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Abstract
The path-following control design for an autonomous underwater vehicle (AUV) requires prior full or partial knowledge about the mathematical 
model defined through Newton’s second law based on a geometrical investigation. AUV dynamics are highly nonlinear and time-varying, 
facing unpredictable disturbances due to AUVs operating in deep, hazardous oceanic environments. Consequently, navigation guidance and 
control systems for AUVs must learn and adapt to the time-varying dynamics of the nonlinear fully coupled vehicle model in the presence of 
highly unstructured underwater operating conditions. Many control engineers focus on the application of robust model-free adaptive control 
techniques in AUV maneuvers. Hence, the main goal is to design a novel salp swarm optimization of super twisting algorithm-based second-
order sliding mode controller for the planar path-following control of an AUV through regulation of the heading angle parameter. The finite 
time for tracking error convergence in the horizontal plane is provided through the control structure architecture, particularly for lateral 
deviations from the desired path. The proposed control law is designed such that it steers a robotic vehicle to track a predefined planar path at a 
constant speed determined by an end-user, without any temporal specification. Finally, the efficacy and tracking accuracy are evaluated through 
comparative analysis based on simulation and experimental hardware-in-loop assessment without violating the input constraints. Moreover, the 
proposed control law can handle parametric uncertainties and unpredictable disturbances such as ocean currents, wind, and measurement noise.

Keywords  Autonomous underwater vehicle; Super twisting second-order sliding mode control; Salp Swarm optimization; Planar path 
following control and hardware-in-loop

1  Introduction

The ocean is a rich source of energy and plays a key role 
in forecasting variations in the earth’s climate. Hence, 

numerous studies have been performed to explore natural 
resources and assist with underwater robotic manipulators 
and vehicles. Autonomous underwater vehicles (AUVs) 
are generally employed in underwater interventions owing 
to their excellent maneuvering capabilities and high accu‐
racy in path-following control in spatial space (Guo et al., 
2003). Studies on underwater robotic vehicles have increased 
over the past two to three decades. Owing to improvements 
in technology and the capacity to create intelligent, smarter 
robots, autonomous vehicles are employed for more expe‐
ditions. This situation enables exploring higher-risk areas, 
spending more time underwater, and conducting more pro‐
ductive underwater applications compared with human-
piloted/tethered underwater vehicles (Fossen, 1994). These 
vehicles have been engineered to be strong, adaptable, and 
agile. Consequently, during the past 25 years, substantial 
research has been devoted to developing AUVs that can 
perform a wide range of tasks that are much beyond the 
scope of divers and small submarines; the tasks include 
long-term sample collection and 3D mapping of underwa‐
ter tunnels. These vehicles can dive deeper and stay sub‐
merged for longer periods of time without risking people 
(Lakhekar and Waghmare, 2014).

Controlling underwater vehicles is very challenging due 
to nonlinear, time-varying, and unexpected external distur‐
bances, including sea current fluctuations, which oppose 
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the motion of AUVs. Because the dynamics of an AUV 
are inherently complicated, nonlinear, and time-varying, it 
can neither be neglected nor considerably simplified while 
designing controls. Additionally, depending on the operat‐
ing circumstances, its mass and buoyancy changes (Elmo‐
kadem et al., 2016). The difficulty in precisely simulating 
the hydrodynamic effect and Coriolis force is a substantial 
impediment to AUV autonomy. AUV actuators can gener‐
ate a limited amount of torque. During AUV operation, 
torque requirements may surpass the AUV’s torque limit. 
Thus, actuator saturation is inevitable. This outcome dem‐
onstrates that actuator saturation is a substantial issue in 
the motion control of AUVs. Because linear controllers 
function locally in water, where manually tweaking the 
control settings is challenging, linear controllers may not 
satisfy the desired requirements, specifically when operat‐
ing conditions or the system environment change (Sahu 
and Subudhi, 2014). Despite remarkable progress in the 
field of control design strategies that enable the vehicle to 
operate under parametric uncertainty, varying dynamics, 
unbounded constraints and failures, still need to be devel‐
oped (Rout and Subudhi, 2016). Two aspects contribute to 
the challenges in the field of marine robotics: First, the 
complex dynamics of marine vehicles cannot be disregarded 
or dramatically minimized during the design of the control 
scheme. Second, the designed control scheme is dependent 
on unmeasured states. AUVs pose a control challenge 
because a majority of them are underactuated, imposing 
nonintegrable acceleration constraints (Lakhekar and Roy, 
2014) by having fewer actuated inputs than degrees of 
freedom (DOF). To address this issue, researchers have 
developed advanced control approaches that include intel‐
ligence, adaptive capacity, rapid convergence, and resil‐
ience (Lakhekar and Saundarmal, 2013). Nevertheless, 
throughout the last several decades, much attention has 
been devoted to developing a variety of acceptable control 
approaches for underwater vehicle motion control in 
ocean engineering (Nakamura and Savant, 1992). These 
approaches include traditional PD/PID control (Jalving, 
1994), sliding mode control (SMC; Yoerger and Slotine, 
1985), quasi-SMC (Shet et al., 2023), self-adjusting con‐
trol (Goheen and Jefferys, 1990), suboptimal control 
(Geranmehr and Nekoo, 2015), LQG control (Naeem et al., 
2003), gain scheduling-based control (Silvestre et al., 
2002), feedback control (Pisano and Usai, 2004), backstep‐
ping method (Rout and Subudhi, 2016), linear matrix 
inequality (LMI) convex approach (Innocenti and Campa, 
1999), H ∞ control (Feng and Allen, 2004), and Riccati 
equation-based control (Naik and Singh, 2007). Here, 
most controllers were developed with no or very mini‐
mal knowledge of hydrodynamic coefficients and mari‐
time instabilities such as waves and currents (Antonelli 
et al., 2001). Intelligent methods used for control, such as 
neural networks (NN) (Yuh, 1990), fuzzy logic control 

