Al Sam A, Szasz R, Revstedt J (2017) Wind-wave interaction effects on a wind farm power production. J Energy Resour Technol 139(5):051213. https://doi.org/10.1115/1.4036542
Akar S, Akdo?an DA (2016). Environmental and economic impacts of wave energy. In: M. Mustafa Erdo?du, et al. (Eds.). Some public policy recommendations for implementation. Handbook of Research on Green Economic Development Initiatives and in Turkey. IGI Global, 285-309. https://doi.org/10.4018/978-1-5225-0440-5.ch013
Appendini CM, Urbano-Latorre CP, Figueroa B, Dagua-Paz CJ, Torres-Freyermuth A, Salles P (2015) Wave energy potential assessment in the Caribbean low level jet using wave hindcast information. Appl Energy 137:375–384. https://doi.org/10.1016/j.apenergy.2014.10.038
Arce L, Bayne S (2020) Analysis of offshore wind energy in Colombia: current status and future opportunities. International Journal of Engineering Research 9(11):610–619. https://doi.org/10.17577/IJERTV9IS110277
Astariz S, Perez-Collazo C, Abanades J, Iglesias G (2015a) Co-located wave-wind farms: economic assessment as a function of layout. Renew Energy Elsevier 83(C):837–849. https://doi.org/10.13140/RG.2.1.3392.5285
Astariz S, Abanades J, Pérez-Collazo C, Iglesias G (2015b) Improving wind farm accessibility for operation & maintenance through a co-located wave farm: influence of layout and wave climate. Energy Convers Manage 95:229–241. https://doi.org/10.1016/j.enconman.2015.02.040
Astariz S, Pérez-Collazo C, Abanades J, Iglesias G (2015c) Co-located wind-wave farm synergies (operation & maintenance): a case study. Energy Convers Manage 95:63–75. https://doi.org/10.1016/j.enconman.2014.11.060
Astariz S, Iglesias G (2015) Enhancing wave energy competitiveness through co-located wind and wave energy farms. A review on the shadow effect. Energies 9:7344–7366. https://doi.org/10.3390/en8077344
Astariz S, Iglesias G (2017) The collocation feasibility index – a method for selecting sites for co-located wave and wind farms. Renewable Energy 103:811–824. https://doi.org/10.1016/j.renene.2016.11.014
Azzellino A, Lanfredi C, Riefolo L, De Santis V, Contestabile P, Vicinanza D (2019) Combined exploitation of offshore wind and wave energy in the Italian seas: a spatial planning approach. Front Energy Res 7:42. https://doi.org/10.3389/fenrg.2019.00042
Barthelmie RJ (2001) Evaluating the impact of wind induced roughness change and tidal range on extrapolation of offshore vertical wind speed profiles. Wind Energy 4(3):99–105. https://doi.org/10.1002/we.45
Barthelmie RJ, Badger J, Pryor SC, Hasager CB, Christiansen MB, Jørgensen BH (2007) Offshore coastal wind speed gradients: issues for the design and development of large offshore windfarms. Wind Eng 31(6):369–382. https://doi.org/10.1260/030952407784079762
Bundhoo ZMA (2017) Renewable energy exploitation in the small island developing state of Mauritius: current practice and future potential. Renew Sustain Energy Rev 82:2029–2038. https://doi.org/10.1016/j.rser.2017.07.019
Chadee XT, Clarke RM (2014) Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data. Renew Sustain Energy Rev 30:45–58. https://doi.org/10.1016/j.rser.2013.09.018
Chadee X, Clarke RM (2018) Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data. Renew Sust Energy Rev 30:45–58. https://doi.org/10.1016/j.rser.2013.09.018
Chadee XT, Seegobin NR, Ricardo C (2017) Optimizing the weather research and forecasting model for mapping the near-surface wind resources over the southernmost Caribbean Islands of Trinidad and Tobago. Energies 10(7):931. https://doi.org/10.3390/en10070931
