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Abstract
It is essential to precisely predict the crack growth, especially the near-threshold regime crack growth under different stress
ratios, for most engineering structures consume their fatigue lives in this regime under random loading. In this paper, an
improved unique curve model is proposed based on the unique curve model, and the determination of the shape exponents
of this model is provided. The crack growth rate curves of some materials taken from the literature are evaluated using the
improved model, and the results indicate that the improved model can accurately predict the crack growth rate in the near-
threshold and Paris regimes. The improved unique curve model can solve the problems about the shape exponents
determination and weak ability around the near-threshold regime meet in the unique curve model. In addition, the shape
exponents in the improved model at negative stress ratios are discussed, which can directly adopt that in the unique curve
model.

Keywords Near-threshold regime; Crack growth rate; Stress ratio; Improved unique curve model; Shape exponents

1 Introduction

Metal structures, such as ships, offshore structures, air‐
craft, and bridges, will inevitably introduce initial defects
during construction, those defects will grow into cracks un‐
der alternating loads, which may induce fatigue crack growth
(FCG) in structures (Haghani et al., 2012; Mao et al., 2012;
Barter and Molent, 2013; Askar and Havigh, 2017). Figure 1
shows typical pictures of the FCG phenomenon of those
metal structures. There are three stages in the FCG process:

the near-threshold regime, the stable crack growth regime
also known as the “Paris regime” and the unstable crack
growth regime (Ritchie, 1979). The unstable crack growth
regime takes the least time in the FCG than other regimes,
and if the FCG is in this regime, the structure will fail
quickly (Forman et al., 1967). However, the crack growth
around the near-threshold regime plays an important role
in the FCG life prediction of structures for their lives are
mainly consumed in the crack initiation and near-thresh-
old stages (Ritchie, 1979; Ding et al., 2005; Sun et al., 2020).
Hence, it is of great significance to accurately predict the
FCG in the near-threshold and Paris regimes for the design
and assessment of the FCG lives of structures.

There are many FCG models that have been presented
for the FCG life prediction of metal structures. The most
famous is the Paris model (Paris and Erdogan, 1963),
which first establishes the relationship between the FCG
rate and stress intensity factor (SIF) range. But the effect
of stress ratio R on the FCG has been unconsidered in the
Paris model, then the concept of crack closure is proposed
by Elber (Elber, 1970) to explain the R–effect on the FCG.
With the development of research on the crack closure,
Sadananda (Sadananda, 1995) and Paris et al. (Paris and
Tada, 2002) found that the effect of crack closure on the to‐
tal fatigue damage was overestimated, which just on the
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part of the crack tip. On the basis of this background,
many researchers proposed the partial crack closure model
(Kujawski, 2001a; Paris and Tada, 2002). Due to the crack
closure is caused by many factors (Pippan and Hohenwart‐
er, 2017), the theory of crack closure is imperfect, and the
measurement of crack closure is difficult (Skorupa et al.,
2007; Zhang et al., 2020), many researchers try to bypass
the phenomenon of crack closure to explain the R–effect
on the FCG. The two-parameter driving forces model
(Walker, 1970; Kujawski, 2001b; Kujawski, 2001c; Zhan
et al., 2014; Li et al., 2022) is one of the widely used meth‐
ods; however, it is mainly suitable for the two-parameter
driving forces model to analyze the FCG in the Paris re‐
gime. Many research shows that the FCG in the near-
threshold regime is related to microstructures (Kumar et
al., 2013; Guo et al., 2019), stress ratio (Ritchie, 1977; Zhu
et al., 2015), loading frequency (Tazoe et al., 2020), etc.,
the applicability of the proposed two-parameter driving
forces model to FCG in the near-threshold regime remains
to be discussed.

The author has proposed the unique curve model based
on the two-parameter driving forces to consider the R-effect
on the FCG (Huang and Moan, 2007; Huang et al., 2008).
A large number of studies show that the unique curve mod‐
el is suitable for the FCG in the Paris regime. In order to
accurately predict the FCG in the near-threshold regime,
Huang et al. (2009) proposed a relationship between the
shape exponent at positive stress ratios and the SIF range.
However, the applicability of this formula is limited and
the determination of this formula is unclear, so it is neces‐
sary to provide a simple FCG model for the FCG predic‐
tion in the near-threshold and Paris regimes.

