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Abstract
This paper is concerned with a study of wave propagation due to scattering of an obliquely incident wave by a porous vertical plate with non-
uniform porosity which is completely submerged in water of finite depth. The problem is formulated in terms of a Fredholm integral equation of 
the second kind in difference in potential across the barrier. The integral equation is then solved using two methods: the boundary element 
method and the collocation method. The reflection coefficients, transmission coefficient, and amount of energy dissipation are evaluated using 
the solution of the integral equation. It is observed that non-uniform porosity of a barrier has significant effect on the reflection of waves and 
energy dissipation compared to a barrier with uniform porosity. The dissipation of the wave energy by a non-uniform porous barrier can be 
enhanced and can be made larger than that of a barrier with uniform porosity, by suitable choice of non-uniform porosity distribution in the 
barrier. This has an important bearing on reducing the wave power and thereby protecting the shore line from coastal erosion. Also, an obliquely 
incident wave reduces reflection and dissipation while increasing transmission of wave energy as compared to a normally incident wave.

Keywords  Vertical plate; Oblique incidence; Finite depth; Non-uniform porosity; Reflection coefficient; Transmission coefficient; Energy 
dissipation

1  Introduction

A study of wave interaction with porous coastal struc‐
tures like rubble mound breakwaters became important in 
coastal engineering during the latter half of the 20th century 
because of the reason that the structural voids in the porous 
breakwaters can dissipate wave energy efficiently. Due to 
this advantage of porosity, the porous breakwaters are pre‐
ferred over rigid breakwaters as the rigid structures cannot 
withstand the huge wave load and collapse subsequently.

The literature on the problem of oblique wave diffrac‐
tion by a rigid vertical barrier in finite-depth water is quite 
adequate. Many researchers used various methods to study 
this class of problems. Goswami (1983) employed a singu‐
lar integral equation formulation based on Green’s integral 
theorem to study the oblique wave scattering problem involv‐

ing a fixed, vertical, rigid plate submerged in uniform, finite-
depth water. Losada et al. (1992) obtained the reflection 
and transmission coefficients of the above-mentioned prob‐
lem by using an eigenfunction expansion method. Later 
on, Porter and Evans (1995) used an approximate method 
based on the multi-term Galerkin approximation to study 
oblique wave scattering by a thin, vertical, rigid barrier in 
uniform, finite-depth water having four basic configura‐
tions: a surface-piercing barrier, a bottom-standing barrier, 
a barrier with a gap and a totally submerged barrier. Also, 
Mandal and Dolai (1994) considered oblique water wave 
scattering by a thin vertical barrier in uniform finite-depth 
water. They employed a one-term Galerkin approximation to 
evaluate the upper and lower bounds for the transmission 
and reflection coefficients.

The phenomena of wave propagation through porous 
media were studied by Sollitt and Cross (1972). Later Chwang 
(1983) studied the wavemaker problem and he pioneered 
in mathematical modelling of porous structure as thin 
porous vertical wave maker. Many researchers studied the 
problem of diffraction of water waves by porous breakwa‐
ters using Sollitt and Cross’s model (1972). Yu (1995) used 
matched expansion method to study the problem of wave 
diffraction by a porous breakwater. Sahoo (1998) studied 
the problems of scattering of surface water waves normally 
incident on a nearly hard (considering the porosity effect 
to be very small) partially immersed and bottom standing 
porous vertical barrier present in the deep ocean. The prob‐
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lem is studied by using perturbation analysis for very small 
values of the non-dimensional porosity parameter. Later 
Gayen and Mandal (2014) used a second-kind hypersingu‐
lar integral equation formulation to study the problem of 
wave diffraction by a submerged porous plate in an ocean 
with a free surface. Mondal and Banerjea (2016) studied 
the problem of scattering of water waves by a porous plate 
submerged in the ocean with ice cover and inclined at an 
angle α to the vertical using a second-kind hypersingular 
integral equation formulation. In the literature mentioned 
above, the porosity of the plate is taken to be uniform. A 
study of wave interaction with a porous barrier with non-
uniform porosity are limited in the literature. Tao et al., 
(2009) used eigen function expansion method and Song 
and Tao (2010) adopted numerical method and studied the 
problem of wave interaction with a perforated cylindrical 
breakwater with non-uniform porosity. Later, Singh et al. 
(2022) studied the phenomena of water wave propagation 
in the presence of an inclined flexible plate with variable 
porosity using hypersingular integral equation formula‐
tion. Gupta and Gayen (2019) and Sarkar et al (2020) stud‐
ied the problem of wave interaction with dual porous barrier 
with non-uniform porosity using coupled integral equation 
formulation. Recently Mondal et al. (2024) studied the 
effect of non-uniform porosity of a porous vertical barrier 
on an obliquely incident wave train. They considered two 
configurations of the barrier, viz, partially immersed and 
the bottom standing barrier and used Fredholm integral 
equation formulation to study the problem.

