
Journal of Marine Science and Application (2024) 23: 674-687
https://doi.org/10.1007/s11804-024-00563-7

RESEARCH ARTICLE

Underwater Gas Leakage Flow Detection and Classification Based on 
Multibeam Forward-Looking Sonar

Yuanju Cao1,2, Chao Xu2,3,4, Jianghui Li5, Tian Zhou2,3,4, Longyue Lin2 and Baowei Chen2,3,4

Received: 15 January 2024 / Accepted: 28 May 2024
© Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas 
pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles (ROVs) and autonomous 
underwater vehicles (AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas 
and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed 
reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image 
features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A 
pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this 
method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method 
can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow.

Keywords  Carbon capture, utilization and storage (CCUS); Gas leakage; Forward-looking sonar; Dual-tree complex wavelet transform (DT-CWT); 
Deep learning

1  Introduction

Offshore carbon capture, utilization, and storage (CCUS) 
technology has received widespread attention, and storing 

CO2 in the ocean is considered an important strategy to 
reduce greenhouse gas emissions into the atmosphere 
(Pachauri et al., 2014; Li et al., 2021; Leighton and White, 
2011). With the increasing number of pipelines transport‐
ing natural gas and offshore CCUS activities in the oceans, 
gas leakage is an important concern. Therefore, effective 
means and techniques to monitor these leaks are essential 
(Fawad and Mondol, 2021). Acoustic methods for detect‐
ing gas leakage have gained more attention because of 
their wider adaptability to variable underwater conditions, 
whereas optical methods are susceptible to ambient light 
and water turbidity.

At present, two primary approaches are used to acousti‐
cally monitor gas leakage. The first is the active method 
that employs active sonar, like multibeam sonar with detect‐
ing technologies, to monitor gas leakage (Xu et al., 2020; 
Zhang et al., 2022). The second is the passive method that 
utilizes hydrophones to measure the acoustic signals of the 
potential leakage point at close range to detect gas leakage
(Li et al., 2020; 2021). In recent years, the application of 
multibeam sonar within active sonar systems, owing to its 
relatively high resolution in imaging, has garnered substan‐
tial attention and is becoming a potential tool for detecting 
underwater gas leakage (Veloso et al., 2015; Urban et al., 
2016; Zhao et al., 2020).

Water column images (WCIs) in multibeam sonar can 
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provide 2D information about gas plumes (Gee et al., 2012). 
Currently, gas plumes are identified from WCI images by 
manually inspecting these images for specific characteris‐
tics under many conditions. These characteristics include 
the echo intensities, the distinct sizes and shapes, and others 
of gas plumes (Colbo et al., 2014). To improve detection, 
scholars and enterprises have proposed various methods for 
identifying bubble plumes based on WCIs. Veloso et al. 
(2015) and Urban et al. (2016) used an intensity threshold‐
ing-based technique to process WCIs and detect gas plumes 
from filtered images. Zhao et al. (2017) detected bubble 
plumes based on the echo intensity difference between 
the target and noise; however, the complex marine environ‐
ment noise affects threshold separation, resulting in low 
detection accuracy. Xu et al. (2020) used the optical flow 
method in conjunction with the kinematic characteristics 
of rising bubbles to detect bubble plume targets. Nonethe‐
less, the target detection methods for a single image pro‐
posed above only consider intensity differences from noise 
or other interference without accounting for contour fea‐
tures. Methods based on motion features, like optical flow, 
rely on frame-to-frame comparisons for motion detection 
analysis. High frame rate and steady sampling are required, 
but they are difficult to achieve in some conditions.

With the widespread application of unmanned platforms 
such as autonomous underwater vehicles (AUVs) in ocean 
surveys (Yu and Wilson, 2023), the operational capabili‐
ties of their main payloads, such as forward-looking sonar, 
are receiving special attention. Forward-looking sonar can 
synthesize images of satisfactory resolution at high fre‐
quencies (Zacchini et al., 2020). However, research on uti‐
lizing forward-looking sonar for underwater leakage moni‐
toring remains limited. A key challenge encountered in 
this domain is the significant impact of interference caused 
by seabed reverberation on the images produced by forward-
looking sonar. Lightweight sonar equipment alone often 
cannot provide accurate observations, requiring large vehi‐
cles to carry multiple sensor sources into the submerged 
area, complicating underwater target identification. De 
Moustier et al. (2013) maneuvered a remotely operated 
vehicle (ROV) with a 500 kHz forward-looking multibeam 
sonar mounted at an angle to avoid seabed reverberation 
interference near the leakage source, combining optical tech‐
niques for manual identification. Ren et al. (2023) installed 
a system of two forward-looking sonar units with different 
frequencies on an ROV, facilitating targeted observations 
close to the underwater leakage site. One sonar unit was 
strategically oriented vertically to obtain high-quality acous‐
tic images of bubbles and minimize interference caused by 
underwater environmental noise.