(FLC) (DeBitetto, 1995), genetic algorithms (GA) (Mou‐
ra et al., 2010), self-organizing control (Lakhekar and 
Waghmare, 2023), and adaptive neuro-fuzzy control 
(Lakhekar et al., 2020), offer a more practical solution for 
route tracking control in such situations.

By contrast, well-documented disadvantages of intelli‐
gent control include the following: Conventional FLC 
requires specialist knowledge about vehicle operating con‐
ditions and several trial-and-error cycles. Suppose the con‐
trolled plant is unpredictable and nonlinear, FLC with 
fixed scaling factors and tedious rules may fail (Lakhekar 
and Roy, 2014). While training time is uncertain in the 
case of NN-based control, it may not be acceptable for 
practical application. Furthermore, NN has the drawback 
of requiring a lengthy training period and a sluggish pace, 
so many systems are incapable of handling it. In addition, 
NNs fail to meet essential characteristics such as quick 
response and minimum computation overload (Yuh, 1990). 
While GA-based control schemes cannot ensure their sta‐
bility, they are frequently utilized as compensatory in most 
previous research works (Moura et al., 2010). Nonlineari‐
ties in the system are not considered by linear quadratic 
regulators and LQG, which may lead to poor performance 
and even instability in maneuvering operations (Naeem 
et al., 2003). Adaptive control appears more effective for 
handling model uncertainty (Antonelli et al., 2001), but 
it requires a large amount of computer power for multivari‐
able higher-order nonlinear systems. Of these, the SMC 
robust control scheme provides a decent path-tracking per‐
formance with an easy-to-understand layout, but it has 
undesired high control activity in the steady-state zone. To 
compensate for the effect of chattering and the unmodeled 
dynamics of the vehicle, researchers have revised and 
extended the robust sliding mode technique to adaptive ter‐
minal SMC (Lakhekar and Waghmare 2018). The integral 
SMC technique is also used to reject and overcome the 
effects of unpredictable disturbance due to ocean waves, 
tides, and currents to stabilize an AUV in ocean space 
(Kim et al., 2015). The second-order sliding mode control 
(SOSMC) technique requires the upper bound of uncer‐
tainty, which is challenging to determine accurately in 
advance for practical applications. The reduction of the 
chattering effect is remarkably influenced by the most suit‐
able choice of hitting gain, which is facilitated by salp 
swarm optimization (SSWO) (Cheng and Wang, 2020). 
With fast vehicle convergence to the predetermined planar 
path, the super twisting algorithm (STA) proposed in this 
paper aims to overcome the flaws and improve the SOSMC 
approach. STA – SMC creates a smooth, continuous control 
signal, thus resolving the chattering issue and achieving 
high accuracy under the effect of quick disturbances (Cha‐
langa et al., 2016).

The main contributions of this paper compared with the 
related investigations are listed as follows:
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• An adaptive STA-based second-order SMC scheme is 
designed for the stabilization and path-following control 
of the nonlinear AUV model.

• An appropriate adaptive parameter-tuning law is sug‐
gested for hitting gain and sliding surface slope through 
the SSWO algorithm to dominate the perturbations of the 
system without the information of their upper bounds.

• A path-following control algorithm is proposed to estab‐
lish a chatter-free robust performance and finite-time con‐
vergence for the AUV model.

• The effectiveness of the proposed technique is verified 
by demonstrative simulation results and experimental 
assessments.

This paper is organized as follows: In Section 2, the 
AUV model is expressed in nonlinear form. In Section 3, 
the proposed overall control method is described, and opti‐
mization is explored. In Sections 4 and 5, various simula‐
tion studies and experimental hardware-in-the-loop (HIL) 
validation demonstrate the efficacy of the recommended 
efficient control technique, respectively. In Section 6, a 
conclusion is drawn.

2  Mathematical modeling of vehicle

Directing an AUV along a defined path at a constant for‐
ward speed is formulated in this section by discussing the 
kinematic and dynamic models of an AUV in the horizon‐
tal plane.

2.1  Controlled path following in a horizontal plane

The path tracking or following problem is described in 
X-Y plane through inertial reference frame {I}, Serret-
Frenet (S-F) frame {F}, and body-fixed frame {B}, as illus‐
trated in Figure 1. The center of mass (CM) of the AUV, 
is well defined along the vehicle’s principal axes (such as 
x longitudinal axis and y transverse axis in the inertial ref‐
erence frame or along axes (xe, ye) in the S-F frame), 
serves as the origin of the body-fixed frame. U is the 

AUV’s net velocity, U = u2 + v2 . The line l indicates the 
distance between the origin of the global coordinate sys‐
tem {I} and the origin of the body coordinate system 
{B}, k represents the distance between the origin of the 
global coordinate system {I} and point S as a reference 
point the on S-F frame.