In the present paper, we study the problem of scattering 
of obliquely incident wave by a porous plate with non-
uniform porosity submerged in water of finite depth. Here 
the problem concerned is formulated in terms of a Fred‐
holm integral equation of the second kind, defined in a 
single interval, by using an eigen function expansion of the 
water wave potential (Mondal et al., 2024). The unknown 
function satisfying the Fredholm integral equation repre‐
sents the difference of potentials across the barrier. We 
may mention here that the integral equation here has a reg‐
ular kernel which is more amenable to the numerical meth‐
ods. The integral equation is then solved using two meth‐
ods: the boundary element method and the collocation 
method. Recently Banerjea et al solved integral equation 
with regular and singular kernel, numerically by applying 
boundary element method (Banerjea et al., 2019; Samanta 
et al., 2022). This is a simple numerical method of solving 
integral equation with complicated kernel, where the range 
of integration and the interval of definition of the integral 
equation are divided into small subintervals (line elements). 
Assuming the unknown function satisfying the integral 
equation to be constant in each line element, the integral 
equation is reduced to a system of algebraic equations. In 
the collocation method, the unknown function is represented 
as a series involving Chebychev’s polynomials and there‐

by the integral equation is reduced to a system of algebraic 
equation(Parsons and Martin, 1992; 1994). The solution of 
the integral equation is then used to evaluate the reflection 
coefficient, transmission coefficient and amount of energy 
dissipated which were then depicted graphically. It is 
observed that by a proper choice of non-uniform porosity 
distribution in a barrier, the dissipation of the wave energy 
due to a barrier with non-uniform porosity, can be made 
larger than by a barrier with uniform porosity. This is 
important in reducing the wave power and protecting the 
shore line from coastal erosion. Also, an obliquely incident 
wave reduces reflection and dissipation while increasing 
transmission of wave energy as compared to a normally 
incident wave.

2  Formulation of the problem

We consider two dimensional irrotational motion in water 
due to oblique incidence of a time harmonic wave train on 
a thin vertical porous plate with nonuniform porosity, sub‐
merged in water. The water occupies the region 0 < y < h, 
where y-axis is vertically downwards and x-axis is along 
the mean free surface. The vertical porous barrier is repre‐
sented by x = 0, y ∈ L, where L = (a, b ). A schematic dia‐
gram is given in Figure 1.

A train of progressive waves represented by velocity 
potential Re{ϕinc( x, y)eiγz − iσt}, is incident obliquely at an 

angle α to the horizontal axis, on the thin vertical barrier. 
Here σ is the circular frequency, γ is the wave number 
along the z-direction, γ = k0 sin α,  k0 is the unique posi‐
tive root of the equation k tanh kh = K, K = σ2 /g, g is the 
acceleration due to gravity (Mandal and Chakrabarti, 2000).