In recent years, deep learning approaches have increas‐
ingly become focal points in classification and recognition 
(Valdenegro-Toro, 2016). Driven by sample data training, 
these methods automatically learn image features through a 

data-driven approach, overcoming the limitations of manual 
feature patterns, which are simplistic but have weak discrim‐
inative capabilities. With simple image sample inputs, these 
methods can achieve high accuracy in recognition results. 
Deep learning has rapidly developed, achieving tremen‐
dous success in image processing areas such as classifica‐
tion and segmentation. Various classic deep learning net‐
work models, such as AlexNet, GoogleNet, VGGNet, and 
ResNet, have been proposed and widely applied (Ju and 
Xue, 2020). Their wide application has provided new per‐
spectives and methods for sonar image classification, with 
many researchers applying deep learning techniques to 
image classification.

Considering the practical application of forward-looking 
sonar on AUVs, this study proposes a detection and flow 
classification method for underwater gas leakage that com‐
bines the dual-tree complex wavelet transform (DT-CWT) 
with deep learning in a single frame. This approach addresses 
the detection of weak scatterers of leaked gases in the pres‐
ence of seabed reverberation and the classification of gas 
leakage flow based on localized information from rising 
bubbles.

In this study, a preliminary underwater gas leakage mod‐
eling device was constructed and applied in a pool environ‐
ment simulation. The second section of this paper focuses 
on the principles of image processing using the DT-CWT, 
discussing image enhancement and detection techniques 
centered around image decomposition and reconstruction. 
The third section introduces feature extraction principles 
for classification based on processed images and presents 
classification techniques for gas leakage situations based 
on deep learning theories using a physical model of gas 
leakage. The fourth section elaborates on the experimental 
system design and presents experimental results demon‐
strating the superiority of intelligent monitoring for under‐
water gas leakage. The potential occurrence of target devi‐
ation in the actual work environment is also discussed.

2  Sonar image feature extraction and 
enhancement based on DT-CWT

2.1  Overview of DT-CWT

The DT-CWT is an advanced algorithm rooted in wavelet 
transform principles (Selesnick et al., 2005; Kingsbury, 
1998). Similar to the short-time Fourier transform, DT-CWT 
provides frequency domain information and retains a por‐
tion of the time domain information, forming a basis for 
time-frequency signal analysis. The transformation involves 
designing a dual-tree filter based on specific rules, preserv‐
ing the advantages of general complex wavelets, and facili‐
tating flawless image reconstruction. This approach has 
proven successful in several applications, such as image 

675



Journal of Marine Science and Application 

denoising and texture enhancement (Mumtaz et al., 2006; 
Li et al., 2017; Arun et al., 2023).

The DT-CWT comprises two tree filters (Figure 1), cor‐
responding to high-pass and low-pass filters, with a half-
sampling delay between the corresponding filters, ensuring 
robust translation invariance. The sampling frequencies of 
the two tree filters are identical, and the delay between them 
precisely amounts to one sampling interval. This arrange‐
ment ensures that the first level down-sampling in the imagi‐
nary tree captures the sampled values discarded by the 
down-sampling in the real tree. It not only achieves trans‐
lation invariance in the complex wavelet transform but also 
avoids extensive computations, making it easy to imple‐
ment. This study employs the DT-CWT to decompose for‐
ward-looking sonar images, utilizing the information from 
sub-band images at different levels for the recognition and 
feature extraction of underwater bubble images.

2.2  DT-CWT image decomposition and 
reconstruction

In forward-looking sonar images used for underwater 
gas leakage monitoring, the heterogeneous textures acquired 
at diverse resolutions enhance the efficacy of wavelet coef‐
ficients within distinct sub-bands for texture analysis and 
classification. Varied textures exhibit distinctive energy 
values across different detail sub-bands.

The decomposition of the image through the DT-CWT 
yields sub-band images corresponding to different frequency 
energy ranges (Selesnick et al., 2005). The decomposition 
proceeds as follows:
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where ψh ( t ), ψg ( t ) are two real wavelets, x ( t )is the origi‐
nal signal, dj ( t ) is the detail coefficient (high frequency), 
and cJ ( t ) is the scaling coefficient (low frequency).

The target image can be reconstructed by recombining 
different energy sub-band images with different weights. 
Reconstruction proceeds as follows:

x̂ ( t ) =∑
j = 1

J

wj dj ( t ) + cJ ( t ) (7)

where wj is the weight for the subband j, and x̂ ( t ) is the 
reconstruction signal.