The AUV heading angle is denoted by ψ, the drift angle 

β = tan− 1( u
v ) is expressed as the angle between the net and 

sway velocities in the {B} coordinate system; the angle 
formed by the S-F frame and the inertial frame is denoted 
as θs. Considering a desired path Ω is followed by an AUV 
with its body frame attached to its center of gravity and cc is 
expected curvature at point S with their length of arc s* in 

horizontal plane. The undersea vehicle’s velocities as indi‐
cated in {I} and {B} are u for forward motion, v for trans‐
verse motion, and r for heading angular motion. The surge 
motion equation along the x-direction, the sway motion 
equation along the y-direction, and the yaw motion equa‐
tion, which is rotational movement along the z-direction for 
the route following control in the x-y domain, comprise the 
vehicle model.

A vehicle model’s corresponding kinematic equations 
must also be considered. The INFANTE AUV model de‐
scribed in (Lapierre and Soetanto, 2007) is the basis for 
the model presented in this paper, and the reader is referred 
to it for more information. The kinematic and dynamic 
equations of AUV can be stated as follows.

2.2  Kinematics of AUV

An underactuated AUV’s kinematic equations can be 
represented by rotating motion along the z-axis as well as 
linear motion along the x, and y axes.

ẋ = ucos (ψ ) − vsin (ψ ) (1)

ẏ = usin (ψ ) + vcos (ψ ) (2)

ψ̇ = r (3)

where (x, y) represents an AUV’s linear coordinates in a 
fixed frame on the ground, ψ is the vehicle’s yaw angle, u 
is the surge, v is the sway and r is the yaw velocity along 
the x, y, and z axes, respectively.

2.3  Dynamics of AUV

The elements that contribute to motion along the z-axis, 
i.e., pitch and heave motion equations, are neglected because 
of the motion of the AUV in the x-y plane. because the 
AUV in this paper is of the flat-fish variety, the roll equa‐
tion of motion is ignored. The following motion equations 
are used as follows.

Figure 1　Serret-frenet frame parameters: Path tracking
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Surges equation of motion:

u̇ =
m22

m11

vr − Xu

m11

u − Xu ||u

m11

u ||u +
1

m11

Fu +
τEu

m11

(4)

Sway equation of motion:

v̇ =− m22

m22

ur − Yv

m22

v − Yv || v

m22

v | v | +
1

m22

Fv +
τEv

m22

(5)

Yaw equation of motion:

ṙ =
m11 − m22

m33

uv − Nr

m33

v − Nr || r

m33

r | r | +
τEr

m33

(6)

where, Fu and Fv represent the control forces of vehicle’s 
surge and sway motions, respectively. Yaw motion equa‐
tion is unregulated in vehicle dynamics, hence the AUV is 
reported as a dynamic model that is underactuated. The 
extra mass terms such as (Xu̇, Yv̇) and total rigid body mass 
m of the vehicle comprise the parameters m11 = m − Xu̇ and 
m22 = m − Yv̇, respectively. The collective rigid body mass 
of m and the additional moment of inertia about the zb 
axis, denoted as Nṙ, are other constants, and their values are 
expressed as m22 = m − Nṙ. The coefficients of linear and 
quadratic drag are Xu, Xu|u|, Yv, Yv|v| and Nr. Unknown envi‐
ronmental disturbances affecting the AUV include τEv and 
τEr. To guarantee the trajectory tracking in a horizontal 
plane x-y plane, a 3-DOF model with input force vector 
is established as τ = [ Fu, Fv, 0 ]T, while its velocity and 
attitude vector remain v = [ u, v, r ]T and η = [ x, y, ψ ]T, 
respectively
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Generalized mathematical model of AUV is represented 
in standard form as follows:

M (v ) v̇ + C (v) v + D (v) v + g (η) = τ (8)

where, M (v ) is inertial matrix including the added mass, 

C (v) is the Coriolis matrix, D (v) is the damping matrix, 
g (η) is the vector of gravitational/buoyancy forces, and 
moment τ is the vector of control inputs.

2.4  Serret-frenet frame

In general, the parameters in the Serret-Frenet (S-F) frame 
are used to investigate the path following control problem 
of underactuated AUVs. Incorporating the global coordinate 
transformation and S-F frame, the convergence problem of 
the vehicle is transformed into the actuation system control 
problem, simplifying the controller design. The established 
reference path functions as the foundation for the LOS 
guidance, which is built in a moving S-F frame along the 
virtual target on the path with tangential velocity. Indepen‐
dent of movements, the S-F formulas convey the kinematic 
characteristics of a particle on a differentiable path in three 
dimensions. The formulas that describe the position and 
orientation error dynamics (route following error space 
model) more clearly show the derivatives of the tangent, 
binormal unit vectors, and normal.

