|Table of Contents|

Citation:
 Ludovic Mell,Valentine Rey,Franck Schoefs,et al.Uncertainty Propagation of Structural Computation for Fatigue Assessment[J].Journal of Marine Science and Application,2022,(4):55-66.[doi:10.1007/s11804-022-00300-y]
Click and Copy

Uncertainty Propagation of Structural Computation for Fatigue Assessment

Info

Title:
Uncertainty Propagation of Structural Computation for Fatigue Assessment
Author(s):
Ludovic Mell1 Valentine Rey1 Franck Schoefs1 Benjamin Rocher2
Affilations:
Author(s):
Ludovic Mell1 Valentine Rey1 Franck Schoefs1 Benjamin Rocher2
1 Nantes Université, École Centrale Nantes, CNRS, GeM, UMR 6183, F-44000 Nantes, France;
2 Chantiers de l’Atlantique, Avenue Bourdelle-CS 90180, St Nazaire CEDEX 44613, France
Keywords:
Offshore wind turbines|Uncertainty propagation|Fatigue damage|Discretization error
分类号:
-
DOI:
10.1007/s11804-022-00300-y
Abstract:
Offshore wind substations are subjected to uncertain loads from waves, wind and currents. Sea states are composed of irregular waves which statistics are usually characterized. Irregular loads may induce fatigue failure of some structural components of the structures. By combining fatigue damage computed through numerical simulations for each sea state endured by the structure, it is possible to assess fatigue failure of the structure over the whole deployment duration. Yet, the influence of the discretization error on the fatigue damage is rarely addressed. It is possible to estimate the discretization error on the quantity of interest computed at the structural detail suspected to fail. However, the relation between this local quantity of interest and the fatigue damage is complex. In this paper, a method that allows propagating error bounds towards fatigue damage is proposed. While increasing computational burden, computing discretization error bounds is a useful output of finite element analysis. It can be utilized to either validate mesh choice or guide remeshing in case where potential error on the fatigue damage is too large. This method is applied to an offshore wind substation developped by Chantiers de l’Atlantique using two discretization error estimators in a single sea state.

References:

Ainsworth M & Oden J (1997) A posteriori error estimation in finite element analysis.Computer methods in applied mechanics and engineering 142(1-2):1-88.https://doi.org/10.1016/S0045-7825(96) 01107-3
Alvin K (2000) Method for treating discretization error in nondeterministic analysis.AIAA journal 38(5):910-916.https://doi.org/10.2514/6.1999-1611
Becker R & Rannacher R (1996) A feed-back approach to error control in finite element methods:Basic analysis and examples.IWR
Bitner-Gregersen E (2015) Joint met-ocean description for design and operations of marine structures.Applied Ocean Research 51:279-292.https://doi.org/10.1016/j.ap or.2015.01.007
Casciati F, Colombi P & Faravelli L (1992) Fatigue lifetime evaluation via response surface methodology.In European safety and reliability conference’92 (pp.157-166)
Demeyer S, Fischer N & Marquis D (2017) Surrogate model based sequential sampling estimation of conformance probability for computationally expensive systems:application to fire safety science.Journal de la société fran.caise de statistique 158(1):111-138
Díez P & Calderón G (2007) Remeshing criteria and proper error representations for goal oriented h-adaptivity.Computer methods in applied mechanics and engineering 196(4-6):719-733.https://doi.org/10.1016/j.cma.2006.03.005
Dong Y, Teixeira A & Soares CG (2018) Time-variant fatigue reliability assessmentofwelded joints based on the phi2 and response surface methods.Reliability Engineering & System Safety 177:120-130.https://doi.org/10.1016/j.ress.2018.05.005
Ducrozet G, Bonnefoy F & Perignon Y (2017) Applicability and limitations of highly nonlinearpotential flow solversin the contextofwaterwaves.Ocean Engineering 142:233-244.https://doi.org/10.1016/j.oceaneng.2017.07.003
Gallimard L (2011) Error bounds for the reliability index in finite element reliability analysis.International journal for numerical methods in engineering 87(8):781-794.https://doi.org/10.1002/nme.3136
Ghavidel A, Mousavi S & Rashki, M (2018) The effect of FEM mesh density on the failure probability analysis of structures.KSCE Journal of Civil Engineering 22(7):2370-2383.https://doi.org/10.1007/s12205-017-1437-5
Ghavidel A, Rashki M, Arab H & Moghaddam M (2020) Reliability mesh convergence analysis by introducing expanded control variates.Frontiers of Structural and Civil Engineering 14(4):1012-1023.https://doi.org/10.1007/s12205-017-1437-5
Huchet Q, Mattrand C, Beaurepaire P, Relun N & Gayton N (2019) AK-DA:An efficient methodfor the fatigue assessmentofwind turbine structures.Wind Energy 22(5):638-652.https://doi.org/10.1002/we.2312
Ladevèze P (2006) Upper error bounds on calculated outputs of interestfor linear and nonlinear structuralproblems.Comptes Rendus Académie des Sciences-Mécanique, Paris 334(7):399-407.https://doi.org/10.1016/j.crme.2006.04.004
Ladevèze P (2008, 01) Strict upper error bounds on computed outputs of interest in computational structural mechanics.Computational Mechanics 42(2):271-286.https://doi.org/10.1007/s00466-007-0201-y
Ladeveze P & Leguillon D (1983) Error estimate procedure in the finite element method and applications.SIAM Journal on Numerical Analysis 20(3):485-509.https://doi.org/10.1137/0720033
Ladevèze P & Pelle J-P (2005) Mastering calculations in linear and nonlinear mechanics (Vol.171).Springer
Matsuishi M & Endo T (1968) Fatigueof metals subjectedtovarying stress.Japan Society of Mechanical Engineers, Fukuoka, Japan 68(2):37-40
Mell L, Rey V & Schoefs F (2020) Multifidelity adaptive kriging metamodel based on discretization errorbounds.International Journal for Numerical Methods in Engineering 121(20):4566-4583.https://doi.org/10.1002/nme.6451
Parés N, Díez P & Huerta A (2006) Subdomain-based flux-freeaposteriori error estimators.Computer Methods in Applied Mechanics and Engineering 195(4-6):297-323.https://doi.org/10.1016/j.cma.2004.06.047
Paris PC (1961) A rational analytic theory of fatigue.Trends Engin 13:9-14
Pasqualini O, Schoefs F, Chevreuil M & Cazuguel M (2013) Measurements and statistical analysis of fillet weld geometrical parameters for probabilistic modelling of the fatigue capacity.Marine structures 34:226-248.https://doi.org/10.1016/j.marstruc.2013.10.002
Pled F, Chamoin L & Ladevèze P (2011) On the techniques for constructing admissible stress fields in model verification:Performances on engineering examples.International Journal for Numerical Methods in Engineering 88(5):409-441.https://doi.org/10.1002/nme.3180
Rey V, Gosselet P & Rey C (2014) Study of the strong prolongation equation for the construction of statically admissible stress fields:implementation and optimization.Computer Methods in Applied Mechanics and Engineering 268:82-104.https://doi.org/10.1016/j.cma.2013.08.021
Rüter M & Stein E (2006) Goal-orientedaposteriori error estimates in linear elastic fracture mechanics.Computer methods in applied mechanics and engineering 195(4-6):251-278.https://doi.org/10.1016/j.cma.2004.05.032
Sarpkaya T (1986) Force on a circular cylinder in viscous oscillatory flow at low keulegan-carpenter numbers.Journal of Fluid Mechanics 165:61-71.https://doi.org/10.1017/S0022112086002999
Schoefs F (2008) Sensitivityapproachfor modelling the environmental loading of marine structures through a matrix response surface.Reliability Engineering & System Safety 93(7):1004-1017.https://doi.org/10.1016/j.ress.2007.05.006
Schoefs F & Boukinda ML (2010) Sensitivityapproachfor modeling stochastic field ofkeulegan- carpenter and reynoldsnumbers througha matrix response surface.Journal of offshore mechanics and Arctic engineering 132(1).https://doi.org/10.1115/1.3160386
Soares CG & Garbatov Y (1996) Fatigue reliability of the ship hull girder accounting for inspection and repair.Reliability Engineering& System Safety 51(3):341-351.https://doi.org/10.1016/0951-8320(95)00123-9
Strouboulis T, Babu?ka I, Datta D, Copps K & Gangaraj S (2000) Aposteriori estimation and adaptive control of the error in the quantity of interest.part i:Aposteriori estimation of the error in the von mises stress andthe stress intensityfactor.Computer Methods in Applied Mechanics and Engineering 181(1-3):261-294.https://doi.org/10.1016/S0045-7825(99)00077-8
Veritas DN (1996) Guidelines for offshore structural reliability analysisapplication to jacket platforms (Tech.Rep.).DNV Report.
Veritas DN (2010) DNV-RP-C203 fatigue design of offshore steel structures.DNV, Baerum, Norway.
Veritas DN (2014) Dnv-rp-c205:Environmental conditions and environmental loads (Tech.Rep.).DNV GL
Waeytens J, Chamoin L & Ladevéze P (2012) Guaranteederrorbounds onpointwise quantities of interest for transient viscodynamics problems.Computational Mechanics 49(3):291-307.https://doi.org/10.1007/s00466-011-0642-1
Zienkiewicz O & Zhu J (1987) A simple error estimator and adaptive procedure for practical engineerng analysis.International journal for numerical methods in engineering 24(2):337-357.https://doi.org/10.1002/nme.1620240206

Memo

Memo:
Received date:2022-03-23;Accepted date:2022-09-01。
Foundation item:This work was carried out within the project MUSCAS (MUlti-SCAle Stochastic computation for MRE) granted by WEAMEC, West Atlantic Marine Energy Community with the support of Région Pays de la Loire and in partnership with Chantiers de l’Atlantique.
Corresponding author:Valentine Rey,E-mail:valentine.rey@univ-nantes.fr
Last Update: 2023-01-05