In detecting and processing gas leakage images using 
the DT-CWT, the signal is divided into high-frequency and 
low-frequency components through high-pass and low-pass 
filters. The filters h0 and h1 correspond to the low-pass 
and high-pass filters in the real tree, whereas g0 and g1 
correspond to the low-pass and high-pass filters in the 
imaginary tree, respectively.

For a 2D image, where the time axis is replaced by the 

Figure 1　DT-CWT filter set
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coordinates in 2D space, the DT-CWT can capture high-
frequency variations along both directions in the image. 
Compared with wavelet transforms, the two complementa‐
ry subtrees in the DT-CWT endow the transformation with 
translation invariance. Even if the position of the target 
whose features are to be extracted changes in the image, 
the DT-CWT can still capture its texture information.

Additionally, the DT-CWT provides excellent directional 
selectivity, as illustrated in Figure 2. The gas leakage images 
detected by forward-looking sonar undergo decomposition 
through DT-CWT. As a result, each row is divided into 
nine levels from left to right. The corresponding sub-band 
images progressively reveal lower-frequency energy infor‐
mation. Each column, from top to bottom, represents the 
sub-band images in six different directions within the 
same level, symbolizing responses to textures in various 
directions.

The decomposition process corresponds to the left half 
of Figure 1, achieved through the analysis filter bank. The 
reconstruction part corresponds to the right half of Figure 1, 
completed by the synthesis filter bank. The original signal 
can be reconstructed by performing the inverse DT-CWT 
using the low-pass and detail coefficients. Thus, by recon‐
structing the image with different weights assigned to each 
sub-band image obtained through the DT-CWT, the texture 
can be enhanced or attenuated at specific levels and direc‐
tions. In this research, images corresponding to low and 
high flow rates at 3 standard liters per minute (SLPM) and 
30 SLPM were captured, respectively. After reconstruc‐
tion, specific image enhancement effects can be achieved, 

as shown in Figures 3 and 4. Variations in echo scattering 
caused by different bubble distributions at varying flow 
rates are evident. A close examination of the image details 
reveals that the bright spots at the leakage points in Figure 3 
under low flow conditions are narrower than those in 
Figure 4 under high flow conditions. The processed images 
more clearly depict the bubble targets, reducing the inter‐
ference generated by the seabed echo.

3  Classification of gas leakage flows

3.1  Leakage bubble distribution theory in flow 
classification

In the experimental setup, gas leakage flow is controlled 
by adjusting the leakage pressure differential. The process 
of gas bubble diffusion is highly intricate, with continually 
changing initial momentum, buoyancy, resistance, and sur‐
face tension as the bubble ascends. These dynamic factors 
result in varied phenomena during the stages of gas leakage.

In the initial phase, termed the pressure jet stage, turbu‐
lent bubble clusters are formed under the influence of the 
initial momentum provided by the pressure differential 
from the leakage source. As the bubble clusters ascend, the 
initial momentum gradually diminishes because of the pro‐
portional increase in resistance with the upward velocity. 
During this phase, buoyancy becomes the predominant 
influencing factor on the diffusion motion of bubbles, result‐

Figure 2　DT-CWT decomposition of gas leakage images
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ing in convective diffusion under its effect. With the leak‐
age pressure differential maintained constant, gas continu‐
ously emanates from the leakage point, forming a plume 
that stabilizes over time (Sun et al., 2020). Assuming uni‐
form flow and considering the velocity and void fraction 
on the horizontal cross-section of the bubble plume (Friedl 
and Fanneløp, 2000), these physical quantities are pre‐
sumed to follow Gaussian distributions.

v (r, z ) = vc ( z )e− r2 /b ( z )2

(8)

ε (r, z ) = εc ( z )e− r2 / ( λb ( z ) )2

(9)

where v represents the upward velocity of the bubble, r 
denotes the horizontal distance between the bubble and the 
axis, z is the vertical distance from the leakage point, and 
b represents the width of the bubble plume, defined as the 
distance from the axis to the edge of the bubbles. ε is the 
void fraction, and γ is the ratio of void fraction distribution 
to velocity distribution, typically assumed to be a constant.

Additionally, the length scale Hp represents the water 
depth corresponding to atmospheric pressure.

Hp =
p0

ρg
(10)

where g is the acceleration due to gravity, and ρ is the den‐
sity of the liquid phase. In the experimental pool setting, 
the value of Hp is taken as 10.33 m.