2.5  Path tracking error

Using the coordinate transformation provided, a path 
following/tracking error dynamic model (Guo et al., 2003) 
is developed to simplify the construction of the controller. 
To follow the reference trajectory, a desired heading angle 
must be determined for the vehicle and is as follows

ψd = arctan ( ẏd

ẋd ) (9)

where, in an earth-fixed frame, x, y, and ψd denote the 
intended positions and orientations for the vehicle. The 
definition of the orientation error is

ψe = ψ − ψd (10)

Its differentiation is represented as follows:

ψ̇e = r − cc ṡ* (11)

Orientation error between total velocity U and ṡ* is 
expressed below,

ψ *
e = ψe + β (12)

When used with the AUV model, the orientation track‐
ing error and positional variables derivatives are shown 
below,

ẋe = Ucos (ψ *
e ) − ṡ* (1 − cc ye ) (13)

ẏe = Usin (ψ *
e ) − ṡ*cc xe (14)
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ψ *
e = r − cc ṡ* + β̇ (15)

2.6  Problem formulation

An underatuated AUV, represented by point B travling 
along the desired path Ω , which is continuously parame‐
terized by the variable S, which in the S-F coordinate 
system is known as a virtual reference guidance point. The 
position of the variable S and the elevation angle of the 
point are denoted by (xd, yd, ψd). In addition, the deriva‐
tives of the reference velocity (ud, vd, rd) with respect to 
time are constrained.

The AUV center of mass specified by (x, y, ψ) is repre‐
sented by point B, which is necessary for them to converge 
and track the predetermined reference path. The positional 
error between the point S in frame {F} and AUV is denoted 
by the variables xe and ye. The longitudinal force Fu, sway 
force Fv, and changing rate position are all sought after by 
the AUV. The tracking errors xe and ye become zero as the 
longitudinal speed u converges to the goal speed ud.

lim
t → ∞

 xe = 0 (16a)

lim
t → ∞

 ye = 0 (16b)

lim
t → ∞

 (u − ud ) = 0 (16c)

For position tracking errors (xe, ye) to converge by stabi‐
lizing ue and ve, the desired surge and sway velocity de‐
pends on the data of (xd, yd) and (xe, ye). Also satisfies the 
following condition proposed in (Rout and Subudhi, 2016)

ud = cos (ψ ) ẋd + sin (ψ ) ẏd − k1(cos (ψ ) xe + sin (ψ ) ye )
(17a)

vd =  − sin ( )ψ ẋd + cos ( )ψ ẏd + k2( )sin ( )ψ xe − cos( )ψ ye

(17b)

where the positive constant parameters k1 and k2 are pres‐
ent. The desired position tracking errors and planar path 
determine the required surge velocity and sway velocity. 
The derivative of (ud, vd) is calculated as shown below,

u̇d = cos (ψ ) ẍd + sin (ψ ) ÿd + vdr −
k1(cos (ψ ) ẋe + sin (ψ ) ẏe ) (18a)

v̇d =  − sin ( )ψ ẍd + cos ( )ψ ÿd − udr +

k2( )sin ( )ψ ẋe − cos ( )ψ ẏe

(18b)

These variables are considered during the design of con‐
trol for AUV’s guidance system for path-planning algo‐
rithm to minimize tracking errors and prevent issues in 
real-world applications.

Remark 1: Because the nonzero reference surge velocity 

is positive or negative, the condition ||ud ( t ) ≥ udmin, ∀t ≥ 0, 

incorporates path tracking in forward and backward direc‐
tions. In fact, the persistently exciting condition on the yaw 
reference velocity is substantially more restricted than the 

condition ||ud ( t ) ≥ udmin, ∀t ≥ 0. Because of high resisting 

force and lack of control input during motion in the yaw axis 

for AUVs, the condition || vd ( t ) < ||ud ( t ) , ∀t ≥ 0 means the 

AUV system cannot track a large spiral curvature with twist.
Assumption 1. (i) The center of buoyancy (CB) and cen‐

ter of mass (CM) are congruent. (ii) The mass distribution 
of vehicle body is uniform. (iii) Heave, pitch, and roll 
motions, as well as terms higher than second order hydro‐
dynamic drag, are disregarded.

Assumption 2. The reference signals ud, vd, and rd are 
bounded. udmin is strictly positive constant, such that 

||ud ( t ) ≥ udmin, ∀t ≥ 0. The sway velocity satisfies || vd ( t ) <

||ud ( t ) , ∀t ≥ 0.

Assumption 3. The undiscovered environmental distur‐
bances are constrained, namely, || τEu ≤ τEumax, || τEv ≤ τEvmax, 

and || τEr ≤ τErmax. where, τEumax, τEvmax, and τErmax are constants 

and |.| indicates a variable’s absolute value.
Assumption 4. The AUV system’s unmodeled dynam‐

ics are constrained. Positive constants εu, εv, and εr are pos‐
itive constants such that -εu, 

-εv, and -εr satisfy the relation‐
ships || εu ≤ εu, || εv ≤ εv and || εr ≤ εr.

3  Controller design

The two sections of the derivation of the suggested con‐
trol method for an AUV’s steering motion are 2-SMC and 
Salp swarm optimization. The following subsections descript 
each control part.

