|Table of Contents|

Citation:
 Farideh Shahbazi,Mahmood Mahmoodi,Reza Ghasemi.Fractional-Order Super-Twisting Sliding-Mode Procedure Design for a Class of Fractional-Order Nonlinear Dynamic Underwater Robots[J].Journal of Marine Science and Application,2020,(1):64-71.[doi:10.1007/s11804-020-00133-7]
Click and Copy

Fractional-Order Super-Twisting Sliding-Mode Procedure Design for a Class of Fractional-Order Nonlinear Dynamic Underwater Robots

Info

Title:
Fractional-Order Super-Twisting Sliding-Mode Procedure Design for a Class of Fractional-Order Nonlinear Dynamic Underwater Robots
Author(s):
Farideh Shahbazi1 Mahmood Mahmoodi1 Reza Ghasemi2
Affilations:
Author(s):
Farideh Shahbazi1 Mahmood Mahmoodi1 Reza Ghasemi2
1 Department of Mathematics, University of Qom, Qom 3716146611, Iran;
2 Department of Engineering, University of Qom, Qom 3716146611, Iran
Keywords:
Underwater robotFractional-order systemSliding-mode controlSuper-twisting algorithmLyapunov function
分类号:
-
DOI:
10.1007/s11804-020-00133-7
Abstract:
The purpose of this study is to design a fractional-order super-twisting sliding-mode controller for a class of nonlinear fractionalorder systems. The proposed method has the following advantages:(1) Lyapunov stability of the overall closed-loop system, (2) output tracking error’s convergence to zero, (3) robustness against external uncertainties and disturbances, and (4) reduction of the chattering phenomenon. To investigate the performance of the method, the proposed controller is applied to an autonomous underwater robot and Lorenz chaotic system. Finally, a simulation is performed to verify the potential of the proposed method.

References:

Aghababa MP (2012) Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Commun Nonlinear Sci Numer Simul 17(6):2670-2681. https://doi.org/10.1016/j.cnsns.2011.10.028
Aslam MS, Raja MAZ (2015) A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach. Signal Process 107(1):433-443.https://doi.org/10.1016/j.sigpro.2014.04.012
Birs I, Muresan C, Folea S, Prodan O, Kovacs L (2016) Vibration suppression with fractional-order PI λDμ controller. In:International Conference on Automation, Quality and Testing, Robotics(AQTR), Cluj-Napoca, Romania, pp 1-10. https://doi.org/10.1109/AQTR.2016.7501365
Birs I, Muresan C, Nascu I, Ionescu C (2019) A survey of recent advances in fractional order control for time delay systems. IEEE Access 7(1):66864-66878. https://doi.org/10.1109/ACCESS.2019.2902567
Cajo R, Copot C, Ionescu C, Keyseri R, Plaza D (2018) Fractional order PD path-following control of an AR. In:Drone Quadrotor, 12th International Symposium on Applied Computational Intelligence and Informatics, Timi?oara, Romania, pp 291-296. https://doi.org/10.1109/SACI.2018.8440944
Cajo R, Mac T, Plaza D, Copot C, Keyseri R, Ionescu C (2019) A survey on fractional order control techniques for unmanned aerial and ground vehicles. IEEE Access 7(1):66878-66885. https://doi.org/10.1109/ACCESS.2019.2918578
Chen DY, Liu Y, Ma X, Zhang R (2011) Control of a class of fractionalorder chaotic systems via sliding mode. Nonlinear Dynamics 67(1):893-901. https://doi.org/10.1007/s11071-011-0002-x
Ibrir S, Bettayeb M (2015) New sufficient conditions for observer-based control of fractional-order uncertain systems. Automatica 59(1):216-223. https://doi.org/10.1016/j.automatica.2015.06.002
Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations, vol 204. Elsevier Science Limited, pp 200-210
Lan L, Dianbo R, Jiye Z (2008) Terminal sliding mode control for vehicle longitudinal following in automated highway system. In:Proceedings of 27th Chinese Control Conference, Kunming, pp 605-608. https://doi.org/10.1109/CHICC.2008.4605782
Magin RL (2006) Fractional calculus in bioengineering. Begell House Redding, pp 126-135
Munoz E, Gaviria C, Vivas A (2007) Terminal sliding mode control for a SCARAR robot. International Conference on Control, Instrumentation and Mechatronics Engineering, Johor Bahru, Malaysia
Petras I (2010) Fractional-order nonlinear systems-modeling, analysis, and simulation. Spring-Verlag, Berlin, pp 160-170
Podlubny I (1998) Fractional differential equations:an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press 198:110-122
Rooka S, Ghasemi R (2018) Fuzzy fractional sliding mode observer design for a class of nonlinear dynamics of the cancer disease. Int J Autom Control 12(1):62-77. https://doi.org/10.1504/IJAAC.2018.088602
Senejohnny DM, Delavari H (2012) Active sliding observer scheme based fractional chaos synchronization. Commun Nonlinear Sci Numer Simul 17(11):4373-4383. https://doi.org/10.1016/j.cnsns.2012.03.004
Sharafian A, Ghasemi R (2017) Fractional neural observer design for a class of nonlinear fractional chaotic systems. Neural Comput & Applic 1(1):1-13. https://doi.org/10.1007/s00521-017-3153-y
Tabataba’i-Nasab F, Moosavian S, Khalaji A (2018) Potentially directed robust control of an underwater robot in the presence of obstacles. Modares Mech Eng 18(3):1-8
Tavazoei MS, Haeri M, Jafari S, Bolouki S, Siami M (2008) Some applications of fractional calculus in the suppression of chaotic oscillations. IEEE Trans Ind Electron 55(11):4094-4101. https://doi.org/10.1109/TIE.2008.925774
Utkin V (1992) Sliding mode in control and optimization. SpringerVerlag, Berlin, pp 130-145
Valdes-Parada F, Ochoa-Tapia J, Alvarez-Ramirez J (2007) Effective medium equations for fractional Fick’s law in porous media. Physica A 373:339-353. https://doi.org/10.1016/j.physa.2006.06.007
Wang L, Jia HM, Zhang LJ, Wang HB (2012) Horizontal tracking control for AUV based on nonlinear sliding mode. In:International Conference on Information and Automation (IEEE). ICIA 2012, Shenyang, pp 460-463. https://doi.org/10.1109/ICInfA.2012.6246850
Wang H, Wang D, Peng Z (2014) Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation. Nonlinear Dynamics 77(1):107-117. https://doi.org/10.1007/s11071-014-1277-5
Yan L, Chen YQ, Podlubny I (2009) Mittag-Leffler stability of fractional-order non-linear dynamic systems. Automatica 45(8):1965-1969. https://doi.org/10.1016/j.automatica.2009.04.003
Yuh J (2000) Design and control of autonomous underwater robots:a survey. Auton Robot 8(1):7-24. https://doi.org/10.1023/A:1008984701078

Memo

Memo:
Received date:2019-03-27;Accepted date:2019-08-23。
Corresponding author:Reza Ghasemi,r.ghasemi@qom.ac.ir
Last Update: 2020-07-24