On the basis of the unique curve model proposed by
Huang et al., the determination of the shape exponents in

this model was given in this paper. It is difficult for the
unique curve model to accurately predict the crack growth
in the near-threshold regime. An improved unique curve
model was presented to solve this problem, and the deduc‐
tion of this model and the determination of the shape expo‐
nents in the present model were given. The FCG data of
different materials obtained from the literature was ana‐
lyzed to verify the proposed model. The shape exponents in
the improved model at the negative stress ratios also were
discussed in detail.

2 Fatigue crack growth model

2.1 The Paris model

The most prestigious and widely used FCG model is the
Paris model, which has been accepted in many standards
(BS7910, 2015; Hobbacher, 2016). The main idea of this
model is that the relationship between the FCG rate in Par‐
is regime and SIF range is linear in double logarithmic co‐
ordinates. It is expressed as:

da
dN

= C (ΔK )m
(1)

where C and m are material parameters at different stress
ratios.

A log-log plot of FCG rate versus SIF range at different
stress ratios is shown in Figure 2. It can be found from this
figure that stress ratios have significant inference on the
FCG in three regimes, the material parameter C at differ‐
ent stress ratios is disparate. Metal structures are subjected
to alternating loads corresponding to different stress ratios
during operation, if the Paris model is taken to accurately
predict the FCG life of structures, C and m at different
stress ratios will be required, which may be unrealistic for
the engineering application.

Figure 1 FCG phenomenon of metal structures

Figure 2 Crack growth rate curves at different stress ratios (Huang
et al. 2009)
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2.2 The unique curve model

To analyze the effect of stress ratio on the FCG, Huang
et al. (Huang and Moan, 2007; Huang et al., 2008) pro‐
posed the unique curve model based on the models pro‐
posed by Walker (Walker, 1970) and Kujiawski (Kujawski,
2001b; Kujawski, 2001c). The main idea of this model is
that the FCG rate curves at different stress ratios are equiv‐
alent to that corresponding to R = 0 by using equivalent SIF
range as the driving force. So only the material parameters
C, m, and ΔK th0 corresponding to R = 0 are required for the
assessment of FCG life of structures. The formula of the
unique curve model is listed below:

da
dN

= C é
ë
êêêê(ΔKeq0 )m − (ΔK th0 )mù

û
úúúú (2)

ΔKeq0 = MRΔKR (3)

MR =

ì

í

î

ï
ïï
ï

ï
ïï
ï

( )1 − R
−β1 ( )R < 0

( )1 − R
−β ( )0 ≤ R < 0.5

( )1.05 − 1.4R + 0.6R2 −β ( )0.5 ≤ R < 1

(4)

where C and m are Paris parameters corresponding to R = 0,

ΔKeq0 is the equivalent SIF range corresponding to R = 0,
ΔK th0 is the threshold of SIF range corresponding to R = 0,
MR is the correction factor of stress ratio, β and β1are sharp
exponents depending on the material property and environ‐
ment. If MR = 1, the unique curve model will degenerate
into the Paris model.

Many experimental results show that the log-log plots
of the FCG rate versus SIF range in the Paris regime at dif‐
ferent stress ratios are approximatively parallel with each
other; that is, C is related to stress ratio whereas m keeps
fixed in the Paris regime, as shown in Figure 2. If the FCG
rates at different stress ratios are the same, the equivalent
SIF ranges corresponding to different stress ratios should
meet the following relationship.

MR1
ΔKR1

= MR2
ΔKR2

= ΔKeq0 (5)

The shape exponents in MR at the fixed stress ratio in
Paris regime are independent of FCG rate, so at any FCG
rate in Paris regime, the formulas of shape exponents β
and β1 can be obtained as follows:

β1 = log ( )ΔKR1

ΔKR2

log ( )1 − R1

1 − R2

R1, R2 ≤ 0 (6)

β =

ì

í

î

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

log ( )ΔKR1

ΔKR2

log ( )1 − R1

1 − R2

0 ≤ R1, R2 < 0.5

log ( )ΔKR1

ΔKR2

log ( )1.05 − 1.4R1 + 0.6R2
1

1.05 − 1.4R2 + 0.6R2
2

0.5 ≤ R1, R2 < 1

log ( )ΔKR1

ΔKR2

log ( )1 − R1

1.05 − 1.4R2 + 0.6R2
2

0 ≤ R1 < 0.5, 0.5 ≤ R2 < 1

(7)

A log-log plot of the SIF range versus 1-R at negative
stress ratios is built, and the slope of the curve is the shape
exponent β1. A log-log plot of the SIF range versus 1-R or
1.05−1.4R+0.6R2 at positive stress ratios is built, the slope
of this curve is the shape exponent β.

