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Abstract

Offshore wind substations are subjected to uncertain loads from waves, wind and currents. Sea states are composed of
irregular waves which statistics are usually characterized. Irregular loads may induce fatigue failure of some structural
components of the structures. By combining fatigue damage computed through numerical simulations for each sea state
endured by the structure, it is possible to assess fatigue failure of the structure over the whole deployment duration. Yet,
the influence of the discretization error on the fatigue damage is rarely addressed. It is possible to estimate the discretization
error on the quantity of interest computed at the structural detail suspected to fail. However, the relation between this local
quantity of interest and the fatigue damage is complex. In this paper, a method that allows propagating error bounds
towards fatigue damage is proposed. While increasing computational burden, computing discretization error bounds is a
useful output of finite element analysis. It can be utilized to either validate mesh choice or guide remeshing in case where
potential error on the fatigue damage is too large. This method is applied to an offshore wind substation developped by

Chantiers de I’ Atlantique using two discretization error estimators in a single sea state.
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1 Introduction

Deploying a structure at sea requires to ensure its struc-
tural safety. Waves, wind and current are uncertain phe-
nomena that induce loads on the structure Veritas (2014).
A few parameters, modelled as random variables, may de-
scribe these uncertain loads Bitner-Gregersen (2015). Loads
resulting from each realization of these random variables
may induce failure of the structure through different sce-
narios called limit states. Among these limit states, fatigue
is a mechanical degradation that occurs when a structure
endures a large number of local stress cycles that are be-
low yielding but initiate micro-cracks in the component.
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These cracks may propagate and induce failure of the
structure. It usually arises at structural details concentrat-
ing stress such as weld toes. The initiation of crack is high-
ly dependent on the microstructure of the material and the
exact geometry of the structural detail.

To assess fatigue, a time series of the structural response
(local stress) is usually computed for each sea state using
discretized techniques such as the finite element method
Veritas (1996). Then, rainflow counting is applied to the
signal to isolate stress cycles Matsuishi & Endo (1968). S-N
curves giving the number of cycles before failure from the
stress amplitude allow to compute the fatigue damage,
which is the inverse of the number of cycles before failure.
Finally, the total damage is computed as the sum of indi-
vidual damages for each stress cycle.

The number of cycles before failure is highly dependent
on the microstructure of the material, the exact geometry
of the structural detail and residual stresses from the wield-
ing process. It is therefore modeled as a random process. It
is ossible to include the geometry of the weld toe in the
stochastic framework Pasqualini et al. (2013). Yet, this
method is often too computationnaly expensive. Addition-
ally, Paris law Paris (1961) allows assessing time depen-
dent reliability of the propagation of cracks Soares & Gar-
batov (1996). For offshore structures, it is necessary to
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take into account the variety of stress cycles endured by
the structure throughout its deployment. Therefore, the
structural response has to be simulated for a lot of realiza-
tions of the sea states which may be computationally ex-
pensive. The use of a scatter diagram regrouping the proba-
bility of occurence for ranges of the parameters describing
the sea states allow to drastically reduce the number of
simulations. Yet, it is sometimes insufficient in terms of
computational cost reduction. Metamodeling the fatigue
damage is a mean to reduce computational time (Casciati et
al., 1992; Dong et al., 2018; Huchet et al., 2019). Then, the
output of the fatigue analysis can be the probability that
the cumulative damage exceeds a prescribed value.

A discretized technique such as the finite element meth-
od is widely used to solve the mechanical problem and ob-
tain a time series of stress at the structural detail. Such
technique introduces a discretization error. The coarser the
mesh, the stiffer the structure and the smaller the probabili-
ty of failure. Overestimating the structural capacity to en-
dure loads may be dramatic. Furthermore, the mesh is gen-
eraly chosen prior to fatigue analysis. Yet, it was proved in
Ghavidel et al. (2018); Mell et al. (2020) that a small error
on the local quantity of interest (i.e. local stress) can lead
to a large error on the probability of failure. Therefore, the
mesh has to be chosen in regards to the precision on the
probability of failure. To this day, several techniques al-
lowing to control the discretization error on the probability
of failure exist. First, mesh convergence analysis can be
performed on the probability of failure (Alvin, 2000; De-
meyer et al., 2017; Ghavidel et al., 2020). However, it can
lead to a huge computational cost as the probability of fail-
ure is computed for several meshes. Second, it is possible
to use discretization error estimators that are available as
apost-process of the finite element solution Zienkiewicz &
Zhu (1987); Ainsworth & Oden (1997). Such techniques
have been coupled with metamodeling techniques in Galli-
mard (2011); Mell et al. (2020). However, it was not ap-
plied to fatigue analysis. Indeed, the complex link between
local stress and the fatigue damage does not allow to esti-
mate directly the discretization error on the fatigue dam-
age. In this paper, we propose a technique to propagate
bounds computed on the local stress at the structural detail
to the fatigue damage. It can be seen as a first step toward
taking into account discretization error in the fatigue as-
sessment of offshore structures using metamodeling tech-
niques and standard recommendations from Veritas (1996).