Assuming linear theory and describing the resulting 
motion by the velocity potential Re{ }ϕ ( )x, y eiγz − iσt , the 

function ϕ satisfies

(∇2 − γ2 )ϕ = 0  in the water region (1)

Kϕ + ϕy = 0  on  y = 0 (2)

Figure 1　Schematic diagram
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the boundary condition on the porous barrier L which is 
given by

ϕx = − ik0λ ( y)[ϕ] ( y)  on  x = 0,  yϵL (3)

Here [ϕ]= ϕ+ (0, y ) − ϕ−(0, y) , ϕ+, ϕ−are potential func‐
tions on the right hand side and left hand side of the bar‐
rier L, respectively, and λ ( y ) = λr ( y ) + iλ i ( y ) is the non-
uniform porous-effect parameter where λr ( y ) is associat‐
ed with resistance force coefficient and λ i ( y ) is associated 
with inertial force coefficient of the porous barrier (Yu, 
1995)

r
1
2∇ϕ  is bounded as  r → 0 (4)

where r is the distance from a submerged end of the barrier,

ϕy = 0  on  y = h (5)

The far field conditions are given by

ϕ ( x, y) → ì
í
î

ïï

ïï

ϕinc( )x, y + Rϕinc( )− x, y   as  x →−∞,

Tϕinc( )x, y                              as  x → ∞
(6)

where R and T are the complex reflection and transmission 
coefficients, respectively, and

ϕinc( x, y) =
g2

σ3

cosh k0( )h − y eiμx

cosh k0h
,

μ = k0cos α

Here k = ±k0, ±ikn, n = 1, 2, … are the roots of

k tanh kh − K = 0 (7)

3  Method of solution

Applying Havelock’s expansion of the velocity poten‐
tial an appropriate eigen functions expansion of ϕ ( x, y ) is 
given by

ϕ ( x, y) →
ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

Tϕinc( )x, y +∑
n = 1

∞

An cos kn( )h − y e− sn x ,  x > 0

ϕinc( )x, y + Rϕinc( )− x, y +∑
n = 1

∞

Bn cos kn( )h − y esn x ,  x < 0

(8)

where s2
n = k 2

n + γ2.
Let

F ( y ) = ϕx (0, y ),  0 < y < h. (9)

and

G ( y ) = ϕ (0+, y ) − ϕ (0−, y ),  0 < y < h (10)

So that equation (3) yields

F ( y) = − ik0λ ( y)G ( y)  for  yϵL (11)

and

G ( y) = 0  for  yϵ
-L (12)

where L̄ = (0, h ) \L.
Using relation (8) in equations (9) we have for 0 < y < h,

F ( y) = iμT
g2

σ3

cosh k0( )h − y
cosh k0h

− ∑
n = 1

∞

An sncos kn( )h − y

= iμ (1 −R) g2

σ3

cosh k0( )h − y
cosh k0h

+∑
n = 1

∞

Bn sncos kn( )h − y

(13)

The relation (13) shows that

T = 1 −R, An = − Bn (14)

By Havelock’s inversion theorem we obtain from equa‐
tions (13) after using relations (11) and (12),

1 −R =
σ3

g2

4k0 cosh k0h
iμ (2k0h + sinh 2k0h )

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú− ik0∫

L
λ ( )y G ( )y cosh k0( )h − y dy +∫

L̄
F ( )y cosh k0( )h − y dy

(15)

An =
−4kn

sn (2knh + sin 2knh )

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú− ik0∫

L
λ ( )y G ( )y cos kn( )h − y dy + ∫

L̄
F ( )y cos kn( )h − y dy

(16)

Again using equation (8) in equation (10) and noting 
equation (14) we have,

G ( y) =−2R
g2

σ3

cosh k0( )h − y
cosh k0h

+ 2∑
n = 1

∞

An cos kn(h − y) ,

0 < y < h

(17)

Applying Havelock’s inversion formula to equation (17), 
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we get

R =
σ3

g2

−2k0 cosh k0h
(2k0h + sinh 2k0h ) ∫LG ( y)cosh k0(h − y)dy (18)

An =
2kn

(2knh + sin 2knh ) ∫LG ( y ) cos kn(h − y)dy (19)

After using equations (13) and (19) in equation (11) a 

Fredholm integral equation of second kind (Mikhlin, 
1957) for G ( y ) is obtained as

ik0λ ( )y G ( y )
2

+
iμ ( )1 −R

2
g2

σ3

cosh k0( )h − y
cosh k0h

=
cosh2k0h

(2k0h + sinh 2k0h ) ∫LG (u)K ( y, u)du, yϵL (20)

where

K ( y, u) = ( )2k0h +sinh 2k0h

cosh2k0h
lim
ε → 0
∑
n = 1

∞ snkn cos kn( )h −u cos kn( )h −y
(2knh + sin 2knh )

e− εkn (21)

Here we introduced the exponential term to ensure the 
convergency of the series.