3 The improved unique curve model

3.1 Model deduction

As shown in Figure 2, the log-log plots of the FCG rate
versus SIF range in the near-threshold regime at different
stress ratios are not parallel with each other. The research
shows that the shape exponent β at positive stress ratios de‐
creases with the increase of the SIF range in the near-thresh‐
old regime and keeps constant in the Paris regime (Huang et
al., 2009). The FCG rates of CrNiMoV (Guo et al., 2019) at
R = 0.1−0.9 are taken as an example; Figure 3(a) is the origi‐

nal experimental data, and Figure 3(b) is the processed data
based on the unique curve model, where the shape exponent
in this model is β = 0.5 (Huang and Moan, 2007). It is inter‐
esting to note that the processed data at different stress ra‐
tios based on the unique curve model can collapse into a
single curve corresponding to R = 0 in the Paris regime. In
contrast, the unique curve model has a poor ability to pre‐
dict the FCG in the near-threshold regime. The near-thresh‐
old FCG rate data at R = 0.5 and 0.9 below ΔK th0 are ne‐
glected in the unique curve model, which is precarious for
the design and assessment of the FCG in metal structures,
so the improved unique model is presented in this paper to
better predict the FCG in the near-threshold regime.

Firstly, the thresholds of SIF range at different stress ra‐
tios are equivalent to ΔK th0, and then the FCG rate can be
expressed as follows:

( da
dN )

R

= C′R(MR, th ⋅ ΔK )m
(8)
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Then, Eq. (8) is translated to Eq. (9) in double logarith‐
mic coordinates,

log
é

ë

ê
êê
ê( da

dN )
R

ù

û

ú
úú
ú = log C′R + m log (MR, th ⋅ ΔK ) (9)

Finally, the log-log plots of the FCG rate versus equiva‐
lent near-threshold SIF range in the Paris regime at differ‐

ent stress ratios are approximatively parallel with each other,
m is independent of stress ratio, so the FCG rate curves in
the Paris regime at different stress ratios can be equivalent to
the FCG rate curve corresponding to R = 0 by Eq. (10).

log
é

ë

ê
êê
ê( da

dN )
R

ù

û

ú
úú
ú = log ( 1

AR

C0) + m0 log (MR, th ⋅ ΔK ) (10)

( da
dN )

R = 0

= AR( da
dN )

R

(11)

Therefore, the improved unique curve model can be giv‐
en as below:

( da
dN )

R

=
1
AR

C0
é
ë
êêêê(MR, th ⋅ ΔK )m0 − (ΔK th0 )m0ù

û
úúúú (12)

AR =

ì

í

î

ï
ïï
ï

ï
ïï
ï

( )1 − R
−γ1 ( )R < 0

( )1 − R
−γ ( )0 ≤ R < 0.5

( )1.05 − 1.4R + 0.6R2 −γ ( )0.5 ≤ R < 1

(13)

MR, th =

ì

í

î

ï
ïï
ï

ï
ïï
ï

( )1 − R
−β1, th ( )R < 0

( )1 − R
−βth ( )0 ≤ R < 0.5

( )1.05 − 1.4R + 0.6R2 −βth ( )0.5 ≤ R < 1

(14)

where AR is the correction factor of FCG rate considering
stress ratio, MR, th is the correction factor of the threshold of
SIF range considering stress ratio, γ, γ1are shape exponents
in AR , respectively, βth, β1, th are shape exponents in MR, th, re‐
spectively.