Dimensionless numbers ŝ are defined to describe the 
influence of slip velocity during bubble ascent, ν̂c is the 
dimensionless slip velocity, and V̂0 represents the gas volu‐
metric flow rate. The proportionality factor α, also known 
as the entrainment coefficient, is presumed to remain con‐
stant. The continuity equation for the gas phase can be 
derived as follows:
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1
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ẑ, b̂, and v̂ all represent dimensionless physical quanti‐
ties, and they can be calculated based on the following 
relationship.
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z

Hv + Hp
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b
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The continuity equation for the liquid phase and the 
momentum equation for the gas- liquid mixture are depicted 
by Eqs. (15) and (16), respectively.

d
dẑ

( b̂2 v̂c ) = b̂v̂c (15)

d
dẑ

( b̂2 v̂2
c ) =

1
( v̂c + ŝ ) (1 − ẑ )

(16)

Given the entire process of gas leakage diffusion, the 
morphology of bubble flow is primarily determined by the 

Figure 3　Gas leakage image processed at low flow

Figure 4　Gas leakage image processed at high flow
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magnitude of the leakage pressure differential. The flow 
properties of bubbles can be derived through the inversion 
of the void fraction of bubbles in the bubble plume and the 
width of the bubble plume. A simplified solution to the 
equation can be identified in this context (Friedl and Fan‐
neløp, 2000):
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+ŝ
3

110 ( )12
25

1
3

ẑ
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According to Friedl (1998), as the flow rate increases in 
experiments, the corresponding parameter ŝ continuously 
decreases. Based on Eq. (17), a mapping relationship exists 
between the width of the bubble curtain and the variation 
in flow rate. Furthermore, based on Eq. (11), the void frac‐
tion of bubble plumes is influenced by the volume flow 
rate V̂0. The distribution of bubbles exhibits a mapping 
relationship with the flow rate.

Theoretical relationships indicate that the widths of bub‐
ble plumes and the fractions of void space formed under dif‐
ferent leakage flow conditions vary and are closely related. 
The width of the bubble plume and the fraction of void 
space influence the reflected echo signals after active sonar 
signals are transmitted. This influence is the primary rea‐
son for the differences observed in forward-looking sonar 
imaging of leaking gases under varying flow conditions, 
providing theoretical support for the application of classifi‐
cation techniques based on single-frame images. Based on 
this discussion, gas flow rates can be classified through 
feature extraction from single-frame image signals.

3.2  Classification by DT-CWT feature images 
based on Euclidean distance

Complex echo interference in the water, which is pre‐
sented in the acoustic image, complicates the identification 
of targets, as shown in Figure 5. As a key factor in echo 
interference, seabed reverberation is the sound wave of 
acoustic scattering due to the unevenness of the seabed and 
the non-uniformity of the substrate. In optimizing image 
processing under the background of echo interference, the 
differentiation of various leakage gases in different flow 
rates can be essentially understood as an image classifica‐
tion technique. Extracting local structural features of leak‐
age bubbles identified in sonar images and combining them 
with a classification algorithm are crucial for distinguish‐
ing different flow rates. Local structural features in images 

describe the target structure of bubble acoustical images, 
and common features include point features, edge features, 
image block features, and texture features (Xu et al., 2015). 
Texture features serve as a measure of the target surface’s 
brightness variation and are crucial information in images 
(Humeau-Heurtier, 2019). When classifying texture images 
with considerable differences, texture features become an 
effective method. The DT-CWT, with translational invari‐
ance and limited directional selectivity, overcomes the 
drawbacks of the discrete wavelet transform.

The regular distribution of similar image units repeated 
in a pattern is the texture feature of an image. The charac‐
teristics embedded in gas leakage images under different 
flow rates vary. Extracting features from leakage images at 
different flow rates allows for a deeper understanding of 
the relationship between the texture features of underwater 
gas leakage and the corresponding flow rates. From wave‐
let transform to DT-CWT, various methods are provided 
for feature extraction in images (Qiao et al., 2021). Utiliz‐
ing DT-CWT for texture feature extraction, combined with 
similarity measures, can be employed for the classification 
of gas leakage images under different flow conditions.

In accordance with the tools defined in the international 
standard MPEG-7 for describing image texture features, 
namely, the homogeneous texture descriptor (HTD), a tex‐
ture descriptor based on the DT-CWT can also be defined 
(Xu and Zhang, 2006). HTD employs the Gabor wavelet 
transform to filter images in different directions and scales, 
resulting in texture feature maps at various directions and 
scales (Wu et al., 2000). The energy and energy deviation of 
these feature maps together constitute the HTD. The DT-
CWT is similar to the Gabor wavelet transform, exhibiting 
variations in scale and angle. It decomposes the image 
into Q levels of DT-CWT coefficients, with each level hav‐
ing six directional sub-bands denoted as Wq, n (i, j ), repre‐
senting wavelet coefficient images at scale q and direction 
n. Here, q = 1, 2,…, Q denotes the decomposition scale, 
and n = 1, 2, 3,…, 6 represents the number of directions.