Chen AA, Stephens AJ, Koon R, Ashtine M, Koon KM (2020) Pathways to climate change mitigation and stable energy by 100% renewable for a small island: Jamaica as an example. Renew Sustain Energy Rev 121:109671. https://doi.org/10.1016/j.rser.2019.109671
Christakos K, Varlas G, Chellotis I, Spyrou C, Aarnes AJ, Furevik BR (2020a) Characterization of wind-sea- and swell-induced wave energy along the Norwegian Coast. Atmosphere 11(2):166. https://doi.org/10.3390/atmos11020166
Christakos K, Furevik BR, Aarnes OJ, Breivik ?, Tuomi L, Byrkjedal ? (2020b) The importance of wind forcing in fjord wave modelling. Ocean Dyn 70:57–75. https://doi.org/10.1007/s10236-019-01323-w
Corrêa Radünz W, Sakagami Y, Haas R, Petry AP, Passos JC, Miqueletti M, Dias E (2020) The variability of wind resources in complex terrain and its relationship with atmospheric stability. Energy Convers Manage 222:113249. https://doi.org/10.1016/j.enconman.2020.113249
Costoya X, deCastro M, Santos F, Sousa MC, Gómez-Gesteira M (2019) Projections of wind energy resources in the Caribbean for the 21st century. Energy 178:356–367. https://doi.org/10.1016/j.energy.2019.04.121
de Farias EGG, Lorenzzetti JA, Chapron B (2012) Swell and wind-sea distributions over the mid-latitude and tropical north Atlantic for the period 2002–2008. Int J Oceanogr 8:306723. https://doi.org/10.1155/2012/306723
Dugstad A, Grimsrud KM, Kipperberg G, Lindhjem H, Navrud S (2020) Acceptance of wind power development and exposure – not-in-anybody’s-backyard. Energy Policy 147:111780. https://doi.org/10.1016/j.enpol.2020.111780
Frank HP, Larsen SE, Højstrup J, (2000) Simulated wind power off-shore using different parameterizations for the sea surface roughness. Wind Energy 3(2):67–79
Gao Q, Ertugrul N, Ding B, Negnevitsky M (2021). Offshore wind, wave and integrated energy conversion systems: a review and future. Australasian Universities Power Engineering Conference, AUPEC 2020, Hobart, Australia.
Gideon RA, Bou-Zeid E (2021) Collocating offshore wind and wave generators to reduce power output variability: a multi-site analysis. Renew Energy 163:1548–1559. https://doi.org/10.1016/j.renene.2020.09.047
Gkaraklova S, Chotzoglou P, Loukogeorgaki E (2020) Frequency-based performance analysis of an array of wave energy converters around a hybrid wind-wave monopile support structure. J Mar Sci Eng 9(1):2. https://doi.org/10.3390/jmse9010002
Garcia C, Canals M (2015). Wave energy resource assessment and recoverable wave energy in Puerto Rico and the US Virgin Islands. OCEANS, 1-5. https://doi.org/10.1109/OCEANS-Genova.2015.7271639
Glazman RE, Pilorz SH (1990) Effects of sea maturity on satellite altimeter measurements. J Geophys Res Oceans 95(C3):2857–2870. https://doi.org/10.1029/JC095iC03p02857
Guillou N, Lavidas G, Ghapalain G (2020) Wave energy resource assessment for exploitation - A review. J Mar Sci Eng 8(9):705. https://doi.org/10.3390/jmse8090705
Hildebrandt A, Cossu R (2018) Misalignment and lag time of wind and wave occurrence based on 10 years measurements in the North Sea near the German Coast. Coast Eng Proc 1(36):13. https://doi.org/10.9753/icce.v36.waves.13
Hildebrandt A, Schmidt B, Marx S (2019) Wind-wave misalignment and a combination method for direction dependent extreme incidents. Ocean Eng 180:10–22. https://doi.org/10.1016/j.oceaneng.2019.03.034
Homayoun E, Ghassemi H, Ghafari H (2019) Power performance of the combined monopile wind turbine and floating buoy with heave-type wave energy converter. Pol Marit Res 26(3):107–114. https://doi.org/10.2478/pomr-2019-0051
IRENA (2020). Fostering a blue economy: offshore renewable energy. International Renewable Energy Agency, Abu Dhabi.