3.1  Second-order sliding mode control (SOSMC)

First, sliding manifold σ based on tracking error is defined 
as follows:

σ = (Λ +
d
dt ) n − 1

ec (19)

where ec = ηc − η is the velocity error between the under‐
water vehicle’s actual velocity and the virtual velocity cre‐
ated by the velocity controller, σ is the first order sliding 
manifold. The order of the uncontrolled system is n, and Λ 
is a positive constant. Raising the order of the sliding mode 
manifold, SOSMC achieves zero steady-state error and 
eliminates chattering by adding the integral term to a first-
order sliding manifold. The resulting second order slid‐
ing surface is given as follows:
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σ̇ + ζσ = ec

.
+ 2Λec + Λ2∫ec dt (20)

where ζ determines the rate of decay for switching surface. 
The derivative of the given sliding manifold is taken, and 
then the scond-order manifold is obtained as follows:

σ̈ + ζσ̇ = ( η̈c − η̈) + 2Λėc + Λ2ec = 0 (21)

The general form of AUV modelling equation is substi‐
tuted as follows:

( η̈c − 1
M (η ) ( )τη − C ( )v − D ( )v − g (η ) ) +

2Λėc + Λ2ec = 0

(22)

An equivalent control regulation can be derived as follows:

τeq =M̂ ( η̈c + 2Λėc + Λ2ec ) + Ĉ (v) + D̂ (v) + ĝ (η ) (23)

where, M̂, Ĉ, D̂ and ĝ are estimated terms of AUV model. 
To address the resulting chattering issue, an adaptive term 
is included in the control rule to replace the switching term,

τad = τ̂test + (K +
Ĉ (v )

2Λ )σ (24)

where τ̂test is an adaptive term that estimates the lumped 
uncertainty vector as an unknown dynamic of vehicle. The 
estimation of the lumped uncertainty vector is approxi‐
mated as (Wang et al., 2023a)

τ̇̂test = Γσ (25)

The overall control law can be defined along with super 
twisting algorithm as a disturbance observer as follows:

τn = τeq + τad + τSTA = τeq + τ̂test + (K +
Ĉ (v )

2Λ )σ +

( − μ0∫
0

t

sgn ( )σ dt − μ1| σ |0.5
sgn (σ ) )

(26)

Control inputs τn = [ Fu, Fv ] are then applied to the 
dynamic model of the vehicle to produce the actual surge 
and lateral velocity in the body fixed frame in the horizontal 
plane. To solve the chattering issue in conventional SMC 
and to reduce the influence of quick acting disturbances, 
STA technique is utilized to generate a smooth and contin‐
uous control signal (Chalanga et al., 2016; Kumar et al., 
2022; Sadala and Patre, 2020). The STA technique presented 
in for steady tracking performance uses the control gains 
μ0 and μ1, which are positive constants. The adaptive 
term included in control part to reduces the effect of para‐
metric variations in sea environment. Salp Swarm optimi‐
zation is used to search for best fit for K and Λ for reduc‐
ing magnitude of chattering and speed of response.

3.2  Salp swarm optimization

Cheng and Wang (2020), Wang et al. (2023a), and Wang 
et al. (2023b) discussed the SSWO bioinspired optimiza‐
tion technique. Salp belongs to the family of Salpidae, 
which moves like jellyfish by pumping water to move for‐
ward, as shown in Figure 2.

The salp population has two mathematical groups, 
namely, the leader, and followers. The leader or head salp 
directs the salp chain and the swarm in deep water areas, 
whereas the rest of the salps are considered as followers. 
Their main objective is to investigate the food source A in 
the search area. The location of the leader is altered in rela‐
tion to the food source, which causes the position of the 
following salp to shift. The position of the food supply 
is changed frequently in SSWO. Even if the population 
declines, the salp chain can pursue the food supply in the 
best way possible. Another benefit is the presence of only 
one regulating parameter, and the leading salp position is 
frequently updated in relation to the food source. As the 
search space is explored and search space exploitation starts, 
the number of iterations gradually decreases. This method 
is preferable to the current optimal algorithm because it 
avoids local solutions to the problem. The social structure of 
the salp swarm is shown in Figure 2.

The position of salps is defined in swarm-based algo‐
rithms in an m-dimensional search space, where m is the 
number of variables in a particular problem. As a result, a 
two-dimensional matrix is used to hold the positions of all 
salps. Presumably, the swarm uses food source A as its goal 
in the search space. Using the formula below, the leader’s 
position is updated,

x1
j =

ì

í

î

ïïïï

ïïïï

Aj + c1( )( )uj − lj c2 + lj ,  for  c3 ≥ 0

Aj − c1( )( )uj − lj c2 + lj ,  for  c3 < 0
(27)

where, x1
j  represents the position of the salp (leader) in the 

j th dimension, Aj represents the location of the food supply 
in the j th dimension, uj, lj represent the upper, lower bounds 
of the jth

0  dimension, respectively, c1, c2, c3 represent ran‐
dom numbers.