First, the mechanical formulation and the computation
of discretization error bounds on the local stress is intro-
duced. Two estimators are used: one that is already avail-
able in some industrial codes but does not provide guaran-
teed error bounds and the other is more intrusive but pro-
vides guaranteed error bounds. Next, standard recommen-
dations to compute the fatigue damage are presented.
Then, methods to propagate discretization error bounds to-

ward the fatigue damage are proposed. Finally, the method
is applied to the fatigue failure of a weld toe of an offshore
wind substation. Moreover, inspection planning and digital
twins of marine structures being highly based on fatigue
computations, this method allows to quantify directly the
uncertainty that can lead to bad decisions.

Figure 1
I’ Atlantique)

Offshore Gode Wind 3 electrical substation (©Chantiers de

2 Error bounds on the local stress of an off-
shore structure

2.1 Fatigue loads on an offshore wind substation

Wind is usually considered constant when modeling off-
shore wind substation environment. Therefore it does not
induce fatigue in the structure. The surface of offshore
wind substations exposed to wind is usually small. Also,
currents are light at the deployment site. Therefore, the
principal fatigue loads on these structures are mainly in-
duced by waves. In order to assess fatigue failure of the
structure, it is paramount to accurately describe the sea
states composed of irregular waves. Significant wave height
(Hy), peak period (T,), main wave direction (6,), wave
spreading function and wave spectrum model (usually cho-
sen as one side Gamma model) are the principal parame-
ters characterizing the sea states according to standards Ver-
itas (2014). These parameters can be modelled as random
variables. The statistics of the distribution of these random
variables can be computed using in situ data (Bitner-Gre-
gersen, 2015). Using a fully probabilistic approach to com-
pute the fatigue damage of the structure is usually compu-
tationally expensive as the number of sea states to be simu-
lated is excessively large. A scatter diagram giving the

probability of occurence for ranges of the triplet ( H, T, 90)

allows drastically reducing the number of sea states to be
simulated compared to Monte-Carlo simulations. The sta-
tistics on fatigue loads are usually considered as con-
verged when the sea state is approximately 3 h long. The
fatigue damage for a full service of the offshore wind sub-
station can be computed by extrapolating the damage in
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each sea state using the estimated time that the structure
will spend in each sea state according to the scatter dia-
gram. ldeally, computational fluid dynamics should be
used to compute wave induced loads on the structure. Be-
cause it is too computationally expensive, a 5th order Airy
wave model used together with Morisson’s equations Sarp-
kaya (1986) are recommended practices Veritas (1996) to
compute an analytical wave loads that may be integrated
on the immerged structure as a boundary condition. It
allows defining a mechanical problem that may be solved
using a discretized technique such as the finite element
method (FEM).

2.2 Mechanical formulation

In this subsection, we present the quasi-static mechani-
cal problem. The finite element method allows solving a
discretized version of the mechanical problem. We also pres-
ent discretization error estimators that allow computing
bounds on the local quantity of interest.

2.2.1 Continuous problem

Let R” represent the physical space and Q the subspace
of R occupied by the structure (with d comprised between
1 and 3). This structure is subject to a body force fon Q, a
traction force F on its boundary 9.Q and a dispacement
fieldu,on9,Q. Let 9, QU 9. Q=@ and 9,Q = @. The
structure is assumed to undergo small perturbations and
the unknown displacement field is denoted u. The symmet-
ric part of its gradient is the deformation ¢(u ). The materi-
al is considered to be linear elastic characterized by
Hooke’s elasticity tensor H. Let g be the Cauchy stress ten-
sor such that:

[S)

=H:¢ (€3]

The mechanical problem may be written defining two
affine subspaces, respectively kinematically and statically
admissible:

d

KA:{QE(Hl(Q)) , :gdonauQ} )

Te (LZ(Q))jy;d; Yve KAO,fgig(y)dQ =
3)

el

where KA is defined with equation 2 for u,=0. The error
in constitutive relation is defined as a positive form:

ecRﬂ(uyg):”g-Hig(uﬂ 4)

HYQ

where x| , = /j (x:H™:x)dQ Finally, the mechani-
: N

cal problem to solve reads:
Find a displacement field u,, and a stress field g_ such

that:

c(u) =7 (grad(u) + grad (u)")
0N div(g)+ =0
g=H:e(u) ©)

An equivalent formulation of the mechanical problem may
be written:

Find a couple (gex, gex) e KA x SA, such that e (u,,,

g,)=0
The solution to this problem (u o )exist and is unique.

—ex! =ex
In most cases, this solution cannot be found analytically
and the problem is usually discretized.

2.2.2 Discrete problem
Now let us discretize Q into a tessellation Q, of trian-
gles. The finite element method seeks a solution to the me-
chanical problem in a finite subspace K A, C K A, where:
KAh:{ge(Hl(Q))d,_:gdonath} (6)
In practice, this subspace is generated by the a priori choice
of a function basis of dimensionm: [¢;]
iel,m]
The discrete problem (also called forward problem) reads:
Find a couple (gh, gh) such that:
u A,
a tefu,)
0

A,°,

e K
h:H
(7

A

Ve

gh:g(yh)dﬂ = fﬂhf-yhdﬁ + j

— < |

Q, 0:Q,

The solution of this discrete problem exists and is unique.

