|Table of Contents|

Citation:
 Atena Amiri,Roozbeh Panahi,Soheil Radfar.Parametric Study of Two-Body Floating-Point Wave Absorber[J].Journal of Marine Science and Application,2016,(1):41-49.[doi:10.1007/s11804-016-1342-1]
Click and Copy

Parametric Study of Two-Body Floating-Point Wave Absorber

Info

Title:
Parametric Study of Two-Body Floating-Point Wave Absorber
Author(s):
Atena Amiri Roozbeh Panahi Soheil Radfar
Affilations:
Author(s):
Atena Amiri Roozbeh Panahi Soheil Radfar
Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran 14115-143, Iran
Keywords:
floating-point absorberwave energyenergy absorptionWave Energy Converter(WEC)Power Take Off(PTO)numerical simulation
分类号:
-
DOI:
10.1007/s11804-016-1342-1
Abstract:
In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water.Analyses are performed in both the frequency and time domains.The converter is a two-body floating-point absorber(FPA) with one degree of freedom in the heave direction.Its two parts are connected by a linear mass-spring-damper system.The commercial ANSYS-AQWA software used in this study performs well in considering validations.The velocity potential is obtained by assuming incompressible and irrotational flow.As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient.To validate the model, we compared our numerical results with those from similar experiments.Our study results can clearly help to maximize the converter’s efficiency when considering specific conditions.

References:

Alves M, 2011. Wave to Wire Model Implementation. Wave Energy Centre, Portugal, Report, 1-71.
Babarit A, Duclos G, Clément AH, 2004. Comparison of latching control strategies for a heaving wave energy device in random sea. Applied Ocean Research, 26, 227-238.
DOI:10.1016/j.apor.2005.05.003
Backer GD, 2009. Hydrodynamic Design Optimization of Wave Energy Converters Consisting of Heaving Point Absorbers.Ghent University, Zwijnaarde, Belgium.
Barbarit A, Clement A, 2006. Optimal latching control of a wave energy device in regular and irregular waves.Applied Ocean Research, 28, 77-91.
DOI:10.1016/j.apor.2006.05.002
Beirao P, Malça C, 2014. Design and analysis of buoy geometries for a wave energy converter. International Journal of Energy and Environmental Engineering, 5, 1-11.
DOI:10.1007/s40095-014-0091-7
Bozzi S, Miquel A, Antonini A, Passoni G, Archetti R, 2013.Modeling of a Point Absorber for Energy Conversion in Italian Seas. Energies, 6, 3033-3051.
DOI:10.3390/en6063033
Budal K, Falnes J, 1978. Wave power conversion by point absorbers. Norwegian Maritime Research, 6(4), 2-11
Courtesy of Ocean Power Technologies, 2013.www.power-technology.com.
Cruz J, 2008. Ocean Wave Energy:Current Status and Future Perspectives. Springer.
Drew B, Plummer AR, Sahinkaya MN, 2009. A review of wave energy converter technology. Proc Inst Mech Eng Part A:J.Power Energy, Sage Publications, London, England, 223, 887-902.
DOI:10.1243/09576509JPE782
Eriksson M, Isberg J, Leijon M, 2005. Hydrodynamic modelling of a direct drive wave energy converter. International Journal of Engineering Science, 43, 1377-1387.
DOI:10.1016/j.ijengsci.2005.05.014
Falcão, A, 2010. Wave energy utilization:A review of the technologies. Renew Sustain Energy, Rev., 14, 899-918.
DOI:10.1016/j.rser.2009.11.003
Falnes J, 1995. Principles for Capture of Energy from Ocean Waves.Phase Control and Optimum Oscilation. Technical Report, Institutt for fysikk, Norway.
Falnes J, 2002. Ocean waves and oscillating systems:linear interactions including wave-energy extraction. Cambridge University Press, United Kingdom.
Falnes J, 2007. A review of wave-energy extraction. Marine Structures, 20, 185-201.
DOI:10.1016/j.marstruc.2007.09.001
Fusco F, Ringwood J, 2011. Quanti_cation of the prediction requirements in reactive control of wave energy converters.Center for Ocean Energy Research National University of Ireland Maynooth, Ireland.
Goggins J, Finnegan W, 2014. Shape optimisation of floating wave energy converters for a specified wave energy spectrum. Renew Energy, 71, 208-220.
DOI:10.1016/j.renene.2014.05.022
Iglesias G, Alvarez M, Garcia P, 2010. Wave Energy Converters, University of Santiago de Compostela, Hydrodynamic Eng.Encyclopedia Of Life and Support Systems(EOLSS), Available online at:www.eolss.net/sample-chapters/c08/E3-08-15.
Journée JMJ, Massie WW, 2001. Offshore hydrodynamics. Delft University of Technology. Online course available at:ocw.tudelft.nl Kristiansen E, Hjulstad A, Egeland O, 2005. State-space representation of radiation forces in time-domain vessel models.Ocean Engineering, 32, 2195-2216.
McCormick ME, 2013. Ocean wave energy conversion. Courier Corporation. United States, ISBN:9780486318165
Nazari M, Ghassemi H, Ghiasi M, Sayehbani M, 2013. Design of the Point Absorber Wave Energy Converter for Assaluyeh Port n.d. Iranica Journal of Energy & Environment, 4, 130-135.
DOI:10.5829/idosi.ijee.2013.04.02.09
Pastor J, Liu Y, 2014. Frequency and time domain modeling and power output for a heaving point absorber wave energy converter. International Journal of Energy and Environmental Engineering, 5, 1-13.DOI 10.1007/s40095-014-0101-9
Payne GS, Taylor JR, Bruce T, Parkin P, 2008. Assessment of boundary-element method for modelling a free-floating sloped wave energy device. Part 1:Numerical modelling. Ocean Engineering, 35, 333-341.
DOI:10.1016/j.oceaneng.2007.10.006
Taghipour R, Perez T, Moan T, 2008. Hybrid frequency-time domain models for dynamic response analysis of marine structures. Ocean Engineering, 35, 685-705.
DOI:10.1016/j.oceaneng.2007.11.002
Techet AH, 2005. Design principles for ocean vehicles.
Massachusetts Institute of Technology, Department of Ocean Engineering. Online MIT university course available at:http://web.mit.edu/13.42/www/.
Yu YH, Li Y, 2013. Reynolds-Averaged Navier-Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system. Computer & Fluids, 73, 104-114.
DOI:10.1016/j.compfluid.2012.10.007

Memo

Memo:
Received date: 2015-10-01;Accepted date: 2015-12-14。
Corresponding author: Roozbeh Panahi, E-mail:rpanahi@modares.ac.ir
Last Update: 2016-07-06