Defining

G0( y) =
σ3

g2

2G ( )y

i ( )1 −R
(22)

the integral equation (20) is alternatively written as

2 cosh2k0h
(2k0h + sinh 2k0h ) ∫LG0( )u K ( )y, u du − ik0λ ( )y G0( )y

=
2μ cosh k0( )h − y

cosh k0h
, yϵL

(23)

Using the relations (18) and (22) we write

R = D
1 + D (24)

where

D =
k0 cosh k0h

i (2k0h + sinh 2k0h ) ∫LG0 ( y ) cosh k0( )h − y dy (25)

The equations (24) and (25), give a relation between R 
and the unknown function G0( y).

Thus solving the integral equation (23) the unknown 
function G0( y) can be obtained and using G0( y) in rela‐

tions (24) and (25), the reflection coefficient R can be eval‐
uated.

Substituting y =
b + a

2
+

b − a
2

s and u =
b + a

2
+

b − a
2

t 

in the integral equation (23), it reduces to

−ik0λ1(s)G1(s) + (b −a) ∫− 1

1

G1(t )K1(s, t )dt

=
2μ cosh k0( )( )2h −a −b −( )b −a s

2
cosh k0h

, −1 < s < 1 (26)

where

G0( b + a
2

+
b −a

2
t ) = G1(t ) , λ ( b + a

2
+

b −a
2

s) = λ1(s) ,

s2
n = k 2

n + k 2
0 sin2α

and

K1(s, t ) =∑
n = 1

∞
snkn cos kn( )( )2h −a −b −( )b −a t

2
cos kn( )( )2h −a −b −( )b −a s

2
(2knh + sin 2knh )

We may note that the integral equation (26) is a regular 

integral equation, which can be solved by using two differ‐

ent methods below:

Method I: Collocation method

In this method, the unknown function G1(t ) is approxi‐

mated as(Parsons and Martin, 1992; 1994)

G1(t ) = 1 −t2∑
n = 0

N

pnUn(t ) , (27)

where Un(t )are Chebychev polynomial of second kind, 
pn(n = 0, 1, 2, …, N ) are unknown constants to be found.

Thus the integral equation (26) reduces to the following 
system of linear algebraic equations in pn.

∑
i = 0

N

C i( )s pi = X ( )s (28)

where
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C i( )s = ( )b −a ∑
n = 1

∞
ì

í

î

ïïïï

ïïïï

ü

ý

þ

ï
ïï
ï

ïïïï

k 2
n + k 2

0 sin2α kn cos kn( )( )2h −a −b −( )b −a s
2

( )2knh + sin 2knh
∫− 1

1

1 −t2 cos kn( )( )2h −a −b −( )b −a t
2

Ui( )t dt

−ik0λ1( )s 1 −s2 Ui( )s

and

X (s) =
2k0 cos α cosh k0( )( )2h −a −b −( )b −a s

2
cosh k0h

Choosing the collocation points s = sj’s in (27) as

sj = cos
2j + 1
2N + 2

π,  j = 0, 1, 2, …, N (29)

the system of linear equations (28) reduces to

∑
i = 0

N

C i(sj ) pi = X (sj ) ,  j = 0, 1, 2, …, N (30)

Solving this system of linear equations (30), the con‐
stants p0, p1, ⋯, pN can be determined so that G1(t ) , i.e., G0(t ) 
can be obtained from equation (27) and hence R from rela‐
tions (24) and (25).

Method II: Boundary element method
Here, we approximate G1(t ) as

G1(t ) = 1 − t2 U (t ) (31)

where U (t ) is a regular function in [ ]−1, 1 . The square root 
factors in equation (31) ensures that G1(t ) has the correct 

behaviour at the ends of the porous barrier. With this approx‐
imation, the integral equation (26) reduces to

−ik0λ1(s) 1 −s2 U (s) + (b −a) ∫− 1

1

1 −t2 U (t )K1(s, t )dt

=
2k0 cos α cosh k0( )( )2h −a −b −( )b −a s

2
cosh k0h

(32)

Now, we divide the domain of the integration [ ]−1, 1  into 

m number of line elements as [ ]−1, 1 =⋃m
j = 1[ ]aj − 1 − aj , 

with end points a0 =− 1, am = 1 and aj = a0 + jr' where r' =
am − a0

m
.