Figure 5　 Gas leak detection with forward-looking sonar under 
seabed echo interference
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For each sub-band image Wq, n (i, j ) obtained after decom‐
position, the energy μq, n and standard deviation σq, n of its 
amplitude |Wq, n(i, j ) | are computed as follows:

μq,n =
1

M × N∑i = 1

M

 ∑
j = 1

N
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where M × N represents the magnitude of the sub-band 
image Wq, n (i, j ), and μq, n is the average of the amplitude 
values of the wavelet coefficients of the sub-band image 
Wq, n (i, j ).

Thus, a composite feature vector can be constructed by 
combining the energy and standard deviation of the sub-
bands as follows:

fμσ (i, j ) = { }μ1, 1, σ1, 1, …, μ1, 6, σ1, 6, …, μQ, 1, σQ, 1, μQ, 6, σQ, 6

(20)

In the classification method for underwater bubble acous‐
tic images under different leakage flow rates based on fea‐
ture extraction, after extracting the feature vectors from the 
images, it is necessary to measure the similarity between fea‐
tures. The similarity measurement between two feature vec‐
tors can be understood as a distance measurement between 
the two vectors. Euclidean distance is a simple method for 
distance measurement (O’Neill, 2006). The acoustic echo 
images of leaking bubbles under different flow rates exhib‐
it variations in texture features, and the similarity of texture 
features presented by bubbles under similar flow rates can 
be reflected by the numerical values of the similarity mea‐
surement distance. Higher similarity corresponds to smaller 
numerical values of the distance.

During measurement, standardization is required for dif‐
ferent feature components. Let x and y be the feature vectors 
of the database image and the recognition image, respec‐
tively. The formula for normalized Euclidean distance after 
processing is as follows:
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(21)

NED ( x, y ) =∑
l
∑

n

dq, n ( x, y ) (22)

By combining the Euclidean distance measurement 
method, a database for classification based on feature vectors 
can be constructed. Feature vectors of the acoustic images 
of leaking bubbles with known flow rates are extracted to 
form the database. When faced with unfamiliar leakage 
bubble images, their feature vectors are extracted, and clas‐

sification is matched with the database image information, 
enabling the classification prediction of underwater gas 
leakage flow.

3.3  Classification by DT-CWT feature images 
based on VGG-16

While traditional classification methods based on DT-
CWT feature extraction are characterized by their clear 
physical significance and high reliability, the accuracy of 
the classification results obtained through these methods 
still requires improvement. The VGG-16 network model, 
a classical convolutional neural network (CNN) model, is 
commonly employed for tasks such as image classifica‐
tion and segmentation. It consists of an input layer, con‐
volutional layers, pooling layers, fully connected layers, a 
classification layer, and an output layer (Simonyan and 
Zisserman, 2015).

The convolutional layers utilize convolutional kernels of 
varying sizes and numbers to extract features from images. 
The VGG network specifically employs 3×3 small convo‐
lutional kernels, reducing the number of parameters and 
accelerating the training speed of the model. Despite its 
straightforward structure, VGG-16 contains a large num‐
ber of weight parameters. When applied to datasets with 
limited size and low data similarity, it is prone to overfit‐
ting, requires significant storage capacity, and is not con‐
ducive to model deployment. Moreover, its extended train‐
ing time is disadvantageous for rapid identification of 
bubble flow. This study modifies the VGG-16 model to 
achieve rapid and accurate identification of bubble flow. 
The model is tailored to meet the requirements of bubble 
flow classification. The constructed CNN is illustrated in 
Figure 6.

For images of gas leaks captured by forward-looking 
sonar, preprocessing steps such as object detection and 
image segmentation are performed to obtain images con‐
taining bubble features. These images are then labeled 
with actual flow rates to form a dataset, which is divided 
into training, validation, and test sets in specific proportions. 
An experimental environment is constructed by adjusting 
parameters such as the learning rate, minibatch size, and 
validation frequency. The final stage involves training and 
utilizing confusion matrix information from the test set to 
obtain results, including training accuracy and training 
loss. The specific process is shown in Figure 7.

4  Experiment and result

4.1  Introduction to the experimental environment 
and procedure

In this research, an underwater gas leakage simulation 
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device was custom-built in an experimental pool. The setup 
involved an aluminum alloy frame and a gas leakage 
source created by connecting an air pump to a hydraulic 
stone, simulating underwater gas leakage. An underwater 
optical camera was also used to document the experimen‐
tal process. A flow meter was installed on one end of the 
gas release device to record leakage flow rates in real time. 
A computer was utilized for recording and processing real-
time data.