As shown in the dotted line in Figure 2, there is a transi‐
tion point from the near-threshold regime to the Paris re‐
gime at a stress ratio, which is related to stress ratio and
characteristic size of microstructures (Du et al., 2015;
Zhuang et al., 2022). With the increase of stress ratio, the
SIF range and FCG rate corresponding to the transition point
will decrease. After the FCG rate curves were analyzed by
the improved unique curve model, the transition points at
different stress ratios can be equivalent to that correspond‐
ing to R = 0 in a narrow band. In addition, although the FCG
rate curves in the Paris regime at different stress ratios are
condensed to that corresponding to R = 0 by Equations (10)
and (11), this method will have a weak influence on the
FCG rate in the near-threshold regime as the FCG rate in
the near-threshold regime increases dramatically with the
slight increase of the SIF range.

The processed FCG data of CrNiMoV at different stress
ratios based on the improved unique curve model are shown
in Figure 3(c). It can be found that the transition points of
CrNiMoV at different stress ratios are condensed to that
corresponding to R = 0, and the FCG rate curves at differ‐
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(a) Original experimental data (Guo et al., 2019)

(b) The unique curve model

(c) Present model

Figure 3 Fatigue crack growth rate of CrNiMoV
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ent stress ratios in the near-threshold and Paris regimes are
condensed to that corresponding to R = 0. The result indi‐
cates that the improved unique curve model has an excel‐
lent ability to predict the FCG in the near-threshold and
Paris regimes at different stress ratios.

3.2 Determination of the shape exponents

The relationship between the threshold of SIF range at
different stress ratios and the threshold of SIF range corre‐

sponding to R = 0 is given as follows (Huang et al. 2009):

ΔK th0 = MR, thΔK th (15)

Then according to Eqs. (6) and (7), the shape exponents
βth, β1, th in MR, th can be drawn as follows:

β1, th = log ( )ΔK th, R1

ΔK th, R2

log ( )1 − R1

1 − R2

R1, R2 ≤ 0 (16)

βth =
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í

î
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ï

ï
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ï

ï

ï
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ï

ï

ï

ï
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ï

ï

ï

ï

log ( )ΔK th, R1

ΔK th, R2

log ( )1 − R1

1 − R2

0 ≤ R1, R2 < 0.5

log ( )ΔK th, R1

ΔK th, R2

log ( )1.05 − 1.4R1 + 0.6R2
1

1.05 − 1.4R2 + 0.6R2
2

0.5 ≤ R1, R2 < 1

log ( )ΔK th, R1

ΔK th, R2

log ( )1 − R1

1.05 − 1.4R2 + 0.6R2
2

0 ≤ R1 < 0.5, 0.5 ≤ R2 < 1

(17)

where ΔK th, R1
and ΔK th, R2

are thresholds of SIF range corre‐

sponding to R = R1 and R = R2, respectively.
The determination of shape exponents γ, γ1 in AR is simi‐

lar to the determination of shape exponents βth, β1, th by re‐
placing the thresholds of SIF range in Eqs. (16) and (17)
with the crack growth rate. The shape exponents γ, γ1in AR

are expressed as follows:

γ1 = log
é
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(19)

After the thresholds of SIF range at different stress ra‐
tios are equivalent to ΔK th0, as the shape exponents in AR

are independent of the equivalent threshold SIF range
MR, th ⋅ ΔK, the FCG rates at different stress ratios correspond‐
ing to the same equivalent threshold SIF range MR, th ⋅ ΔK in
the Paris regime can be obtained, then the shape exponents
γ, γ1 can be determined according to Eqs. (18) and (19).

If adequate FCG rate curves at different stress ratios in
the near-threshold and Paris regimes are available, the log-
log plots of the threshold of SIF range versus 1-R or 1.05−
1.4R+0.6R2 and FCG rate versus 1-R or 1.05−1.4R+0.6R2

can be established to determine the shape exponents in
MR, th and AR. Otherwise, at least three sets of FCG rate data
in the near-threshold and Paris regimes, one set of FCG
rate at R > 0, one set of FCG rate at R = 0, and one set of
FCG rate at R < 0, are required to determine the shape ex‐

ponents in MR, th and AR according to Equations (16)–(19).
The determination of the shape exponents of CrNiMoV

in Figure 3 is taken as an example. Firstly, the log-log plot
of the threshold of SIF range versus 1-R or 1.05− 1.4R+
0.6R2 is established, as shown in Figure 4. The slope of
this curve is 1, so the shape exponent in MR, th is βth = 1.
Secondly, the log-log plot of the FCG rate versus the equiv‐
alent threshold SIF range MR, th ⋅ ΔK is established, as
shown in Figure 5(a). Then, a vertical line is drawn at the
equivalent threshold SIF range MR, th ⋅ ΔK = 30 MPa ⋅ m0.5

in Figure 5(a), which intersects with the FCG rate curves
in the Paris regime at points A, B and C, respectively, and
the FCG rates of points A, B, C are obtained. Finally, the
log-log plot of the FCG rate versus 1-R or 1.05−1.4R+0.6R2

is established, as shown in Figure 5(b). The slope of this
curve is 1.81, so the shape exponent in AR is γ = 1.81.
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4 Model validation