Writing  t = t_ j  for  t_ jϵ [a_ j − 1, a_ j ] ,

               t j = (1 − τ ) aj − 1 + τaj,

where  0 < τ < 1,  j = 1, 2, …, m

and  s = si  for  siϵ [ai − 1 − ai ] ,  i.e.,

         si = (1 − γ ) ai − 1 + γai,

where  0 < γ < 1,  i = 1, 2, …, m

(33)

the equation (32) can be alternatively written as

∑
j = 1

m

(b −a) ∫
0

1

1 − tj
2 U ( )tj K1( )si,tj r'dτ − ik0λ1(si ) 1 − si

2 U ( )si = X (si ) ,   i = 1, 2, …, m (34)

Now, according to boundary element method approxi‐
mation, we assume the unknown function in integral equa‐

tion takes constant values in each small interval, i. e., we 

take U (tj ) = Uj  j = 1, 2, ⋯, m as a constant for jth line ele‐

ment. Thus, the integral equation (34) is reduced to a sys‐

tem of linear equations.

∑
j = 1

m

BijU j = X (si ) ,   i = 1, 2, …, m (35)

where

Bij =
2 ( )b −a

m ∑
n = 1

∞

ì

í

î

ïïïï

ïïïï

ü

ý

þ

ïïïï

ïïïï

k 2
n + k 2

0 sin2α kn cos kn( )( )2h −a −b −( )b −a si

2
2knh + sin 2knh ∫

0

1

1 − tj
2 cos kn( )( )2h −a −b −( )b −a tj

2
dτ

− ik0λ (si ) 1 − si
2 δij

and

X (si ) =
2k0 cos α cos h k0( )( )2h −a −b −( )b −a si

2
cosh k0h

Here δ ij is Kronecker delta and

Uj = U (tj ) ,   j = 1, 2, ⋯, m

Now, solving the system of linear equation (35), we obtain 
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the unknown function Uj for j = 1, 2, …, m, and G1(tj ) is 

approximated in each line intervals to evaluate R.

4  The energy identity

Porosity of the porous barrier causes the dissipation of 
wave energy, in which case | R |2 + |T |2 < 1.

We apply Green’s theorem to the functions ϕ and ϕ̄ in 
the region bounded by the lines y = 0, − X ≤ x ≤ X ;  x =
− X, 0 ≤ y ≤ h ;  y = h, − X ≤ x ≤ X ;  x = X, 0 ≤ y ≤ h and 
a contour enclosing the barrier L.

Taking X → ∞, we have

| R |2 + |T |2 = 1 − J

where

J =
4k0cosh2k0h

cos α (2k0h + sin h 2k0h ) ∫L λr( y) |G ( y) |2dy (36)

J is positive, so | R |2 + |T |2 < 1, J represents the amount 
of the dissipation of wave energy.

5  Numerical results

The reflection coefficient | R | the transmission coefficient 
|T| and the amount of wave energy dissipated J for differ‐
ent forms of porosity distribution function λ (s) = λr(s) +
i λ i(s) , − 1 ≤ s ≤ 1 can be computed numerically from 
(24), (25) and (36), respectively, once G0 are known by 
solving the integral equations (25) and (26). We may men‐
tion here that the porosity distribution function λ (s) can be 
chosen in any suitable form.

However in the present discussion we have analysed the 

behaviour of | R |, |T |, J for λ ( s ) = {0, 1, 1 +
i
2

, ( )1 + s
2

, s2, 

ü
ý
þ

ïïïï

ïïïï8 s2, 
( )1 + s ( )1 +

i
2

2
, s2( )1 +

i
2

, − 1 < s < 1
 Separate analy‐

sis has to be carried out for any other type of porosity dis‐
tribution.