The underwater platform was fitted with an Oculus 750d 
model forward-looking sonar for collecting acoustic data 
from the gas leakage, as shown in Figure 8. This sonar 
device is 125 mm long, 122 mm wide, and 62 mm high, 
making it compact, portable, and easy to install on under‐
water platforms and intelligent underwater equipment. It is 
designed for operations at a depth of up to 500 m and offers 
two operational frequencies: 750 kHz and 1.2 MHz. The 
specific parameters are detailed in Table 1. The bottom of 
the experimental pool was covered with a layer of sand to 
simulate a realistic seabed environment.

Due to the influence of various factors such as ocean 
currents, water depth, nozzle size, pipeline pressure, and 
flow velocity, the size and distribution of bubbles generated 
during a gas leak undergo continuous changes as they rise 
under the effect of buoyancy. Furthermore, the backscatter 
strength (or acoustic attenuation) of the bubbles is closely 

related to the signal frequency, bubble size, and the num‐
ber of bubbles (Greinert and Nützel, 2004). The informa‐
tion presented by gas leaks under different flow rate condi‐
tions is reflected in the echo images captured by forward-
looking sonar.

During the experiment, the forward-looking sonar was 
placed at 1.0 m underwater. It utilized a 20° opening angle 
on the vertical plane of the sonar array to capture images 
of the rising bubble column from the leak. Given the rela‐
tively shallow depth of the pool (about 3 m), the sonar was 
positioned at an angle of approximately 25° with the hori‐
zontal plane to better study the morphology and texture 
characteristics of the rising bubbles. The leakage source 
was constructed using a hydraulic stone connected to an 
air compressor via a rubber hose. A high-precision flow 
meter was fitted to the end of the rubber hose connected to 
the air compressor, recording accurate leakage flow rates 
in real time.

Multiple sets of experiments were conducted by control‐

Figure 6　Constructed convolutional neural network structure

Figure 7　Flow chart of deep learning classification prediction

Table 1　Configuration of Oculus 750d parameters

Parameter

Operating frequency

Max range (m)

Min range (m)

Range resolution (mm)

Update rate (Hz)

Horizontal aperture (°)

Vertical aperture (°)

Value

750 kHz/1.2 MHz

120/40

0.1

4/2.5

40

130/60

20

Figure 8　Schematic layout of the experimental setup
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ling variations in the input flow, recording flow data and 
bubble images for subsequent image processing and intelli‐
gent classification. The experiments were carried out at con‐
trolled input flow rates ranging from 1 SLPM to 30 SLPM. 
Five groups were selected for detailed analysis, with 
flow rates of 1 SLPM, 3 SLPM, 7 SLPM, 15 SLPM, and 
30 SLPM, respectively. For each flow rate condition, data 
and images were collected for 30 seconds in three sepa‐
rate instances to ensure stability, forming corresponding 
datasets for storage.

4.2  Results of classification methods based on 
image feature extraction

Monitoring and classifying gas leakage through images 
obtained via forward-looking sonar can be regarded as an 
image classification problem, which is a crucial research 
area in pattern recognition. Gas flow classification involves 
categorizing sonar image samples obtained under different 
flow rates and assigning corresponding labels to these sam‐
ples. In the acquired bubble images, numerous similar 
image units repeat and form a regular distribution. The ris‐
ing gas column formed by bubble leakage is composed of 
overlaid bubbles, with a close relationship between bubble 
radius and distribution and leakage flow rate. Therefore, 
the corresponding leakage flow conditions can be matched 
on the basis of the texture features of local bubble informa‐
tion captured by forward-looking sonar.

Following the methods mentioned in Section 3.1, the 
approach not only detects the presence of leakage but also 
further distinguishes acoustic images of gas leakage under 
different flow rates.

Features from five sets of 1 500 underwater acoustic 
images under different gas leakage flow rates were extracted 
and randomly divided into a 3∶1 ratio to form training and 
testing sets. The average feature vector of the extracted 
features from 75% of the images was computed and uti‐
lized as the standard feature for the five flow rates. The 
remaining 25% of the images were designated as the test‐
ing set, and their feature vectors were extracted. The Euclid‐
ean distance was then calculated according to Equation (15) 
to measure the similarity with the standard features. The 
flow rate corresponding to the standard feature with the 
minimum calculated distance was selected as the output 
result of the classifier. Subsequently, the classification 
accuracy was computed by comparing the results with the 
true labels. This process yielded a recognition result table 
and confusion matrix, as shown in Table 2 and Figure 9.