An improved unique curve model was proposed to con‐
sider the effect of stress ratio on the FCG in near-threshold
and Paris regimes in Section 3, which can condense the
FCG rate curves at different stress ratios to that correspond‐
ing to R = 0. When the assessment of FCG in metal struc‐
tures is performed, only three sets of FCG rate data in the
near-threshold and Paris regimes are required to determine
the shape exponents in the improved unique curve model. It
is of great significance for the accurate prediction of FCG in
metal structures at different stress ratios in the absence of
enough experimental data. In this section, the FCG rate data
of various materials at different ratios are analyzed by the im‐
proved model to verify the validation of the present model.

The shape exponents of materials used in the improved
model are determined by the method proposed in Section
3.2, as listed in Table 1. Figures 6~8 illustrate the applica‐
tion of the present model in aluminum alloy, the materials
of aluminum alloy are Al 7075-T6 (Newman et al., 1999), Al
7075-T651 (Newman et al., 2014) and Al 6013 (Paris et al.,

1999), respectively. The original experimental data of the
three materials are shown in Figures 6(a)–8(a), and the cor‐
responding processed data based on the present model are
shown in Figures 6(b)–8(b). It can be found that the FCG
rate curves of the three materials of aluminum alloy are con‐
densed to that corresponding to R = 0. The FCG rate curves
of Al 7075-T6 and Al 6013 in the near-threshold regime an‐
alyzed based on the improved unique curve model are less
discrete than those analyzed based on the unique curve
model (Huang and Moan, 2007). Therefore, the FCG rates
of aluminum alloy at different stress ratios in the near-thresh‐
old and Paris regimes can be accurately predicted by the im‐
proved unique curve model, and the improved unique curve
model can predict the near-threshold crack growth rate of alu‐
minum alloy better than the unique curve model.

Figures 9~12 illustrate the application of the present
model in turbine-rotor steel, the materials of turbine-rotor
steel are 25Cr2Ni2MoV (Du et al., 2015), weld material
(WM) of Inconel 617B (Li et al., 2021), and CrMoV
(Bulloch, 1995) as well as X12CrMoWVNbN10-1-1 (Sun
et al., 2020), respectively. The original experimental data
of these materials are shown in Figures 9(a)–12(a), and the

ΔK
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Table 1 Shape exponents of materials
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corresponding processed data based on the present model
are shown in Figures 9(b)–12(b). It can be found that the
FCG rate curves of the four materials are condensed to
that corresponding to R = 0. Therefore, the FCG rates of tur‐
bine-rotor steel at different stress ratios in the near-thresh‐

old and Paris regimes can be accurately predicted by the
improved unique curve model.

Figures 13 and 14 illustrate the application of the pres‐
ent model in some typical steels, C45E (Steinbock and
Gudladt 2011) is a kind of common carbon steel, and S960
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Figure 7 Fatigue crack growth rate of 7075-T651
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Figure 8 Fatigue crack growth rate of Al 6013
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QL (Kucharczyk et al. 2018) is a kind of high-strength al‐
loy steel. The original experimental data of the two materi‐
als are shown in Figures 13(a) and 14(a), and the corre‐
sponding processed data based on the present model are
shown in Figures 13(b) and 14(b). It can be found that the

FCG rate curves of the two materials are condensed to that
corresponding to R = 0. Therefore, the FCG rates of the
two steels at different stress ratios in the near-threshold
and Paris regimes can be accurately predicted by the im‐
proved unique curve model.
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Figure 9 Fatigue crack growth rate of 25Cr2Ni2MoV
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Figure 10 Fatigue crack growth rate of WM of Inconel 617B
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Figure 11 Fatigue crack growth rate of CrMoV
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5 Discussion of the shape exponents at neg‐
ative stress ratios