Jensen CU, Panduro TE, Lundhede T (2014) The vindication of Don Quixote: the impact of noise and visual pollution from wind turbines. Land Econ 90(4):668–682. https://doi.org/10.3368/le.90.4.668
Jury MR (2018) Characteristics and meteorology of atlantic swells reaching the Caribbean. J Coastal Res 34:400–412. https://doi.org/10.2112/JCOASTRES-D-17-00029.1
Kang T, Yang H (2019) Influence on floating offshore wind turbine structure by wave energy generated under extreme Metocean conditions. J Korean Soc Manuf Technol Eng 28(6):375–382. https://doi.org/10.7735/ksmte.2019.28.6.375
Klöck C (2016) Fuelling the Pacific: aid for renewable energy across Pacific Island countries. Renew Sustain Energy Rev 58:311–318. https://doi.org/10.1016/j.rser.2015.12.156
Koon RK, Marshall S, Morna D, McCallum R, Ashtine MI (2020) A review of Caribbean geothermal energy resource potential. The West Indian Journal of Engineering 42(2):37–43
Kuang Y, Zhang Y, Zhou B, Li C, Cao Y, Li L (2016) A review of renewable energy utilization in islands. Renew Sustain Energy Rev 59:504–513. https://doi.org/10.1016/j.rser.2016.01.014
Lee H, Yoo S, Huh S (2020) Public perspectives on reducing the environmental impact of onshore wind farms: a discrete choice experiment in South Korea. Environ Sci Pollut Res 27(20):25582–25599. https://doi.org/10.1007/s11356-020-08949-0
Lemessy KG, Manohar K, Adeyanju A (2019). A review of wave energy conversion and its place in the Caribbean region. The 13th European Wave and Tidal Energy Conference (EWTEC 2019), Napoli, Italy.
Liu Z, Chen H, Xu Y, Cheng Y, Zhao X (2021) Sensitivity analysis of wave direction in wave numerical model. IOP Conf Ser Earth Environ Sci 621:012076. https://doi.org/10.1088/1755-1315/621/1/012076
Loukogeorgaki E, Vagiona DG, Vasileiou M (2018) Site selection of hybrid offshore wind and wave energy systems in Greece incorporating environmental impact assessment. Energies 11(8):2095. https://doi.org/10.3390/en11082095
Ma X, Chen Y, Yi W, Wang Z (2021) Prediction of extreme wind speed for offshore wind farms considering parametrization of surface roughness. Energies 14(4):1033. https://doi.org/10.3390/en14041033
Maria-Arenas A, Garrido AJ, Rusu E, Garrido I (2019) Control strategies applied to wave energy converters: state of the art. Energies 12(16):3115. https://doi.org/10.3390/en12163115
Mazarakos T, Konispoliatis D, Katsaounis G, Polyzos S, Manolas D, Voutsinas S, Soukissian T, Mavrakos SA (2019). Numerical and experimental studies of a multi—purpose floating TLP structure for combined wind and wave energy exploitation. Journal of Mediterranean Marine Science, 20(4), 745–763. https://doi.org/10.12681/mms.19366
Ochs A, Konold M, Auth K, Musolino E, Killeen P (2015). Caribbean sustainable energy roadmap and strategy: baseline report and assessment. Worldwatch Institute, Washington, DC. https://doi.org/10.13140/RG.2.1.4351.1922
Optis M, Kumler A, Brodie J, Miles T (2021) Quantifying sensitivity in numerical weather prediction-modeled offshore wind speeds through an ensemble modeling approach. Wind Energy 24(9):957–973. https://doi.org/10.1002/we.2611
Ortega S, Osorio AF, and Agudelo P (2013) Estimation of the wave power resource in the Caribbean Sea in areas with scarce instrumentation. Case Study: Isla Fuerte, Colombia. Renew Energy 57(C):240–248
Ozkan C, Mayo T (2019) The renewable wave energy resource in coastal regions of the Florida peninsula. Renewable Energy 139:530–537. https://doi.org/10.1016/j.renene.2019.02.090
Pérez-Collazo C, Pemberton R, Greaves D, Iglesias G (2019) Monopile-mounted wave energy converter for a hybrid wind-wave system. Energy Convers Manag 199:111971. https://doi.org/10.1016/j.enconman.2019.111971
Porchetta S, Temel O, Muñoz-Esparza DS, Reuder J, Monbaliu J, van Beek J, van Lipzig N (2019) A new roughness length parameterization accounting for wind-wave (mis)alignment. Atmospheric Chem Phys 19:6681–6700. https://doi.org/10.5194/acp-19-6681-2019
Praene JP, Fakra D, Benard F, Ayagapin L (2021) Comoros’s energy review for promoting renewable energy sources. Renew Energy 169:885–893. https://doi.org/10.1016/j.renene.2021.01.067
Pryor SC, Shepherd TJ, Bukovsky M, Barthelmie RJ (2020). Assessing the stability of wind resource and operating conditions. Journal of Physics: Conference Series, 1452 012084. NAWEA Wind Tech 2019, Amherst, MA, USA. https://doi.org/10.1088/1742-6596/1452/1/012084
Ramos DA, Guedes V, Pereira RRS (2017). Atmospheric stability in wind resource assessment: development of a new tool for an accurate wind profile estimate. Brazil Wind Power 2016 Conference and Exhibition, Rio de Janeiro, Brazil.