2.2.3 Computation of error bounds
Generalities  The discrete solution u, usually does not
coincide with the continuous exact solution u_ . We define

—ex

the discretization error as ey, = ” Up = U |, An a prio-

ex

ri estimate of this error may be computed when the conver-
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gence rate of the FE problem is known. Some problem de-
pendent constants that are not computable often make it
impractical. A posteriori error estimators also exist. In that
case, the finite element solution is post-processed to derive
an estimation of the discretization error Ainsworth & Oden
(1997). There are three families of a posteriori estimators
of the discretization error. Some are based on stress
smoothing techniques and provide an interval in which the
exact solution should lie without guaranty Zienkiewicz &
Zhu (1987). Some are based on residual and necessitate to
compute problem dependent constants that are usually not
computable. Assuming a value for these constants also
make the error bounds not guaranteed. Finally, some tech-
niques are based on the error in constitutive relation and
provide guaranteed error bounds Ladevéze & Pelle (2005).
In this paper, the stress smoothing technique is used for its
cheapness, its easy implementation and its availability in
some codes used in the industrial context (e.g. Abaqus).
The estimator based on the error in constitutive relation is
also used as it provides strict error bounds on the exact so-
lution although being intrusive to the FEM code as the er-
ror estimator is not available in codes used in the industrial
context.

Discretization error bounds based on a stress smooth-
ing technique In this method, an admissible stress field
is seeked as an optimized stress field - by smoothing the

finite element stress field g (see Zienkiewicz & Zhu

(1987)). To do so, the optimized stress field is decomposed

in the same basis [¢;], . as for the displacement u,. For

each node j, the coefficients [agm,i]_ " ]]are calculated by

averaging the stress field on adjacent elements. An estima-
tor of the discretization error is then obtained using:

gh gopt

®)

Caiser = th ~Z HY,Q N ‘

e HY,Q
Discretization error bounds based on the error in con-

stitutive relation Another technique provides strict up-

per bounds of e, (see Ladevéze & Pelle (2005)). Let us

define the energy norm of the displacement [IL.ll,,:

e(v)

9)

livlllg, =
H, I

The Prager-Synge relation that is an adaptation of the
fundamental Pythagore theorem for the norm [ILll, reads:
2

+
H, I

(10)

The displacement field G = u, e CA is kinematically ad-

missible. It can be used to obtainaboundone ,  =u, - u,:

= discr =h*

ediscr: = ”Igdiscrml" < eCRg(gh, é) (11)

The difficulty is to compute a statically admissible
stress field g € SA. Several methods exist in that regard
(see Ladeveze & Leguillon (1983), Parés et al. (2006),
Pled et al. (2011) and Rey et al. (2014)).

Bounds on the quantity of interest The output of in-
terest is rarely the displacement field u_, but rather a quan-

tity of interest S(gex) that is local spatially. For offshore

structures fatigue assessment, this quantity of interest is
usually a stress component at a structural detail concentrat-
ing stress Veritas (2010). There are techniques to obtain
bounds on the discretization error on the quantity of inter-
estS(u, ) - S(u,). When the quantity of interest is linear,

it is possible to use extractors in the context of goal-orient-
ed error estimation Becker & Rannacher (1996). For spe-
cific non linear quantities of interest, there are methods to
calculate guaranteed bounds Strouboulis et al. (2000);
Riter & Stein (2006). If a specific method does not exist
for a given non linear quantity of interest, it is possible to
linearize it. Using extractors, we first need to define an ad-
joint problem:
Find(a G, ) CAY(Q) x

=ex’' =ex

v (12)
SA (Q) such thatecRﬂ(ﬂexvéex) =0
where:
SR () = {ze (Le@),, " Yy e ca™(@),
(13)

fgig(y)dfhs(y)}

Q

To solve the adjoint problem, it is possible to use the fi-

nite element method and obtain G,. Note that, the mesh

does not need to be the same as for the reference problem.
However, it would require an additional stiffness matrix
factorization. The same mesh is used in this paper to save
computational time as the resolution of the FE problem is
simplified to a multiple (double) right-hand side linear sys-
tem. Let us note éh a statically admissible stress field built
from 0, thanks to Ladeveze & Leguillon (1983), Pares et
al. (2006), Pled et al. (2011) or Rey et al. (2014).
Exploiting the results from Ladevéze (2006, 2008), it is
possible to derive an upper bound on the discretization er-
ror on the quantity of interest S. The linearity of S against
the solution displacement field allows computing the dis-
cretization error on S as the product of the discretization
error on the forward and adjoint problems. When using the
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stress smoothing technique, it writes:

|s-s(u,) (14)

gh - gopt

Qe

ho 2

< ‘
opt

HQ H'Q

It leads to the definition of an interval [S~, $*]in which
S(u,, ) should lie:

LU
Py o

13
3

- g
g h g opt =h =opt

HY Q

For the error based on the error in constitutive relation,
S~ and S* are found in a similar fashion as:

§'= S(ﬂh) ~Sm ¥ %eCRn(gh’éh)eCRn(gh’éh)

5 =5(u,) S~ gecn, (U, Jeen (0,2,

Qe

where S, = %J( i +H:g(gh)):H‘1:(éh —H:g(gh))dﬂ
Q

Note that, in the case of the estimator based on the error
in constitutive relation, S(u,) is not guaranteed to lie in
[s7,s*]