I) When λ ( s ) =
(1 + s )

2
 then λi(s) = 0 and λr(s) =

(1 + s )
2

 

is a linear function of s. So λr(s) is zero at s =− 1, i.e., at 
one end of the barrier and increases as s increases till it 
reaches a maximum value λr(1) = 1 at the other end of the 

barrier. Similarly for λ (s) =
( )1 + s ( )1 +

i
2

2
, λr(s) = ( )1 + s

2
 

and λ i(s) =
(1 + s )

4
. In this case λr( − 1) = λi( − 1) = 0 and 

both λr(s) and λ i(s) increases as s → 1 and both become 
maximum at the other end of the barrier for which s = 1, 

i.e., λr(1) = 1 and λ i(1) =
1
2

. So when λ (s) = ( )1 + s
2

, 

(1 + s ) ( )1 +
i
2

2
, the porosity distribution of the barrier is 

such that the barrier is rigid at one end and becomes porous 
towards the ends.

II) For λ ( s ) = s2, λ i(s) = 0 and λr(s) = s2. In this case 
λr(0) = 0 and λr(s) increases as |s| increases till it assumes 

maximum value λr( ± 1) =1. Also when λ ( s ) = s2( )1 +
i
2

, 

λr(s) = s2 and λ i(s) =
s2

2
. So both λr(s) and λ i(s) are zero at 

the center of the barrier and increases as s → ±1 till they 

attain maximum at s = ±1, i.e., λr (±1) = 1 and λ i (±1) =
1
2

. 

This shows that the porosity distribution of the barrier for 

λ (s) = s2, s2(1 +
i
2 ) is such that, it is rigid at the centre and 

porous towards the end.
III) For λ (s) = 8 s2, λ i(s) = 0 and λr(s)=8 s2. In this case 

λr(0) = 0 and λr(s) increases as |s| increases till it assumes 
maximum value λr (±1) = 8. This shows that the porosity 
distribution of the barrier for λ (s) = 8 s2, is such that, it is 
rigid at the center and porous towards the end. The differ‐
ence between distribution of porosity in the barrier described 
in case II) for λ ( s ) = s2 and in III) is that the porosity away 
from the centre is more for barrier described in III) than 
for the barrier in case II).

For numerical computation, the value of N in (30) is cho‐
sen as N = 13 and the value of m in (35) is taken as 60.

In Table 1, |R| for rigid barrier ( λ = 0) obtained by solv‐
ing integral equation (26) by collocation method and bound‐
ary element method are presented for different values of α 

and for kh = 0.2, 
a
h

= 0.2, 
b
h

= 0.6. It is found that |R| obtained 

by using both the methods mentioned above agree with 
each other for three places of decimal. Also the values of 
|R| are compared with the results obtained by Mandal and 
Dolai (1994) and it is observed that |R| obtained in the pres‐
ent analysis agrees with the result in (Mandal, Dolai, 
1994) up to 3 decimal places. This confirms the correct‐
ness of the method used in the present analysis.

Table 1　Reflection coefficient for Kh = 0.2; 
a
h

= 0.2; 
b
h

= 0.6; λ = 0

α

0

π
6
π
3

BEM

0.031 5

0.027 2

0.015 6

Collocation method

0.031 8

0.027 4

0.015 7

Results of mondal and 
dolai (1994)

0.031 8

0.027 5

0.015 8
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Table 2 shows a comparison of the values of |R| obtained 
from collocation method and boundary element method for 

a porous barrier with λ = 1 +
i
2

 for different values of α and 

for Kh = 0.2, 
a
h

= 0.2, 
b
h

= 0.6. It is observed from Table 2 

that values of |R| obtained by solving the integral equation 
by both methods, agree with each other up to 3 or 4 deci‐
mal places. Better accuracy can be achieved by increasing 
the number of line elements in equation (34) and the num‐
ber of collocation points N in equation (27).