Figure 2　Social structure of swarm of salp (Salp chain)
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An objective function is used to determine best fit appro‐
priate values of control parameters, such as hitting gain 
K and sliding surface slope Λ. The cost function is defined 
such that the selected parameters minimize the error to 
reduce chattering simultaneously. The cost function is 
defined as follows

Jc = ∫[ ]W1( )σ2 + W2( )ek
2 dt (28)

where, ek is the tracking error function, and W1 and W2 are 
the weighting fators used in optimization technique. Accord‐
ing to the cost function, the leader adjusts its position in 
relation to the food supply. The most crucial SSWO parame‐
ter is the coefficient c1, which balances the specified explo‐
ration and exploitation.

c1 = 2e( )4l
L

2

k (29)

where, L represents maximum number of iterations, l rep‐
resents current iteration. Random numbers in the range [0, 
1] are generated evenly for the parameters c2 and c3. They 
specify the step size and whether the succeeding point in 
j th dimension should point in either direction of infinity. 
Newton’s law of motion is applied to the following equation 
to update the position of the followers.

xi
j =

1
2

at2 + b0t (30)

where, b0 represents initial speed, t is the time, i ≥ 2, xi
j de‐

picts the location of ith follower salp in j th dimension, and 

a =
bfinal

b0

 and b =
x − x0

t
. Because the time for optimization 

is iteration, the discrepancy between iterations equals 1, and 
considering b0 = 0, the position of follower can be expressed 
as follows:

xi
j =

1
2 ( xi

j + xi − 1
j ) (31)

where, i ≥ 2, xi
j provides the position of ith follower salp in 

j th dimension. Thanks to Wang, et al., (2023a); Wang, et al., 
(2023b), simulating the salp chains is possible. The advan‐
tages of the SSWO algorithm come from its ability to 
improve the initial random solutions efficiently and con‐
verge to the best result. The adaptive behavior of this algo‐
rithm, which makes it superior to other algorithms, is the 
major cause of SSWO excellence. SSWO outperforms other 
swarm-based strategies because it engages in more explo‐
ration during optimizion. Moreover, SSWO strongly encour‐
ages the use of the c1 parameter in the latter stages of opti‐
mization. As a result, SSWO performs better in terms of 
outcome accuracy than evolutionary algorithms. The flow‐
chart for SSWO is shown in Figure 3.

This method not only improves the search intensity of 
salp swarm algorithm but also increases its diversity. The 
optimization algorithm ensures that the algorithm can find 
the optimal value of the algorithm and avoid falling into 
the local optimum, and the algorithm has better global 
search capabilities due to its enhanced diversity. The opti‐
mization effect of hitting gain and sliding surface slope 
can be improved.

3.3  Stability analysis

The path tracking control problem of an AUV in Equa‐
tion (8) with assumptions (1)‒(2) is considered. The control 
action is seletced as super twisting algorithm based SOSMC 
along with the adaptive PI law, then the path-tracking error 
vector asymptotically converges to zero.

Proof: The Lyapunov function candidate is as follows:

V =
1
2 [σTσ + L͂TGL͂] (32)

where, G ∈ R3 is a diagonal positive definite constant matrix, 
and L͂ is the estimation error vector of the lumped perturba‐
tion and is defined as follows:

Figure 3　Flowchart for salp swarm optimization
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L͂ = Lest − L (33)

In above Equation (33), Lest and L are the estimated per‐
turbation and the unknown actual perturbation vectors, 
respectively. The derivative of Lyapunov function is given 
as follows:

                                    V̇ = σTσ̇ + L͂TGL̇͂

                   V̇ = σT (2Λ ec

.
+ Λ2ec + ec

..
) + L͂TGL̇͂

V̇ = σT (2Λ ec

.
+ Λ2ec ) +

         σT( )η̈c − 1

M ( )η ( τη − C ( )v − D ( )v − g (η ) ) +

         L͂TGL̇͂ =− σT KM − 1( )η ( τad + τSTA ) + σT L + L͂TGL̇͂ =

         − σT K { }fi (Gsσ ) + fi (G is ∫σdt ) + σT L + L͂TGL̇est −
         L͂TGL̇ =− σT K { }fp (Gsσ ) + fi (G is ∫σdt ) + σT L +

         L͂TGL̇est − L͂TGL̇ ≤−  σT K  fp( )Gsσ −
          σT K  fi( )G is ∫σdt +  σT  L +  L͂T  fi( )σ −
          L͂T G  L̇ ≤−  σ K −  σ K +  σ  L +  L͂  σ −
          L͂T G  L̇ ≤−  σ { }2K −  L −  L͂ −  L͂T G  L̇

For proposed controller,  L͂T ≈ 0

V̇ ≤−  σ Kf (34)

Kf can be selected such that the value of K̂f remains neg‐
ative (i.e.,− K̂f =− Γ, where Γ > 0). Thus, the reaching con‐
dition σσ̇ < 0 is satisfied and σ approaches zero as t → ∞.

Remark 2: Chattering free sliding mode control law is 
proposed for the path following control of an AUV, where 
a new adaptive term (Meysar and Notash, 2010; Jin and 
Yang, 2014; Amer et al., 2011) that eliminates the high fre‐
quency control action inherent in a conventional SMC is 
developed. Adaptive PI term removes the need for a prior 
knowledge of upper bounds of uncertainties in the dynamic 
vehicle parameters (Amer et al., 2011).

Remark 3: Super twisting algorithm-based disturbance 
compensation (Chalanga et al., 2016) and PI uncertainty 
estimator (Meysar and Notash, 2010) replace the discontin‐
uous term of a conventional SMC with an estimation of the 
perturbations in an adaptive manner.