2.2.4 Quantity of interest for offshore structures fatigue
assessment

For the fatigue assessment of offshore structures, the
quantity of interest is computed at a structural detail con-
centrating stress Veritas (2010). It is usually a weld toe be-
tween several structural components such as plates or tubu-
lars (e.g. see Figure 2). ldeally, the whole weld toe should
be inspected. It would require computing stress at every
point on the weld toe which can be computationally inten-
sive. To reduce computational burden, a few points are se-
lected along the weld path and fatigue is assessed at each
of them. Three recommended practices from Veritas
(2010) allow calculating the local stress at the weld toe.
The most accurate method would be to include the detail
in the model. Such method is expensive computationally
as it requires a fine mesh covering well the structural de-
tail. The second method is based on the computation of the
stress tensor at the point N, the point distant of 0.5 e
from the weld toe, where e is the thickness of the plate that
is welded. The stress tensor at the weld toe is then comput-
ed using a factor to account for local stress concentration.
Finally, a linear extrapolation of the stress tensor from the
points Ny, and N, . to N, is also possible. While any of the
three methods presented here can be used, we will use a
single point N,, and a stress concentration factor for the
ease of use of the technique.

In the basis (€H , €l) represented in 2, the stress tensor

Figure 2 Zone of interest (weld toe in red) for the calculation of
fatigue damage for a given structure

reads:

o, = (”H TH) (17)

TH o,

The quantity of interest for further fatigue analysis is
calculated as the maximal principal stress at % node N,
with an extrapolation factor of 1.12 to account for the
weld toe concentration:

otoy Ll Vg

o, = 1.12 max a 2 2\’<0i J\I) + 47 (18)
ai+c7H 1 2
472 _2/(‘5"")*472‘

where a is a constant depending on the quality of the weld-
ing process.

The quantity o, is non linear against the differents stress
components, obtaining error bound indicators is possible
but more difficult. One can linearize this quantity of inter-
est to compute error bounds, use quantity of interest depen-
dent techniques or make an hypothesis on the direction of
the maximal principal stress. In this paper a direction is as-
sumed for the maximal principal as providing a o, specific
technique is out of the scope of this paper. This direction is
assumed by expert knowledge given the geometry and the
loads on the structure.

3 Computing fatigue damage from the time-
series of stress

Before defining a new strategy to propagate bounds ob-
tained on the quantity of interest toward the fatigue dam-
age, it is necessary to elaborate on the method to compute
the fatigue damage. The method that is used in this paper
follows recommended practices from Veritas (2010). Giv-
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en a time series of stress obtained with the finite element
method, the rainflow counting algorithm proposed in Mat-
suishi & Endo (1968) is used to identify stress cycles Ao
within the signal. Interested readers may refer to Veritas
(2010) for an in depth explaination of rainflow counting.

A number of cycles before failure can be assigned to
each Ao using an SN curve given by standards Veritas
(2010). As shown in Figure 3, the SN curve is probabilistic
as the weld toe properties have intrisic variability.

=
<
T

Stress range Ao (MPa)

10° 10° 10° 10" 10*
Number of cycles before failure

30,000 random points

SN curve — 50% chance of survival

————— SN curve — 97.7% chance of survival

Figure 3  Stress to Number of cycles curves (SN-curves) - Parameters

from the D-curve for a detail in seawater with cathodic protection in
Veritas (2010)

4 Propagating bounds on stress toward fa-
tigue damage

Using discretization error estimators through (15) or (16),
a FEM solution S (u, ) and an interval [S~, $*] may be ob-

tained at each timestamp t, (k < [1, n, ] ) of the time series.

It is significantly different from state of the art fatigue
analysis for which a single value of stress is known. Propa-
gating bounds on stress to the damage is not a trivial task.
Taking into account rainflow counting and SN-curves,
damage is sensitive to the range of fluctuation and the
mean stress. We focus here on the range of fluctuation.
Our main concern is the range of fluctuation considering
that the more (respectively the less) a signal oscillates, the
larger (respectively the smaller) the total damage. The
more the mean value of the stress the more the total dam-
age. We do not consider this issue that is easier to solve:
we can compute the damage with the highest value of the
mean value for the stress computation without bounds and
for the two signals presented in the following. Based on
this hypothesis, we propose to build two signals passing
within each interval delimitated by bounds:

* one maximizing damage and thus presenting maximum

oscillation

* one minimizing damage and thus presenting minimal
oscillations.
Signal minimizing damage Let the signal minimizing
damage be the one passing for each time stamps t, at the point
within [ $(t, ), $*(t,) ] which is the closest to the one select-

ed for t,_,. For t,, we select this point as the boundary S7(t,)
or (S*t,) closest to the first interval [S7(t>t,),S*(t>t;) ]
guaranteed to be above or below the interval [ S7(t, ), S*(t,) |

An algorithm that allows building such signal is given in
Algorithm 1.

An example of such signal is shown in Figure 4(b). The
signal remains constant if the value selected at t,_; lies in
[S7(t,), S*(t,) ] which is necessary to minimise damage.
Otherwise, it will pass by either S(t,) or S*(t,). Note that
it is not formally proved that this signal minimizes oscila-
tion, yet it seems to be validated by observation.

Signal maximizing damage Two signals are proposed
to build the signal maximizing damage. First, we propose
to use the signal successively oscillating between S~ and S*
during the time series. An algorithm that allows building
such signal is given in Algorithm 2. Such signal is plotted
in Figure 4(a). Note that this signal is rather unrealistic as
the position of the exact solution within [S~, $*] should not

vary drastically between two successive timestamps. Sec-
ond, we propose to use the signal passing in each interval at
the point furthest from signals mean over the whole time
frame. An algorithm that allows building such signal is
given in Algorithm 3. Such signal is plotted in Figure 4(b).