The reflection coefficient |R| and the amount of wave 
energy dissipated J are computed numerically and depicted 
graphically against the wave number Kh in the Figures 2‒

13, for 
a
h

= 0.2 and 
b
h

= { }0.4, 0.6, 0.8  and for various val‐

ues of the porosity parameter parameter λ ( )s =

ì

í

î

ï
ïï
ï

ï
ïï
ï
0, 1, 1 +

i
2

, ( )1 + s
2

, s2, 8 s2, 
( )1 + s ( )1 +

i
2

2
, s2(1 +

i
2 ) , − 1 < s < 1

ü

ý

þ

ï
ïï
ï

ï
ïï
ï

,

angle of incidence α = { }0, π/3 . It is already known that 
(Yu, 1995) the resistance force coefficient λr of the porous 
material of the barrier resists the passage of water through 
the pores while the inertial force coefficient λ i allows the 
flow through the pores. When the resistance force coeffi‐
cient λr is much greater than the inertial force coefficient 
λ i, i.e., λr ≫ λ i then the porosity parameter λ is taken to be 
real (Yu, 1995).

The energy identity has been verified for rigid barrier, 
i.e., λ = 0 and for porous barrier λ ≠ 0.

In Figures 2 to 7, |R| is plotted against wave numbers 
Kh for various non dimensional parameters, viz, porosity 

parameter λϵ
ì
í
î

ïï

ïïïï0, 1, 1 +
i
2

, ( )1 + s
2

, s2, 8 s2, 
( )1 + s ( )1 +

i
2

2
,
 

s2( )1 +
i
2

, − 1 < s < 1, 
a
h

= 0.2  and  
b
h
ϵ {0.4, 0.6, 0.8},

ü

ý

þ

ïïïï

ïïïï
angle  in  incidence αϵ{ }0, 

π
3

. The following observations are made from Figures 2‒7.
1) From Figures 2 to 7, it is observed that for α =

Table 2　Reflection coefficient for Kh = 0.2 ;  
a
h

= 0.2 ;  
b
h

= 0.6 ;

λ = 1 +
i
2

α

0
π
6
π
3

BEM

0.028 760 1

0.024 831 5

0.014 268 2

Collocation method

0.028 836 2

0.024 898 1

0.014 307 5

Figure 2　 | R | against Kh for α = 0,  
a
h

= 0.2, 
b
h

= 0.4, for various 

porosity λ

Figure 3　 |R| against Kh for α =
π
3

, 
a
h

= 0.2, 
b
h

= 0.4, for various 

porosity λ

Figure 4　 | R | against Kh for α = 0, 
a
h

= 0.2, 
b
h

= 0.6, for various 

porosity λ

Figure 5　 | R | against Kh for α =
π
3

, 
a
h

= 0.2, 
b
h

= 0.6, for various 

porosity λ
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{ }0, 
π
3

, |R|λ = 8 s2 < |R|λ = 1 < |R|
λ =

(1 + s )
2

< |R|λ = s2 < |R|λ = 0. Also 

|R|
λ = 1 +

i
2

< |R|

λ =
(1 + s ) ( )1 +

i
2

2

< |R|
λ = s2( )1 +

i
2

. This shows that 

reflection coefficient for rigid barrier is more than that of 
porous barrier. Also for the porosity distribution function 
λ ( s ) chosen in this analysis, it is found that the reflection 
coefficient |R| depends on the porosity distribution of the 
barrier. In this study it is seen that maximum reflection of 
waves occurs for barrier whose porosity distribution is 
λ = s2 and least reflection of waves occurs when λ = 8 s2. 
Moreover, it is seen from the figures that | R | for λ i ≠ 0, is 
less than |R| for λ i = 0. This shows that the presence iner‐
tial force coefficient in the porosity distribution function 
allows the passage of water through the pores, and thereby 
reduces reflection.

2) Comparing Figures 2, 4 and 6 with Figures 3, 5 and 7, 
it is observed that |R|α = 0 > |R|

α =
π
3

. This shows that the reflec‐

tion coefficient for a normally incident waves is more than 
that of an obliquely incident wave.

3) Figures 2 ‒ 7 show that |R| b
h

= 0.8
> |R| b

h
= 0.6

> |R| b
h

= 0.4
 

from which it can be inferred that long barrier induces more 
reflection.

In Figures 8‒13 the amount of wave energy dissipated J 
is plotted against the wave number Kh for various values 

of 
b
h

, λ and α. The following observations are made from 

the Figures 8‒13.