Remark 4:The proposed control law incorporates adap‐
tive term, continuously compensating for the effect of 
unknown system dynamics caused by poorly approximated 
nonlinear hydrodynamics or sudden environmental loads. 
In addition, adaptive term does not require the parametriza‐

tion of a regressor matrix and an unknown parameter vec‐
tor (Amer et al., 2011).

Remark 5:Super twisting algorithm based SOSMC is 
designed to achieve finite time estimation of the oceanic dis‐
turbances and to generate a smooth and continuous steer‐
ing command signal.

Remark 6: The proposed STA SOSMC algorithm per‐
forms precisely under the influence of fast acting distur‐
bances such as ocean currents and tides and its simple 
design of path tracking response offers a smooth response 
in minimum reaching time.

4  Simulation results

To demonstrate the path tracking control performance 
of the proposed controller in the horizontal plane by regu‐
lating heading angle, numerical simulation was conducted 
through the INFANTE AUV model using the MATLAB/
Simulink tool. A flat-fish type AUV with two back thrust‐
ers that are similar and symmetrically positioned with 
respect to the longitudinal axis was considered. Thus, the 
vehicle is an under actuated system because it lacks a later‐
al thruster. The general and differential operating modes of 
the thrusters provide a force along the vehicles longitudinal 
axis and a torque about its vertical axis, respectively. In 
this work, only the back thrusters were used to maneuver 
in the horizontal plane. For the experimental AUV employed 
in the simulation, Lapierre and Soetanto (2007) provided 
the vehicle’s physical specifications and hydrodynamic 
coefficients. In this simulation, which was conducted in the 
AUV’s horizontal plane, typical circular and nonlinear path 
tracking were examined. The AUV’s desired states were 
assumed to be xd = 80∙sin (0.01t ) and yd = 50∙sin (0.01t ), 
respectively, and their initial states were specified as zero.
The path tracking problem of circular and nonlinear tracks 
was used to illustrate the robustness of the proposed con‐
troller by accounting for ambiguous circumstances and 
unidentified disruptions. To generate the time-varying dis‐
turbances and uncertainty indicated in the works of Wang 
et al., (2023b), Wang and Er (2016), and Lakhekar et al., 
(2019) without losing generality, the following parameters 
are given for evaluating control performance, ∆Fu =
0.1(m11 + ∆m11 ) + δd sin ( )0.01t , ∆Fv = 0.1( )m22 + ∆m22 +

δd sin ( )0.01t  and ∆Fw = 0.1( )m33 + ∆m33 + δd sin ( )0.01t  for 

evaluating control performance. In addition, δd = 0.070 7  
rand ( )1, length ( )t  and ( ⋅) is the Gaussian random noise 

signal.
The simulation results in Figure 4 represent circular and 

nonlinear path-tracking response in presence of oceanic 
disturbances along with uncertain operating conditions. 
In addition, the system parameters simultaneously increased 
by 20% compared with the actual parameter. In the pres‐
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ence of external perturbation and time-varying uncertain 
situations, terminal SMC and the proposed SOSMC con‐
trol methodology outperformed other common methods, 
such as PD and conventional SMC. In the early phase of 
the simulation results, PD offered a quick response along 
with overshoot, whereas SMC required more time to reach 
the desired path without oscillation. While, terminal SMC 
and the proposed SOSMC method took a short time to 
reach the desired circular path in oceanic environment.

Compared with existing control strategies, the suggest‐
ed planar control performed well in simulation results to 
reach and maintain the target path. Figure 5 displays the 

path tracking errors in the x-y plane of the circular and 
nonlinear path, which was used in the quantitative analysis.

The simulation results in Figures 6 and 7 demonstrate 
response of the forward speed, heading angle, sway, and 
yaw velocity for circular and nonlinear path scenarios, in 

Figure 6　Circular path tracking

Figure 5　Errors under the effect of uncertainties and disturbances 

Figure 4　Path tracking in presence of adverse oceanic conditions
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presence of oceanic disturbances and noises. PD and con‐
ventional SMC exhibited a large settling time and were 
unable to attenuate the oceanic disturbances. In compari‐
son, the proposed control strategy performed well in numer‐
ical simulation to reach and maintain the desired path.

To evaluate the tracking accuracy and efficacy of the 
proposed controller, anaysis was performed through quanti‐
tative methods based on performance measures such as Inte‐
gral Square Error (ISE), Integral Absolute Error (IAE) and 
Root Mean Square Error (RMSE), as shown in Table 1. The 
proposed control scheme obtained the minimum tracking 
error compared with other controllers. Among all the con‐
trollers, the PD controller provided the maximum error in 
the circular and nonlinear path tracking control in adverse 
oceanic conditions.

Generating the symmetric bulb turn trajectory requires 
cosinusoidal reference signals. In the initial phase of simu‐
lation, The AUV experienceed an impulsive force due to 
ocean currents and waves. Thereby, some oscillation 
appeared in the path tracking response of PD and SMC, as 
depicted in Figure 8. The tracking performance was also 
evaluated under the influence of adverse oceanic condi‐

tions. However, proposed SOSMC needed minimum 
reaching time period with smooth response compared with 
other control techniques. Also able to cope with unexpected 
disturbances and parametric variations. The control perfor‐
mance was confirmed by quantitative analysis, as presented 
in Table 2.