5 Numerical assessment: example of an off-
shore wind substation

5.1 Description of the structure

The substation is a critical component of an offshore
wind farm as it gathers electrical power from wind turbines
and exports it to shore through a single cable. Therefore, as-
sessing accurately its structural reliability is paramount. Let
us consider an offshore wind substation designed by Chan-
tiers de I’Atlantique. The monopile layout is represented in
Figure 5 and supports a 2 500 metric ton (mT) topside that
is represented in Figure 1. We consider that this structure
is deployed by 30 m water depth at SEM-REYV test site
close to Le Croisic in France. The structure is considered to
be made of steel with standard material properties: density
p =7 800 kg/m®, Young modulus E = 210 GPa, and Poisson
coefficient v = 0.3. A single sea state modeled as a JON-
SWAP spectrum is simulated as a unidirectional superim-
position of 50 airy waves with random phases. The topside
being symmetrical and the arm being more sollicitated by
waves coming from €, than from 6y, waves propagation ac-
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~——  Error bounds
Signal maximizing damage

0 T T T T

12 1

14+ 1

16 .

181 1

De0 40 20 0 20 40 60
Stress at hot spot (MPa)

(a) Signal maximising damage by alternating
between successive bounds

Figure 4 Signals maximizing and minizing fatigue damage

Figure 5 Offshore wind substation layout (Unit: mm)

cording to €, is selected. The most probable sea state at the
deployment site according to Ducrozet et al. (2017) is cho-
sen: H,=2m, T,=8.5 s. We consider the fatigue failure un-
der dynamical wave loads of the weld toe between the
monopile and an arm aligned with wave propagation (see
Figure 5). A two scale approach is used. First, a monopile
mechanical problem is solved using dynamical beam theo-
ry to obtain loads close to the studied arm. Then a quasi-

+——  Error bounds

Signal minizing damage

Signal maxizing damage

— — — Middle of bounds averaged over time

0 T T T T

16

18+

2(—)60 -40 -20 0 20 40 60
Stress at hot spot (MPa)
(b) More realistic signals minimising and
maximising damage

static local lower flange mechanical problem allows com-
puting local stress a the studied weld toe (see Figure 5).
The discretization error is only measured on the local
mechanical problem to avoid the use of a dynamical dis-
cretization error estimator Waeytens et al. (2012) that is not
available in the homemade FEM code used in this paper.
Monopile mechanical problem First, only the mono-
pile structure of the offshore substation (see Figure 6) is
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modeled. Wave loads are computed through Morison equa-
tion (Sarpkava, 1986) according to the stochastic model-
ling in Schoefs (2008); Schoefs & Boukinda (2010) and
following recommended practices from Veritas (2014).
The structure is considered to be fully fixed to the ground
on the one end and supports a 2 500 mT inertia on the oth-
er end. The structure is modeled using dynamical beam
theory. The resulting discretized mechanical problem is:

2

Y (1) +KU (t) = F (1) (19)

m?
= at

where U contains 2D nodal displacements, M contains in-
ertia coefficients including the topside weight, K is the
stiffness matrix and F(t) is the wave load on the structure.
The structure is discretized into 100 element which is a
compromise between a small discretization error and a
good condition number of the matrix M.

20
10
E o
<
o -10
Qa
-20
-30
100
100
0
X
™) O\J Q)
-100 -100
Elements
° Nodes

° Node fixed to the ground
° Node of weight 2 500 mT
———= Action of waves
Sea surface
Ground

Figure 6 Monopile mechanical problem layout

The mechanical problem is solved for a 3 h sea state with
a time discretization of T /20 = 0.425 s using odel5 s in
MATLAB®. The quantity of interest is o,, at the closest
node to the lower flange of the studied arm (see Figure 5)
that governs fatigue computation.

Lower flange mechanical problem Second, the fa-
tigue failure of the weld toe represented in Figure 5 is stud-
ied. In particular the point of the weld toe that is the clos-
est to the beam web is selected as it is suspected to concen-
trate stress and be subjected to fatigue. For this problem
o,=0y, 0,=0, and t, =g, Let us assume that ¢, >>0, 7.
It implicates:

o, =1120, (20)

Also, the hypothesis of 2D plane stress is made for the
flange that is only subjected to loads from the monopile on
the one end and is maintained fixed by the topside of the
substation on the other end. As the mechanical problem is
symetrical both in terms of loads and geometry, only a sin-
gle symetric part of the flange is modeled. The resulting
mechanical problem is represented in Figure 7. Recom-
mended practices from Veritas (2010) suggest using a mesh
size close to the zone of computation of the quantity of in-
terest that is equal to the flange thickness that is 40 mm ac-
cording to Figure 5. In order to reduce discretization error
of both forward and adjoint problems at fixed computa-
tional cost, h-adaptivity Diez & Calder6n (2007) is used.
The resulting heterogenous mesh is shown in Figure 8 in
which the mesh size close to the zone of computation of
the quantity of interest is 11 mm.

5.2 Results and discussion

The method to compute bounds on the local stress o,
and propagate discretization error bounds toward fatigue
damage is assessed on the offshore wind substation pre-
sented in 5.1. Two discretization error estimators are test-
ed: one based on a stress smoothing technique (ZZ), one
based on the error in constitutive relation and a flux free
technique allowing the construction of an admissible stress
field Parés et al. (2006) (ECR+FF).