Reikard G, Robertson B, Bidlot J (2015) Combining wave energy with wind and solar: short-term forecasting. Renew Energy 81:442–456. https://doi.org/10.1016/j.renene.2015.03.032
Rueda-Bayona JG, Guzmán A, Eras JJC, Silva-Casarín R, Bastidas-Arteaga E, Horrillo-Caraballo J (2019) Renewables energies in Colombia and the opportunity for the offshore wind technology. J Clean Prod 220:529–543. https://doi.org/10.1016/j.jclepro.2019.02.174
Rusu E, Onea F (2019) An assessment of the wind and wave power potential in the island environment. Energy 175:830–846. https://doi.org/10.1016/j.energy.2019.03.130
Rusu L, Raileanu AB, Onea F (2018) A comparative analysis of the wind and wave climate in the black sea along the shipping routes. Water 10(7):924. https://doi.org/10.3390/w10070924
Semedo A, Su?elj K, Rutgersson A (2008). Variability of wind sea and swell waves in the North Atlantic based on ERA-40 Re-analysis. Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 119–129.
Semedo A, Su?elj K, Rutgersson A, Sterl A (2011) A global view on the wind sea and swell climate variability from ERA-40. J Clim 24(5):1461–1479. https://doi.org/10.1175/2010JCLI3718.1
Shadman M, Estefen SE, Rodriguez CA, Nogueira ICM (2018) A geometrical optimization method applied to a heaving point absorber wave energy converter. Renew Energy 115:533–546. https://doi.org/10.1016/j.renene.2017.08.055
Sterl S, Donk P, Willems P, Thiery W (2020) Turbines of the Caribbean: decarbonising Suriname’s electricity mix through hydro-supported integration of wind power. Renew Sustain Energy Rev 134:110352. https://doi.org/10.1016/j.rser.2020.110352
Silander MF, Moreno CGG (2019) On the spatial distribution of the wave energy resource in Puerto Rico and the United States Virgin Islands. Renew Energy 136:442–451. https://doi.org/10.1016/j.renene.2018.12.120
Sørum SH, Krokstad JR, Amdahl J (2019). Wind-wave directional effects on fatigue of bottom-fixed offshore wind turbine. Journal of Physics: Conference Series, 1356, 012011, 16th Deep Sea Offshore Wind R&D Conference, Trondheim, Norway. https://doi.org/10.1088/1742-6596/1356/1/012011
Verma AS, Jiang Z, Ren Z, Gao Z, Vedvik NP (2020) Effects of wind-wave misalignment on wind turbine blade mating process: impact velocities, blade root damages and structural safety assessment. J Mar Sci Appl 19(2):218–233. https://doi.org/10.1007/s11804-020-00141-7
Wang Y, Zhang L, Michailides C, Wan L, Shi W (2020) Hydrodynamic response of a combined wind-wave marine energy structure. J Mar Sci Eng 8(4):253. https://doi.org/10.3390/jmse8040253
Wang T, Yang Z, Wu W, Grear M (2018) A sensitivity analysis of the wind forcing effect on the accuracy of large-wave hindcasting. J Mar Sci Eng 6(4):139. https://doi.org/10.3390/jmse6040139
Wei K, Shen Z, Ti Z, Qin S (2021) Trivariate joint probability model of typhoon-induced wind, wave and their time lag based on the numerical simulation of historical typhoons. Stoch Env Res Risk Assess 35:325–344. https://doi.org/10.1007/s00477-020-01922-w
Wolsink M (2010) Near-shore wind power – protected seascapes, environmentalists’ attitudes, and the technocratic planning perspective. Land Use Policy 27(2):195–203. https://doi.org/10.1016/j.landusepol.2009.04.004
Zheng K, Sun J, Guan C, Shao W (2016) Analysis of the global swell and wind sea energy distribution using wave watch III. Adv Meteorol 2016(7):8419580. https://doi.org/10.1155/2016/8419580