The results indicate that the classification accuracy of 
gas leakage flow based on DT-CWT feature extraction is 
90.67%. This approach demonstrates a reasonably accurate 
capability to classify underwater gas leakage flow rates, 
particularly within the ranges of Levels 1–3. The system 
exhibits high precision in assessing gas leakage flow within 
these specified levels. In practical underwater gas leakage 

scenarios, this method’s advantages can be fully lever‐
aged, enabling accurate evaluation of gas leakage condi‐
tions, especially in the early stages.

4.3  Results based on the deep learning 
classification method

Utilizing a pre-trained VGG-16 image classification net‐
work, the network model was fine-tuned to optimize its 
performance. Acoustic data were collected under five dif‐
ferent flow rates, with approximately 1 500 images per 
group. A total of 2 000 images were randomly selected as 
the data source, adhering to a 3∶1 split for the training and 
validation sets. Additionally, 500 images were randomly 
extracted from the remaining data as the test set to validate 
the accuracy of the constructed network. The data propor‐
tions for the training set, validation set, and test set was 
allocated in a ratio of 6∶2∶2. A learning rate of 0.000 1 
and a minibatch size of 10 were chosen, and the validation 
frequency was set to 50 to prevent overfitting. This param‐
eter indicates that a validation assessment was conducted 
for every 50 mini-batches to evaluate the model’s perfor‐
mance. The training was carried out for five epochs, culmi‐
nating in the obtained results. Accuracy and loss functions 
serve as crucial metrics for assessing the effectiveness of 
the model’s training (Wang et al., 2022). Ultimately, after 
1 071 seconds of training in the laboratory computing envi‐
ronment (Table 3), the accuracy and loss function graphs 
are illustrated in the accompanying Figure 10.

Figure 9　Confusion matrix of leakage feature extraction classification

Table 2　Results of leakage feature extraction classification

Flow Level

Actual Level 1

Actual Level 2

Actual Level 3

Actual Level 4

Actual Level 5

Precision rate

Level 1

97.60%

0.00%

0.00%

0.00%

0.00%

97.60%

Level 2

2.40%

97.60%

2.67%

0.00%

0.00%

97.60%

Level 3

0.00%

1.60%

96.00%

5.33%

0.00%

96.00%

Level 4

0.00%

0.00%

1.33%

76.27%

14.13%

76.27%

Level 5

0.00%

0.00%

0.00%

18.40%

85.87%

85.87%
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According to the results, each epoch consisted of 523 
iterations in the training based on deep learning. Remark‐
ably, a rapid convergence was achieved, with the accuracy 
reaching 95% after only two training epochs. The final val‐
idation of the model on the test set produced a confusion 
matrix, as depicted in the accompanying Figure 11.

The image-based deep learning approach demonstrates 
favorable recognition accuracy, and the integration of fea‐

tures extracted through DT-CWT shows the potential to 
further enhance training speed and accuracy. Upon under‐
going DT-CWT decomposition into sub-band images of 
different frequencies, forward-looking sonar images gener‐
ate a reconstructed image with bubble texture features. 
This image can also be employed for deep learning pur‐
poses. Constructing a classifier based on CNNs requires 
the prior application of DT-CWT to the forward-looking 
sonar images. The subsequent steps are extracting sub-
band images containing bubble-related features, recon‐
structing bubble feature images, and cropping them to 
specified dimensions to meet the relevant conditions for 
neural network training.

Moreover, augmenting the training set by flipping pro‐
cessed images serves a dual purpose: enhancing the accu‐
racy of model training and mitigating the risk of overfitting 
while expanding the number of training samples to a certain 
extent. Once an appropriate pre-trained grid is selected, 
constructing a suitable grid allows for the training of the 
dataset, followed by validation on the test set. The images 
in the dataset preprocessed with target segmentation and 
flipping are shown in Figure 12 to constitute the training 
samples.

In the consistent laboratory computing environment, the 
training results of the flipped bubble leakage dataset trans‐
formed through DT-CWT were compared with those of the 
original flipped bubble dataset, as depicted in Figures 13 
and 14. The convergence speed of accuracy was much 
faster, and the rate of reduction in the loss function was 
higher for the DT-CWT transformed dataset. The training 
time required to achieve a 90% accuracy on the DT-CWT 
transformed dataset was considerably lower than that of 
the original training set, with only 55.32% of the epochs 
needed compared with the original training set, effectively 
halving the training time. Upon concluding the training, the 
test set validation results, including the confusion matrix, 
are presented in Figures 15 and 16.

