prediction: two sub-categories are 
further identified in the current paper, i.e. “pure TSA” and 
“correlation TSA”. For “pure TSA”, it predicts the power 
generation of wind turbines using historical power sequences, 
while for “correlation TSA”, the goal is to predict the power 
generation of wind turbines using historical sequences of 
multiple correlated variables;

• Wake field reconstruction: two sub-categories are iden‐
tified are further identified, i. e. “ROM-based methods” 
and “direct wake reconstruction”. The “ROM-based meth‐
ods” aim to reconstruct the full wake field using lower-
order representations of the initial flow field. The initial 
spatial-temporal prediction task is decoupled, so only the 
time-dependent variables need to be modeled, while the 
“direct wake reconstruction” attempt to establish the map‐
ping relation between the spatial-temporal coordinates and 
the corresponding flow quantities is established directly 
using a data-driven model, such as MLP, CNN, and RF;

• Incorporation of physical knowledge: two sub-catego‐
ries are identified are further identified, i.e. “Physics-guided 
NN” and “Physics-informed NN”. For physics-guided NNs, 
data generated by lower-fidelity models are fed into ANNs 
as input features to guide the optimization of the model, 
while for physics-informed NNs, physical constraints, i.e., 
the governing PDEs, are reconstructed, and their residuals 
are added to the loss functions to regulate the optimization 
of NNs.
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