5.2.1 Using ZZ error estimator

A 3 h time series of the finite element solution of ¢, is
obtained together with discretization error bounds using
the ZZ estimator. A 20 s snippet of the time series is shown
in Figure 9(a). The error intervals are very thin using that
discretization error estimator so that the bounds cannot be
seen without zooming (Figure 9(b)).

Once again, note that the ZZ error estimator provides er-
ror bounds that are not guaranteed. While they can be
good indicators, bounds propagated toward fatigue dam-
age or the probability of failure are therefore not guaran-
teed either. Then, the signals both minizing and maximiz-
ing damage are built and the fatigue damage is computed
for each of them together with the probability of failure
(due to SN curve uncertainty) obtained by extrapolating
the 3 h time series to 20 years of deployment. Results are
given in Table 1. Two signals maximizing damage are test-
ed: one passing the furthest from the 3 h mean of the finite
element solution (Upp. bound in Table 1), one oscillating
between upper and lower bound (Max. oscil. upp. bound.
in Table 1). As the error interval on o, is very thin, the in-
terval is also thin on the 3 h fatigue damage and on the
probability of failure. The upper bounds are fairly close us-
ing both methods. However, the upper bound using the sig-
nal passing the furthest from the 3 h mean of the FE solu-
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tion is slightly greather than the upper bound using the oth- signal oscillating between lower and upper bound is not
guaranteed to pass the furthest from the 3 h mean at each

er signal maximizing damage. It is probably because the
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turning point. Even though this signal generates a lot of cy-

Table 1 Results using ZZ error estimator

FEM Max. oscil.

Low.bound ion  UPP-bound upp. bound

Damage
in3h
P in

20 years

1.171 92x10° 1.172 25x10° 1.17258x10° 1.172 24x10°°

2.376x107°  2.380x10°  2.385x10°  2.380x10°°

cles of small amplitude, those cycles do not have a signifi-
cant contribution to the fatigue damage.

5.2.2 Using ECR+FF error estimator

A 3 h timeseries of discretization error bounds using the
ERC+FF technique is also obtained. A 20 s snippet of that
time series is plotted in Figure 10. First, the error inter-
vals seem larger than with the ZZ estimator. Note that er-
ror bounds obtained with ECR+FF are guaranteed which
make them more qualitative than error bounds obtain with
ZZ.

12+

14+

16

18r

Do =40 20 0 20 40 60
Stress at hot spot (MPa)
—— Discretisation error bounds

- FEM solution

Figure 10 20 s snippet of the discretization error bounds time series
obtained with the ECR+FF estimator

The error bounds on the fatigue damage and the proba-
bility of failure are given in Table 2. We can notice also
that bounds using ZZ error estimators are included in the
intervals obtained with ECR+FF estimators. While error
bounds are large at turning points, the order of magnitude
of the fatigue damage seems guaranteed by the error indi-
cators. However, the error interval on the probability of
failure is very large. If a smaller interval on the probability
of failure was needed, turning points far from signals
mean would need remeshing as only turning points are

used by rainflow counting and as a quasi-static framework
is used. In a dynamical framework, the remeshing strategy
would have to be more sophisticated as the precision at
turning points depends also on the precision at previous
time stamps. Also, the upper bound using the signal pass-
ing the furthest from the 3 h average is greater than the
one obtained with the signal oscillating between lower and
upper bounds. The error bounds being larger at turning
points, the multitude of low amplitude cycles generated by
the signal oscillating between lower and upper bounds cre-
ates less damage than a signal passing the furthest from
the 3 h average at turning points. It seems to indicate that
the signal passing in each interval the furthest from the 3h
average is a greater majorizer of damage than the signal
oscillating between lower and upper bounds.

Table2 Results using ECR+FF error estimator

FEM Max. oscil.
Low.bound . Upp. bound upp. bound
Damsage " 3640x10° 1.172x10° 9.918x10° 8.612x10°
F’f in 20 4.107x10°% 2.380x107 0.965 2 0.934 2
years

6 Conclusion

A novel approach allowing to tackle discretization error
in the damage assessment of offshore structures is intro-
duced in this paper. By using a discretization error estima-
tor, it is possible to obtain a time series of discretization er-
ror bounds for each sea state of the scatter diagram at the
deployment site. We propose a method to propagate these
error bounds to obtain bounds on the fatigue damage and
the probability of failure of the structure. One signal mi-
noring damage while passing within error bounds at each
time stamps is proposed. Two signals majorizing damage
are proposed. The hypothesis on which these signals are
built is that the more (respectively the less) a signal oscil-
lates, the greater (respectively the smaller) the damage.
While not being discussed, this hypothesis conforms with
stress cycles identification through rainflow counting and
SN curves. The first signal passes the furthest from the
mean of the finite element solution. The second signal os-
cillates between lower and upper bounds at successive
time stamps. The proposed method is assessed in a quasi-
static framework on a beam flange of an offshore wind
substation. Two estimators of the discretization error are
tested. The first estimator uses a stress smoothing tech-
nique. It is available in some industrial FEM code but it is
not guaranteed to give an upper bound on the discretiza-
tion error. The second estimator is based on the error in
constitutive relation. It is not available in industrial FEM
codes but it provides a guaranteed upper bound on the dis-
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cretization error. Results show that the ZZ estimator is not
conservative and the second estimator should be imple-
mented in industial codes.

