|Table of Contents|

Citation:
 Li Sun,Yingcai Huang,Xiaoping Huang.An Improved Unique Fatigue Crack Growth Rate Curve Model and Determination of the Model Shape Exponents[J].Journal of Marine Science and Application,2022,(4):104-115.[doi:10.1007/s11804-022-00305-7]
Click and Copy

An Improved Unique Fatigue Crack Growth Rate Curve Model and Determination of the Model Shape Exponents

Info

Title:
An Improved Unique Fatigue Crack Growth Rate Curve Model and Determination of the Model Shape Exponents
Author(s):
Li Sun1 Yingcai Huang2 Xiaoping Huang1
Affilations:
Author(s):
Li Sun1 Yingcai Huang2 Xiaoping Huang1
1 State Key Lab of Ocean Engineering, Shanghai JiaoTong University, Shanghai, 200240, China;
2 Shanghai Waigaoqiao Shipbuilding Co., LTD., Shanghai 200137, China
Keywords:
Near-threshold regime|Crack growth rate|Stress ratio|Improved unique curve model|Shape exponents
分类号:
-
DOI:
10.1007/s11804-022-00305-7
Abstract:
It is essential to precisely predict the crack growth, especially the near-threshold regime crack growth under different stress ratios, for most engineering structures consume their fatigue lives in this regime under random loading. In this paper, an improved unique curve model is proposed based on the unique curve model, and the determination of the shape exponents of this model is provided. The crack growth rate curves of some materials taken from the literature are evaluated using the improved model, and the results indicate that the improved model can accurately predict the crack growth rate in the near-threshold and Paris regimes. The improved unique curve model can solve the problems about the shape exponents determination and weak ability around the near-threshold regime meet in the unique curve model. In addition, the shape exponents in the improved model at negative stress ratios are discussed, which can directly adopt that in the unique curve model.

References:

Askar MB, Havigh SN (2017) The Process of Fatigue Analysis on Fixed Metal Offshore Platforms.Mar Sci 7(1):10-16
Barter SA, Molent L (2013) Service fatigue cracking in an aircraft bulkhead exposed to a corrosive environment.Eng Fail Anal 34:181-188.https://doi.org/10.1016/j.engfailanal.2013.07.036
BS7910 (2015) Guide to methods for assessing the acceptability of flaws in metallic structures.BSI Stand Publ 3(1)
Bulloch JH (1995) Near threshold fatigue crack propagation behaviour of CrMoV turbine steel.Theor Appl Fract Mech 23(1):89-101.https://doi.org/10.1016/0167-8442(95)00007-2
Ding J, Hall R, Byrne J (2005) Effects of stress ratio and temperature on fatigue crack growth in a Ti-6Al-4V alloy.In:International Journal of Fatigue.pp 1551-1558
Du YN, Zhu ML, Xuan FZ (2015) Transitional behavior of fatigue crack growth in welded joint of 25Cr2Ni2MoV steel.Eng Fract Mech 144:1-15.https://doi.org/10.1016/j.engfracmech.2015.06.065
Elber W (1970) Fatigue crack closure under cyclic tension.Eng Fract Mech 2(1):37-44.https://doi.org/10.1016/0013-7944(70)90028-7
Forman RG, Kearney VE, Engle RM (1967) Numerical analysis of crack propagation in cyclic-loaded structures.J Fluids Eng Trans ASME 89(3):459-463.https://doi.org/10.1115/1.3609637
Guo X, Zhao L, Liu X, Lu F (2019) Investigation on the resistance to fatigue crack growth for weld metals with different Ti addition in near-threshold regime.Int J Fatigue 120:1-11.https://doi.org/10.1016/j.ijfatigue.2018.10.018
Haghani R, Al-Emrani M, Heshmati M (2012) Fatigue-prone details in steel bridges.Buildings 2(4):456-476.https://doi.org/10.3390/buildings2040456
Hobbacher A (2016) Recommendations for fatigue design of welded joints and components.International Institute of Welding
Huang X, Moan T (2007) Improved modeling of the effect of R-ratio on crack growth rate.Int J Fatigue 29(4):591-602.https://doi.org/10.1016/j.ijfatigue.2006.07.014
Huang X, Moan T, Cui W (2009) A unique crack growth rate curve method for fatigue life prediction of steel structures.Ships Offshore Struct 4(2):165-173.https://doi.org/10.1080/17445300902732370
Huang X, Torgeir M, Cui W (2008) An engineering model of fatigue crack growth under variable amplitude loading.Int J Fatigue 30(1):2-10.https://doi.org/10.1016/j.ijfatigue.2007.03.004
Kucharczyk P, Madia M, Zerbst U, Schork B, Gerwien P, Münstermann S (2018) Fracture-mechanics based prediction of the fatigue strength of weldments.Material aspects.Eng Fract Mech 198:79-102.https://doi.org/10.1016/j.engfracmech.2017.09.010
Kujawski D (2001a) Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys.Int J Fatigue 23(2):95-102.https://doi.org/10.1016/S0142-1123(00)00085-2
Kujawski D (2001b) A fatigue crack driving force parameter with load ratio effects.Int J Fatigue 23(SUPPL.1).https://doi.org/10.1016/s0142-1123(01)00158-x
Kujawski D (2001c) A new (ΔK+Kmax)0.5 driving force parameter for crack growth in aluminum alloys.Int J Fatigue 23(8):733-740.https://doi.org/10.1016/S0142-1123(01)00023-8
Kumar A, Singh SB, Ray KK (2013) Fatigue crack growth behaviour of ferrite-bainite dual phase steels.Mater Sci Technol (United Kingdom) 29(12):1507-1512.https://doi.org/10.1179/174328408X282083
Li HF, Yang SP, Zhang P, Liu YQ, Wang B, Zhang ZF (2022) Materialindependent stress ratio effect on the fatigue crack growth behavior.Eng Fract Mech 259.https://doi.org/10.1016/j.engfracmech.2021.108116
Li S, Rui SS, Li K, Hu M, Zhang X, Li X, Cai Z, Pan J (2021) A modification to the two driving forces model for fatigue threshold prediction.Int J Fatigue 149.https://doi.org/10.1016/j.ijfatigue.2021.106259
Maierhofer J, Gänser HP, Simunek D, Leitner M, Pippan R, Luke M (2020) Fatigue crack growth model including load sequence effects-Model development and calibration for railway axle steels.Int J Fatigue 132.https://doi.org/10.1016/j.ijfatigue.2019.105377
Mao W, Li Z, Ringsberg JW, Rychlik I (2012) Application of a shiprouting fatigue model to case studies of 2800 TEU and 4400 TEU container vessels.Proc Inst Mech Eng Part M J Eng Marit Environ 226(3):222-234.https://doi.org/10.1177/1475090212436606
Newman JC, Anagnostou EL, Rusk D (2014) Fatigue and crack-growth analyses on 7075-T651 aluminum alloy coupons under constantand variable-amplitude loading.Int J Fatigue 62:133-143.https://doi.org/10.1016/j.ijfatigue.2013.04.020
Newman JC, Phillips EP, Everett R a (1999) Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory.Technology
Paris P, Erdogan F (1963) A critical analysis of crack propagation laws.J Fluids Eng Trans ASME 85(4):528-533.https://doi.org/10.1115/1.3656900
Paris PC, Tada H (2002) Near threshold fatigue crack growth versus long finite life.Fatigue Fract Eng Mater Struct 25(8-9):727-733.https://doi.org/10.1046/j.1460-2695.2002.00560.x
Paris PC, Tada H, Donald JK (1999) Service load fatigue damage-A historical perspective.Int.J.Fatigue 21
Pippan R, Hohenwarter A (2017) Fatigue crack closure:a review of the physical phenomena.Fatigue Fract.Eng.Mater.Struct.40:471-495
Ritchie RO (1979) Near-threshold fatigue-crack propagation in steels.Int Met Rev 24(1):205-228.https://doi.org/10.1179/imtr.1979.24.1.205
Ritchie RO (1977) Near-threshold fatigue crack propagation in ultrahigh strength steel:Influence of load ratio and cyclic strength.J Eng Mater Technol Trans ASME 99(3):195-204.https://doi.org/10.1115/1.3443519
Sadananda K VAK (1995) Fracture Mechanics:25th Volume.ASTM International
Skorupa M, Machniewicz T, Skorupa A (2007) Applicability of the ASTM compliance offset method to determine crack closure levels for structural steel.Int J Fatigue 29(8):1434-1451.https://doi.org/10.1016/j.ijfatigue.2006.11.004
Steinbock J, Gudladt HJ (2011) More insights into fatigue crack growth from experiments on steels and aluminium alloys-Thresholds.Mater Sci Eng A 528(3):1296-1301.https://doi.org/10.1016/j.msea.2010.10.005
Sun Q, Li K, Li X, Rui SS, Cai Z, Pan J (2020) Near-threshold fatigue crack growth behavior of 10% Cr martensitic steel welded joint with 9% Cr weld metal in high temperature air.Int J Fatigue 137.https://doi.org/10.1016/j.ijfatigue.2020.105650
Tazoe K, Tanaka H, Oka M, Yagawa G (2020) Near-threshold fatigue crack propagation without oxide-induced crack closure.Sci Rep 10(1).https://doi.org/10.1038/s41598-020-64915-3
Walker K (1970) The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum, Effects of Environment and Complex Load History on Fatigue Life.ASTM STP 462, Am Soc Test Mater:1-14
Zhan W, Lu N, Zhang C (2014) A new approximate model for the R-ratio effect on fatigue crack growth rate.Eng Fract Mech 119:85-96.https://doi.org/10.1016/j.engfracmech.2014.02.010
Zhang P, Xie L qi, Zhou C yu, He X hua (2020) Experimental and numerical investigation on fatigue crack growth behavior of commercial pure titanium under I-II mixed mode loading at negative load ratios.Int J Fatigue 138.https://doi.org/10.1016/j.ijfatigue.2020.105700
Zhang P, Xie L qi, Zhou C yu, Li J, He X hua (2019) Two new models of fatigue crack growth rate based on driving force parameter and crack closure method at negative load ratios.Theor Appl Fract Mech 103.https://doi.org/10.1016/j.tafmec.2019.102315
Zhu ML, Xuan FZ, Tu ST (2015) Effect of load ratio on fatigue crack growth in the near-threshold regime:A literature review, and a combined crack closure and driving force approach.Eng Fract Mech 141:57-77.https://doi.org/10.1016/j.engfracmech.2015.05.005
Zhuang B Bin, Du YN, Weng S, Zhu ML, Xuan FZ (2022) On the significance of transition behavior in fatigue crack growth.Eng Fract Mech 262.https://doi.org/10.1016/j.engfracmech.2022.108271

Memo

Memo:
Received date:2022-05-30;Accepted date:2022-09-15。
Corresponding author:Xiaoping Huang,E-mail:xphuang@sjtu.edu.cn
Last Update: 2023-01-05