Figure 8　 J against Kh for α = 0, 
a
h

= 0.2, 
b
h

= 0.4, for various 

porosity λ

Figure 9　 J against Kh for α =
π
3

, 
a
h

= 0.2, 
b
h

= 0.4, for various 

porosity λ

Figure 10　 J against Kh for α = 0, 
a
h

= 0.2, 
b
h

= 0.6, for various 

porosity λ

Figure 11　 J against Kh for α =
π
3

, 
a
h

= 0.2, 
b
h

= 0.6, for various 

porosity λ

Figure 6　 | R | against Kh for α = 0, 
a
h

= 0.2, 
b
h

= 0.8, for various 

porosity λ

Figure 7　 | R | against Kh for α =
π
3

, 
a
h

= 0.2, 
b
h

= 0.8, for various 

porosity λ
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1) It is observed from Figures 8 and 9 that Jλ = 8 s2 >

Jλ = 1 > J
λ =

(1 + s )
2

> Jλ = s2 for all Kh when 
a
h

= 0.2, 
b
h

= 0.4. 

This shows that for short barrier, the energy dissipation J 
is more when λ = 8 s2, than when λ = 1. This shows that 
for this particular type of non-uniform porosity distribu‐
tion, the barrier dissipates more wave energy than a barrier 
with uniform porosity where λ = 1. Thus for these choice of 
porosity distribution, the wave power can be reduced to 
protect the shore line from the effect of rough sea. However, 
as the length of the barrier increases, Jλ = 8 s2 > Jλ = 1 for smaller 

values of Kh. For larger values of Kh, Jλ = 8 s2 < Jλ = 1 which 

shows that energy dissipation of waves with moderate wave 
length is more for barrier with this type of distribution of 
non-uniform porosity than for barrier with uniform porosity, 
i.e., λ = 1. It is also observed that for any length of the bar‐
rier, J

λ = 1 +
i
2

> J

λ =
(1 + s ) ( )1 +

i
2

2

> J
λ = s2( )1 +

i
2

. This shows that 

energy dissipation for barrier depends on the porosity dis‐
tribution of the barrier.

2) It is seen that Jλi ≠ 0 < Jλi = 0. This shows that inertial 

force coefficient of the porous material of the barrier with 
variable porosity diminishes the energy dissipation.

3) Energy dissipation for obliquely incident wave is less 
than that of normally incident wave, i.e., Jα = 0 > J

α =
π
3

4) For any values of α, λ it is seen that J b
h

= 0.8
> J b

h
= 0.6

>

J b
h

= 0.4
. It can be inferred that the energy dissipation is more 

for a longer barrier than for a short barrier.

6  Conclusions

The phenomena of scattering of obliquely incident wave 
by a porous vertical barrier is studied here where the barri‐
er is completely submerged in water of finite depth, which 
does not extend down to the bottom. The problem is for‐
mulated in terms of Fredholm integral equation of second 
kind where the unknown function represents the difference 
of potentials across the barrier. The integral equation is 
then solved using two methods: the boundary element 
method and the collocation method. Using the solution of 
the integral equation the reflection coefficient, transmis‐
sion coefficient and the amount of energy dissipated are 
obtained which are depicted graphically by choosing cer‐
tain forms of porosity distribution in the barrier. From the 
graph the following observations are summarised.

i) It is observed that non-uniform porosity of a barrier 
has significant effect on the reflection of waves and energy 
dissipation compared to a barrier with uniform porosity. 
By suitable choice of non-uniform porosity distribution 
in a barrier, the dissipation of the wave energy by a non-
uniform porous barrier can be made larger than by a barrier 
with uniform porosity. This has an important bearing on 
reducing the wave power and thereby protecting the shore 
line from coastal erosion. A barrier with other choice of non-
uniform porosity distribution can be designed and experi‐
mented so that the energy dissipation can be optimised.

ii) An obliquely incident wave reduces reflection and 
dissipation of energy as compared to the normally incident 
wave.

iii) Longer barrier induces more reflection and energy 
dissipation than a shorter barrier.
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