This method is implemented and illustrated for the fa-
tigue assessment of a weld toe of an Offshore Wind Sub-
Station. Results show that the signal passing the furthest
from the mean of the signal seem to give a greater upper
bound on damage than the other signal maximizing dam-
age. It is therefore recommended to use the signal passing
in each interval the furthest from the mean of the signal to
compute an upper bound on the fatigue damage. It should
be noted that it is not proved formally that the two signals
proposed to respectively minimize and maximize fatigue
damage allow obtaining guaranteed error bounds on the
damage. Yet, it seems to be validated by experience for
both error estimators.

The direction of the maximal principal stress was as-
sumed in order to compute error bounds on this quantity of
interest. Future works should focus on either linearizing
maximal principal stress with regards to the displacement
field or providing a specific method to obtain guaranteed
error bounds for this quantity of interest.

This paper provides a complete framework for assessing
rationally the FE error that can lead to bad decisions in the
context of fatigue assessment on which relies inspection
planing and digital twins of marine structures. Note that
the method to propagate bounds toward damage may be
used for other sources of uncertainty. For example, it al-
lows computing the error on the local damage from a mon-
itoring system of the nominal strain close to this point.

Appendix Algorithms

Algorithm 1 Build the signal minimizing damage

Require: S"and S~
i=1
whilei<n.and (S (t,) <S™(t;) <S*(ty)orS™(ty) <S™(t;)<S*(ty))
i=1+1
end while
if S*(t,) < ST(t;) then
S™(ty) = S*(ty)
else if S™(t,) = S*(t;) then
S™M(ty) = S7(t,)
end if
fori=2:n do
if S7(t;) < S™M(t,_,) < S*(t;) then
g mini (ti_)_ = gmini (ti - 1)
else if S™ (t,_,) < S7(t;) then
S (t)=S7(t)
else
S™M(t) = S"(t)
end if
end for
return S™"

Algorithm 2 Build the signal maximizing damage by alternating
between lower and upper bounds

Require: S"and S~
fori=1:n,do
if i is odd then
Smm(ti) =S7(t)
else
smm (t)=S"(t)
end if
end for
return S

Algorithm 3 Build the signal maximizing damage by passing the
furthest from FEM average signal
Require: S7, S, SFM
S = Mean (SFEY)
fori=1:n,do
If‘ SJ'(ti) - Savg > ‘S_(ti) - Savg
SmaXi(ti) =S*(t;)
else
SmaXi(ti) =S7(t)
end if

end for
return ™

then

Funding This work was carried out within the project MUSCAS
(MUIti-SCAle Stochastic computation for MRE) granted by WEAMEC,
West Atlantic Marine Energy Community with the support of Région
Pays de la Loire and in partnership with Chantiers de I’ Atlantique.

References

Ainsworth M & Oden J (1997) A posteriori error estimation in finite
element analysis. Computer methods in applied mechanics and
engineering 142(1-2): 1-88. https://doi.org/10.1016/S0045-7825(96)
01107-3

Alvin K (2000) Method for treating discretization error in nondeter-
ministic analysis. AIAA journal 38(5): 910-916. https://doi.org/10.
2514/6.1999-1611

Becker R & Rannacher R (1996) A feed-back approach to error
control in finite element methods: Basic analysis and examples.
IWR

Bitner-Gregersen E (2015) Joint met-ocean description for design
and operations of marine structures. Applied Ocean Research 51:
279-292. https://doi.org/10.1016/j.ap 0r.2015.01.007

Casciati F, Colombi P & Faravelli L (1992) Fatigue lifetime evaluation
via response surface methodology. In European safety and reliability
conference’92 (pp. 157-166)

Demeyer S, Fischer N & Marquis D (2017) Surrogate model based
sequential sampling estimation of conformance probability for
computationally expensive systems: application to fire safety
science. Journal de la société fran. caise de statistique 158(1):
111-138

Diez P & Calderén G (2007) Remeshing criteria and proper error
representations for goal oriented h-adaptivity. Computer methods
in applied mechanics and engineering 196(4-6): 719-733. https://
doi.org/10.1016/j.cma.2006.03.005



66

Journal of Marine Science and Application

Dong Y, Teixeira A & Soares CG (2018) Time-variant fatigue reliability
assessmentofwelded joints based on the phi2 and response surface
methods. Reliability Engineering & System Safety 177: 120-130.
https://doi.org/10.1016/j.ress.2018.05.005

Ducrozet G, Bonnefoy F & Perignon Y (2017) Applicability and limi-
tations of highly nonlinearpotential flow solversin the contextof-
waterwaves. Ocean Engineering 142: 233-244. https://doi.org/10.
1016/j.oceaneng.2017.07.003

Gallimard L (2011) Error bounds for the reliability index in finite
element reliability analysis. International journal for numerical
methods in engineering 87(8): 781-794. https://doi.org/10.1002/nme.
3136

Ghavidel A, Mousavi S & Rashki, M (2018) The effect of FEM mesh
density on the failure probability analysis of structures. KSCE
Journal of Civil Engineering 22(7): 2370-2383. https://doi. org/
10.1007/s12205-017-1437-5

Ghavidel A, Rashki M, Arab H & Moghaddam M (2020) Reliability
mesh convergence analysis by introducing expanded control variates.
Frontiers of Structural and Civil Engineering 14(4): 1012-1023.
https://doi.org/10.1007/s12205-017-1437-5