5  Experimental validation

Experimental validation (Halil and Sümer, 2014) was con‐
ducted to confirm the efficacy of the control scheme further. 
The results from the experimental setup were obtained 
using National Instruments (NI) myRIO and Raspberry Pi 4 
board setup. The setup verified the AUV performance in 
the presence of constant disturbances and uncertainties.

Figure 9 (a) shows that HIL simulation was designed to 
demonstrate real-time performance of the proposed control 
algorithm, as implemented through numerical simulation. 
Two hardware boards were used, one for AUV model 
deployment on Raspberry Pi4 and another for AUV con‐
troller on NI myRIO DAQ board setup for HIL validation, 

Figure 7　Nonlinear path tracking

Table 1　Quantitative analysis: Planar motion with 20% change in disturbances/uncertainty

Controller

PD

SMC

TSMC

SOSMC

Circular path tracking (m)

ISE

xe

7.522 3

3.125 3

2.725 0

2.576 2

ye

4.425 3

2.457 2

2.022 3

1.415 3

IAE

xe

17.891 0

11.784 0

10.426 0

9.057 2

ye

15.042

13.621

11.555

9.041

RMSE

xe

3.578 0

2.672 1

1.951 1

1.657 0

ye

3.438 2

2.178 4

1.976 1

1.345 2

Nonlinear path tracking (m)

ISE

xe

4.246 8

3.259 2

2.167 1

1.458 3

ye

3.985 3

2.145 2

1.912 9

1.598 2

IAE

xe

14.031

10.153

7.281

5.842

ye

12.453 4

9.257 8

8.013 2

6.157 8

RMSE

xe

1.453 2

1.054 3

0.920 1

0.510 3

ye

1.253 4

0.843 2

0.688 2

0.457 2
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as shown in Figure 9 (a). The NI myRIO board has an inte‐
grated Xilinx Zynq-7010 system-on-a-chip (SoC) technol‐
ogy, dual-core ARM® Cortex™-A9 processor, FPGA with 
28 000 programmable logic cells, 10 analog inputs, 6 ana‐
log outputs, audio I/O channels, and up to 40 lines of dig‐
ital input/output (DIO), including onboard Wi-Fi, a three-ax‐
is accelerometer. Raspberry Pi4 uses a Quad-core ARM 
Cortex-A72 at 1.5 GHz, 32 kB of data L1 cache and 48 kB 
of instruction L1 cache, and 1 MB of shared L2 cache. The 
real time proposed control algorithm designed through 
Simulink® models was compiled to C-code and deployed 
in the NI board. The onboard processor transmitted the 

command signals to Raspberry Pi 4 module, where an AUV 
model is deployed for path following applications in HIL 
testing.

A twisted path scenario was considered in experimental 
validation in presence of constant disturbances and para‐
metric variations. In this complicated scenario, various 
waypoints were joined through a continuous desired path 
with wide turning. The experimental results in Figure 9 (b) 
indicate desired tracking performance of proposed SOSMC 
in nonlinear twisted path scenario, with minimum devia‐
tion at each turning point and requiring less settling time.

6  Conclusions

In this paper, a robust optimal super twisting SOSMC 
with uncertainty estimator based planar motion controller 
is designed for AUV path tracking in horizontal plane by 
precisely regulating heading angle. The proposed control 
technique takes advantage of second order sliding mode, 
uncertainty estimator, and super twisting method as a dis‐
turbance observer with SSW optimization, while the weak‐
nesses attributed to these techniques are overcome by one 
another. The planar tracking control performance is evalu‐
ated under the influence of parametric uncertainties and 
oceanic disturbances for smooth turning behavior. Start‐
ing from initial conditions of the AUV states, the output 
positional variables asymptotically track desired circular 
path with a quick and robust response. Based on SSWO ap‐
proach, hitting gain and sliding surface slope are adjusted 
through their appropriate optimal values. It is robust against 
unfavorable oceanic conditions with the help of STA and 

Figure 8　 (a) Response of symmetric bulb turn path tracking; 
(b) Heading angle; (c) Yaw error

Table 2　Quantitative analysis: Bulb turn path following

Controller

PD

SMC

TSMC

SOSMC

ISE (m)

xe

4.985 3

3.524 9

3.185 1

1.583 4

ye

3.527 8

2.496 5

2.221 3

0.925 7

IAE (m)

xe

18.012 5

12.114 5

8.995 1

2.953 7

ye

16.549 3

9.625 4

8.257 5

3.827 9

RMSE (m)

xe

2.523 9

0.957 8

0.882 1

0.698 5

ye

1.952 4

0.810 5

0.622 5

0.525 4

Figure 9　(a) A real time implementation of path following control 
of AUV model via hardware in loop simulation; (b) Response of path 
following HIL simulation
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adaptive control term as uncertainty estimator. Therefore, 
overall smooth tracking performance, quick hitting time 
and minimum chattering are achieved. The proposed tech‐
nique is verified by demonstrative simulation results and 
experimental validation. The planar tracking control per‐
formance is quantified through performance indices and 
also analyzed through error convergence.
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