Experiments were conducted to identify flow on a test 
set of 500 random flow sample data. The experiments were 
run on a laboratory computer environment (i7‒12700 H). 
The results showed that the total classification time for the 
entire test set was 13.432 s, with an average recognition time 
of only 0.026  864  s per image. The model used DT-CWT 
and deep learning techniques, which demonstrated its high 
processing speed. The recognition accuracy and process‐
ing rate were significantly improved by optimizing compu‐
tational processes and algorithms. This improvement is 

Figure 10　Deep learning training process

Figure 11　Confusion matrix and accuracy

Figure 12　Preprocessed flipped images

Table 3　Computing platform parameters

CPU

INTEL I7 12700 H

RAM

8 GB

GPU

NVIDIA RTX3060

VRAM

6 GB
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particularly crucial for real-time gas leakage applications 
that require rapid and accurate diagnostics.

The recognition accuracy of the original test set was 

94.60%, whereas the final test set achieved a validation 
accuracy of 98.80%, as shown in Figure 17. This outcome 
indicates that the model maintained high recognition per‐
formance while exhibiting excellent computational effi‐
ciency, demonstrating its feasibility and efficiency in prac‐
tical underwater monitoring applications. The performance 
improvement provides robust technical support for real-
time monitoring and big data analysis, making it applica‐
ble in various settings, such as small unmanned underwa‐
ter observation systems.

Analysis reveals that images reconstructed through DT-
CWT, compared with solely preprocessed original images, 
exhibit superior effectiveness when integrated with deep 
learning. The combined approach yields better perfor‐
mance and higher accuracy.

This study demonstrates that forward-looking sonar 
deployed in AUVs can effectively perform underwater 
operations. However, AUVs characterized by high nonlin‐
earity, complexity, and uncertainty undergo changes in 
their depth motion characteristics with variations in speed 
and external disturbances (Pei et al., 2023; Zhong et al., 
2022). They potentially result in lateral shifts of the front-
view sonar targets within the image frame. Whether the 
deep learning model trained on the original dataset can 
still effectively differentiate underwater gas leakage flow 

Figure 13　Comparison chart of training accuracy

Figure 14　Comparison chart of training loss

Figure 15　Original confusion matrix and accuracy

Figure 16　DT-CWT confusion matrix and accuracy
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rates should be investigated to address the challenge of 
unfamiliar and random small lateral shifts in the target. 
Using the methodology described in Section 2, image fea‐
tures are reconstructed from sonar images, and a deep learn‐
ing model trained for flow rate recognition is employed. 
Random shifts (0% – 10%) are applied to the gas leakage 

images within the target cropping region, causing the bub‐
ble’s position in the image feature to deviate from the 
training set’s position. After standardization and center-
offset calculation, a test set with randomly shifted and 
flipped images is generated. The accuracy of flow rate rec‐
ognition for the shifted and flipped images is then com‐
puted. The results in Figure 18 indicate that the classifica‐
tion method proposed in this study maintains good recog‐
nition performance even in the presence of random shifts 
and flips, achieving an accuracy of 80% for the shifted and 
flipped test set.

Combining DT-CWT and deep learning methods is effec‐
tive in accurately identifying the predetermined flow rate 
levels. Moreover, this approach demonstrates adaptability 
to the random shifts of bubbles relative to the recognition 
window. These capabilities make the methodology suitable 
for integration and application in AUV operations focused 
on underwater gas leakage monitoring.

5  Conclusions

Aiming to achieve informalized intelligent monitoring 

Figure 17　Results of test set traffic classification prediction under 
deep learning

Figure 18　Random shift confusion matrix and accuracy
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for underwater gas leakage in offshore CCUS schemes, 
this study proposes a method for underwater gas leakage 
detection and its flow classification based on the DT-CWT 
and deep learning techniques. The approach is tested and 
validated using experimental data from a simulated under‐
water gas leakage setup. DT-CWT is applied to the single 
echo image of bubble leakage to extract texture features 
from sonar images. Sub-band images are decomposed, 
assigned different weights, and reconstructed to enhance 
underwater targets. The deep learning technology, enhanced 
by DT-CWT, demonstrates advantages and potential in 
underwater flow rate rapid classification testing. This study 
validates the reliability and robustness of flow rate classifi‐
cation under random translation and flipping conditions in 
anticipation of future deployments in actual AUV missions 
for underwater monitoring with forward-looking sonar. Cur‐
rent recognition and classification technologies still face 
challenges in adapting to complex underwater environments 
and enhancing accuracy. Future developments can involve 
integrating more lightweight, advanced deep learning mod‐
els and feature extraction methods with high-resolution 
underwater imaging equipment mounted on actual AUVs 
and ROVs to closely realize intelligent underwater moni‐
toring deployment.
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