Huchet Q, Mattrand C, Beaurepaire P, Relun N & Gayton N (2019)
AK-DA: An efficient methodfor the fatigue assessmentofwind
turbine structures. Wind Energy 22(5): 638-652. https://doi. org/
10.1002/we.2312

Ladeveze P (2006) Upper error bounds on calculated outputs of
interestfor linear and nonlinear structuralproblems. Comptes Rendus
Académie des Sciences -Mécanique, Paris 334(7): 399-407. https://
doi.org/10.1016/j.crme.2006.04.004

Ladeveze P (2008, 01) Strict upper error bounds on computed outputs
of interest in computational structural mechanics. Computational
Mechanics 42(2): 271-286. https://doi.org/10.1007/s00466-007-
0201-y

Ladeveze P & Leguillon D (1983) Error estimate procedure in the
finite element method and applications. SIAM Journal on Numerical
Analysis 20(3): 485-509. https://doi.org/10.1137/0720033

Ladeveze P & Pelle J-P (2005) Mastering calculations in linear and
nonlinear mechanics (Vol. 171). Springer

Matsuishi M & Endo T (1968) Fatigueof metals subjectedtovarying
stress. Japan Society of Mechanical Engineers, Fukuoka, Japan
68(2): 37-40

Mell L, Rey V & Schoefs F (2020) Multifidelity adaptive kriging
metamodel based on discretization errorbounds. International
Journal for Numerical Methods in Engineering 121(20): 4566-
4583. https://doi.org/10.1002/nme.6451

Parés N, Diez P & Huerta A (2006) Subdomain-based flux-freeapos-
teriori error estimators. Computer Methods in Applied Mechanics
and Engineering 195(4-6): 297-323. https://doi.org/10.1016/j.cma.
2004.06.047

Paris PC (1961) A rational analytic theory of fatigue. Trends Engin
13:9-14

Pasqualini O, Schoefs F, Chevreuil M & Cazuguel M (2013)
Measurements and statistical analysis of fillet weld geometrical

parameters for probabilistic modelling of the fatigue capacity.
Marine structures 34: 226-248. https://doi.org/10.1016/j.marstruc.
2013.10.002

Pled F, Chamoin L & Ladeveze P (2011) On the techniques for
constructing admissible stress fields in model verification: Perfor-
mances on engineering examples. International Journal for Numeri-
cal Methods in Engineering 88(5): 409-441. https://doi.org/10.1002/
nme.3180

Rey V, Gosselet P & Rey C (2014) Study of the strong prolongation
equation for the construction of statically admissible stress fields:
implementation and optimization. Computer Methods in Applied
Mechanics and Engineering 268: 82-104. https://doi.org/10.1016/
j.cma.2013.08.021

Riter M & Stein E (2006) Goal-orientedaposteriori error estimates in
linear elastic fracture mechanics. Computer methods in applied
mechanics and engineering 195(4-6): 251-278. https://doi.org/10.
1016/j.cma.2004.05.032

Sarpkaya T (1986) Force on a circular cylinder in viscous oscillatory flow
at low keulegan—carpenter numbers. Journal of Fluid Mechanics
165: 61-71. https://doi.org/10.1017/S0022112086002999

Schoefs F (2008) Sensitivityapproachfor modelling the environmental
loading of marine structures through a matrix response surface.
Reliability Engineering & System Safety 93(7): 1004-1017. https://
doi.org/10.1016/j.ress.2007.05.006

Schoefs F & Boukinda ML (2010) Sensitivityapproachfor modeling
stochastic field ofkeulegan- carpenter and reynoldsnumbers
througha matrix response surface. Journal of offshore mechanics
and Arctic engineering 132(1). https://doi.org/10.1115/1.3160386

Soares CG & Garbatov Y (1996) Fatigue reliability of the ship hull
girder accounting for inspection and repair. Reliability Engineering
& System Safety 51(3): 341-351. https://doi.org/10.1016/0951-8320
(95)00123-9

Strouboulis T, Babuska I, Datta D, Copps K & Gangaraj S (2000)
Aposteriori estimation and adaptive control of the error in the
quantity of interest. part i: Aposteriori estimation of the error in the
von mises stress andthe stress intensityfactor. Computer Methods
in Applied Mechanics and Engineering 181(1-3): 261-294. https://
doi.org/10.1016/S0045-7825(99)00077-8

Veritas DN (1996) Guidelines for offshore structural reliability analysis-
application to jacket platforms (Tech. Rep.). DNV Report.

Veritas DN (2010) DNV-RP-C203 fatigue design of offshore steel
structures. DNV, Baerum, Norway.

Veritas DN (2014) Dnv-rp-c205: Environmental conditions and envi-
ronmental loads (Tech. Rep.). DNV GL

Waeytens J, Chamoin L & Ladevéze P (2012) Guaranteederrorbounds
onpointwise quantities of interest for transient viscodynamics
problems. Computational Mechanics 49(3): 291-307. https://doi.
0rg/10.1007/s00466-011-0642-1

Zienkiewicz O & Zhu J (1987) A simple error estimator and adaptive
procedure for practical engineerng analysis. International journal
for numerical methods in engineering 24(2): 337-357. https://doi.
0rg/10.1002/nme.1620240206





