|Table of Contents|

Citation:
 tefano Ghelardi,Cesare Rizzo,Diego Villa.Three-Dimensional Fluid-Structure Interaction Case Study on Cubical Fluid Cavity with Flexible Bottom[J].Journal of Marine Science and Application,2017,(4):382-394.[doi:10.1007/s11804-017-1433-7]
Click and Copy

Three-Dimensional Fluid-Structure Interaction Case Study on Cubical Fluid Cavity with Flexible Bottom

Info

Title:
Three-Dimensional Fluid-Structure Interaction Case Study on Cubical Fluid Cavity with Flexible Bottom
Author(s):
Stefano Ghelardi Cesare Rizzo Diego Villa
Affilations:
Author(s):
tefano Ghelardi Cesare Rizzo Diego Villa
DITEN-Polo Navale, Università degli Studi di Genova, via Montallegro, Genova 1 I-16145, Italy
Keywords:
fluid-structure interactionbenchmarkfinite volume methodfinite element methodpartitionedmonolithicADINATM
分类号:
-
DOI:
10.1007/s11804-017-1433-7
Abstract:
In this paper, we report our study on a numerical fluid-structure interaction problem originally presented by Mok et al. (2001) in two dimensions and later studied in three dimensions by Valdés Vazquez (2007), Lombardi (2012), and Trimarchi (2012). We focus on a 3D test case in which we evaluated the sensitivity of several input parameters on the fluid and structural results. In particular, this analysis provides a starting point from which we can look deeper into specific aspects of these simulations and analyze more realistic cases, e.g., in sails design. In this study, using the commercial software ADINATM, we addressed a well-known unsteadiness problem comprising a square box representing the fluid domain with a flexible bottom modeled with structural shell elements. We compared data from previously published work whose authors used the same numerical approach, i.e., a partitioned approach coupling a finite volume solver (for the fluid domain) and a finite element solver (for the solid domain). Specifically, we established several benchmarks and made comparisons with respect to fluid and solid meshes, structural element types, and structural damping, as well as solution algorithms. Moreover, we compared our method with a monolithic finite element solution method. Our comparisons of new and old results provide an outline of best practices for such simulations.

References:

ADINA, 2015. Theory and modeling guide. v.9.2 ed. ADINA R&D, Watertown, USA.
Baiges J, Codina R, 2010. The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems.International Journal for Numerical Methods in Engineering, 81(12), 1529-1557.
DOI:10.1002/nme.2740
Bathe KJ, 1996. Finite element procedures. Prentice Hall, Upper Saddle River, USA, 796-801.
Causin P, Gerbeau JF, Nobile F, 2005. Added-mass effect in the design of partitioned algorithms for fluid-structure problems.Computer Methods in Applied Mechanics and Engineering, 194(42-44), 4506-4527.
DOI:10.1016/j.cma.2004.12.005
Chapelle D, Bathe KJ, 2011. The finite element analysis of shells -Fundamentals. Heidelberg:Springer, Berlin.
De Boer A, van Zuijlen AH, Bijl H, 2007. Review of coupling methods for non-matching meshes. Computer Methods in Applied Mechanics and Engineering, 196(8), 1515-1525.
DOI:10.1016/j.cma.2006.03.017
Degroote J, Bathe KJ, Vierendeels J, 2009. Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Computers & Structure, 87(11-12), 793-801.
DOI:10.1016/j.compstruc.2008.11.013
Donea A, Huerta A, Pontho JP, Rodriguez-Ferran A, 2004.Arbitrary Lagrangian-Eulerian methods. In:Erwin Stein, René de Borst, Thomas JR Hughes, Eds. Encyclopedia of Computational Mechanics. John Wiley & Sons, Hoboken, USA.Volume 1:Fundamentals, Chapter 1, 1-25.
Förster C, Wall WA & Ramm E, 2007. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 196(7), 1278-1293.
DOI:10.1016/j.cma.2006.09.002
Fossa M, Rizzo C, Tani G, Viviani M, 2012. Simulations of a sloshing experiment by FEM CFD and FEM FSI approaches.International Society of Offshore and Polar Engineers (ISOPE), Rhodes (Rodos), 530-538.
Gerbeau JF, Vidrascu M, 2003. A quasi Newton algorithm based on a reduced model for fluid structure interaction problems in blood flows. Mathematical Modelling and Numerical Analysis, 37(4), 631-647.
DOI:10.1051/m2an:2003049
Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies H, 2011.
Nonlinear fluid-structure interaction problem. Part 1:implicit partitioned algorithm, nonlinear stability proof and validation examples. Computational Mechanics, 47(3), 305-323.
DOI:10.1007/s00466-010-0545-6
Lombardi M, 2012. Numerical simulation of a sailing boat:free surface, fluid structure interaction and shape optimization. PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 96-99.
Michler C, Hulshoff SJ, van Brummelen EH, de Borst R, 2004. A monolithic approach to fluid-structure interaction. Computers & fluids, 33, 839-848.
DOI:10.1016/j.compfluid.2003.06.006
Mok D, Wall WA, Ramm E, 2001. Accelerated iterative substructuring schemes for instationary fluid-structure interaction. First MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, USA, 2, 1325-1328.
Szabò G, Györgyi J, 2009. Three-dimensional Fluid-Structure Interaction Analysis for Bridge Aeroelasticity. Proceedings of the World Congress on Engineering and Computer Science, San Francisco, 2, 892-897.
Trimarchi D, 2012. Analysis of downwind sail structures using non-linear shell finite elements wrinkle development and fluid interaction effects. PhD thesis, Faculty of Engineering and the Environment, University of Southampton, Southampton, 210-214.
Trimarchi D, Rizzo CM, 2009. A FEM-Matlab code for fluid-structure interaction coupling with application to sail aerodynamics of yachts. 13th International Congress of International Maritime Association of Mediterranean (IMAM), Towards the Sustainable Marine Technology, Istanbul, 3, 907-916.
Valdés Vazquez JG, 2007. Nonlinear Analysis of orthotropic membrane and shells structures including fluid-structure interaction. PhD thesis, Departament de Resistència de Materials i Estructures a l’Enginyeria, Universitat Politecnica de Catalunya, Barcelona, 163-166.
Van Loon R, Anderson PD, van de Vosse FN, Sherwin SJ, 2007.Comparison of various fluid-structure interaction methods for deformable bodies. Computers & Structures, 85(11-14), 833-843.
DOI:10.1016/j.compstruc.2007.01.010
Wagner S, 2005. Flow-structure interactions on helicopter rotors in forward flight. GAMM-Mitteilungen, 28(1), 7-36.
DOI:10.1002/gamm.201490015/
Wang L, Kolios A, Delafin PL, Bird T, 2015. Fluid structure interaction modelling of a novel 10MW vertical-axis wind turbine rotor based on computational fluid dynamics and finite element analysis. European Wind Energy Association Conference, Paris, 1-9.

Memo

Memo:
Received date:2016-10-18;Accepted date:2017-06-04。
Corresponding author:Diego Villa,Email:diego.villa@unige.it
Last Update: 2017-12-02