It can be found in Section 4 that the shape exponent γ1

in the improved curve model at negative stress ratios is

less than 0, indicating that the FCG rate curves at negative
stress ratios are higher than that corresponding to R = 0 at
the same equivalent threshold SIF range. The transition
points at negative stress ratios are higher than that corre‐
sponding to R = 0, which is consistent with the law present‐
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Figure 12 Fatigue crack growth rate of X12CrMoWVNbN-10-1-1
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Figure 13 Fatigue crack growth rate of C45E
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Figure 14 Fatigue crack growth rate of S960QL
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ed by the dashed line between the near-threshold regime
and the Paris regime in Figure 2. It is difficult to obtain the
near-threshold FCG rate data at negative stress ratios due
to the crack closure (Zhang et al., 2019). To reduce the re‐
quirement of the near-threshold FCG rate data at negative
stress ratios, the applicability of the shape exponent at neg‐
ative stress ratios in the unique curve model to the im‐
proved model is discussed in this section.

The aluminum alloy Al6013 (Paris et al., 1999) and car‐
bon steel C45E (Steinbock and Gudladt 2011) are taken as
an example, the shape exponents at positive stress ratios re‐
mained constant, the shape exponents γ1 = 0 and β1, th = β1 at
negative stress ratios. The improved model degenerates into
the unique curve model at negative stress ratios. The shape
exponents of the two materials are listed in Table 2. The pro‐
cessed data of the two materials based on the improved
model using the shape exponents in Table 2 are illustrated
in Figure 15. The processed data in Figures 15(a) and (b) are
compared with those in Figure 8(b) and Figure 13(b), and
the result shows that the FCG rate data in the near-threshold
regime analyzed by the shape exponent at negative stress ra‐
tios in the unique curve model is smaller than that analyzed

by the shape exponent at negative stress ratios determined
by Section 3.2. However, the FCG rate data in the near-
threshold regime analyzed by the shape exponent at negative
stress ratios in the unique curve model are more conserva‐
tive than that corresponding to R = 0, indicating that the ap‐
plicability of the shape exponent at negative stress ratios in
the unique curve model to the improved model is reasonable.

The FCG rates of low-carbon alloy steel EA4T (Maier‐
hofer et al., 2020) are also taken as an example, R = −2, −1.5,
−1, −0.5, 0.1, 0.7, as shown in Figure 16. The shape exponent
in the unique curve model is adopted in the improved model
at negative stress ratios, as listed in Table 2. Figure 16(b) il‐
lustrates that the FCG rate curves of EA4T are condensed
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Figure 16 Fatigue crack growth rate of EA4T
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Figure 15 Fatigue crack growth rate based on the present model by using shape exponent at negative stress ratio

Table 2 Shape exponents of materials at negative stress ratios

Material

Al 6013

C45E

EA4T

β1, th

0.86

0.70

0.95

βth

0.80

0.75

0.85

γ1

0

0

0

γ

0.80

1.65

2.00
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to that corresponding to R = 0. The near-threshold and
Paris FCG rate data at negative stress ratios can be predict‐
ed by the shape exponent in the unique curve model. So,
it is noted that the shape exponent in the unique curve
model can be directly adopted in the improved model, and
at least one set of the Paris FCG rate is required to deter‐
mine the shape exponent at negative stress ratios in the im‐
proved model.

6 Conclusions

Considering that the existing models have a weak abili‐
ty in the prediction of FCG in the near-threshold regime,
an improved model based on the unique curve model is
proposed. The improved unique curve model has been ver‐
ified by analyzing the FCG rate curves of various materi‐
als at different stress ratios extracted from literature. The
improved model can condense the FCG rate curves at dif‐
ferent stress ratios in the near-threshold and Paris regimes
to that corresponding to R = 0, which may be useful for
the FCG prediction of metal structures in engineering ap‐
plications.

To accurately predict the near-threshold and Paris FCG
in the metal structures, at least three sets of FCG rate data
are required to determine the shape exponents in the im‐
proved model.

The method to determine the model shape exponents is
also suitable for determining the shape exponents of the
unique curve model. The shape exponents at negative
stress ratios in the improved model are discussed, indicat‐
ing that the shape exponent at negative stress ratios in the
unique curve model can be directly adopted in the im‐
proved model.
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