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Abstract
The exploitation of wind energy is rapidly evolving and is manifested in the ever-expanding global network of offshore wind 
energy farms. For the Small Island Developing States of the Caribbean Sea (CS), harnessing this mature technology is an 
important first step in the transition away from fossil fuels. This paper uses buoy and satellite observations of surface wind 
speed in the CS to estimate wind energy resources over the 2009–2019 11-year period and initiates hour-ahead forecast-
ing using the long short-term memory (LSTM) network. Observations of wind power density (WPD) at the 100-m height 
showed a mean of approximately 1000 W/m2 in the Colombia Basin, though this value decreases radially to 600–800 W/
m2 in the central CS to a minimum of approximately 250 W/m2 at its borders in the Venezuela Basin. The Caribbean Low-
Level Jet (CLLJ) is also responsible for the waxing and waning of surface wind speed and as such, resource stability, though 
stable as estimated through monthly and seasonal coefficients of variation, is naturally governed by CLLJ activity. Using a 
commercially available offshore wind turbine, wind energy generation at four locations in the CS is estimated. Electricity 
production is greatest and most stable in the central CS than at either its eastern or western borders. Wind speed forecasts are 
also found to be more accurate at this location, and though technology currently restricts offshore wind turbines to shallow 
water, outward migration to and colonization of deeper water is an attractive option for energy exploitation.

Keywords Offshore wind energy · Wind energy forecasting · Caribbean Sea · Long short-term memory network · Offshore 
wind turbines

1 Introduction

Pressured by anthropogenic climate change, renewable 
energy has over the past few decades, rapidly advanced, and 
wind energy stands as one of the most mature alongside 
solar energy. Having successfully colonized the land, wind 
turbines are being installed further and further offshore. 

While offshore wind turbines are more expensive to con-
struct and maintain than their onshore counterparts (Díaz 
et al., 2016; Satir et al., 2017; Hevia-Koch and Jacobsen, 
2019), they are advantaged in that over the ocean, energy 
availability is significantly larger due to a greater downward 
transport of kinetic energy from the overlying atmosphere, 
allowing power generation in some ocean areas to exceed 
land-based power generation by a factor of three or more 
(Liu et al., 2016; Possner and Caldeira, 2017). To initiate 
offshore wind energy projects, a resource assessment is a 
crucial preliminary step and is carried out in a variety of 
ways that include but are not limited to numerical weather 
prediction models, in situ and remotely sensed observations.

Due to the expense of installing and maintaining large 
buoy networks, in addition to the large spatial distances in 
between each buoy, literature detailing direct wind resource 
assessments using buoy observations is sparse. Nonetheless, 
Leahy et al. (2012) assessed the viability of using offshore 
meteorological buoys in assessing wind energy resources 
in the Atlantic Ocean and the Irish Sea and concluded that 
although due to assumptions and errors related to buoy wind 
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data accuracy the wind energy assessment would be imper-
fect, buoys can still be used. Bagiorgas et al. (2012) accessed 
ten buoys throughout the Aegean and Ionian Seas to assess 
wind speed and wind power characteristics and found that 
two sites could be classified by wind classes 6 and 7. It was 
also observed that 15%–16% higher winds were observed 
at the 10-m height as compared to 3 m. Additionally, it was 
calculated that wind turbines at these sites could produce 
energy for more than 70% of the time. Chen et al. (2017) 
used six buoys located along the Shenzhen coast to assess 
both wind and wave energy resources and concluded that 
while wind energy was, for the region, plentiful at 37–94 W/
m2, wave energy was negligible. With the advent and vali-
dation of several buoys specifically developed for wind 
resource assessments (García et al., 2018; Gorton et al., 
2019; Viselli et al., 2019; Yu et al., 2020), additional stud-
ies will undoubtedly be conducted. However, a wide range 
of other methods are currently available to estimate and 
forecast wind energy resources and this includes usage of 
satellite observations.

Guo et  al. (2018) assessed the global wind energy 
resources using a wide array of satellites and compared 
the results with National Data Buoy Center (NDBC) buoys 
at 10-m and 100-m heights. Using multiple satellites, the 
authors found a more reliable estimation of wind energy 
resources. Wang et al. (2019)  assessed the applicability of 
a variety of surface wind datasets inclusive of satellite-based 
observations, reanalysis, in addition to regional atmospheric 
models, and found that the best overall performance came 
from QuikSCAT and ASCAT in terms of bias when com-
pared with central Californian coast buoys. Remmers et al. 
(2019) assessed the ASCAT satellite platform’s ability to 
characterize the spatiotemporal offshore wind information 
for offshore renewable energy infrastructure and found it 
could reliably represent in situ measurements in Irish waters 
and assist in the offshore wind farm site selection process. 
Zaman et  al. (2019) assessed the offshore wind energy 
resources in Malaysia using multi-mission satellite altim-
etry data and found that the density of wind power increased 
with increasing distance from the Malaysian shorelines. The 
authors also suggested that combining satellite altimetry, 
in situ observations and numerical modeling enhance off-
shore wind energy resource assessments. Carvalho et al. 
(2017) combined satellite, a numerical model, and buoys to 
characterize offshore winds and wind energy production for 
the Iberian Peninsula Atlantic coast. It was suggested that 
ASCAT provided the lowest wind speed temporal variability 
and wind power flux estimation errors, with WRF providing 
the best alternative to that product. Soukissian et al. (2017) 
used the Blended Sea Winds product and found that the 
eastern Mediterranean Sea has a high annual wind speed 
with moderately low temporal variability. There, the mean 
annual wind power density was measured at approximately 

1600 W/m2 and 1500 W/m2 in the Gulf of Lions and the 
Aegean Sea, respectively. Pereira and Silva (2020) combined 
satellite data observations and the Weather Research and 
Forecasting (WRF) atmospheric model to assess the offshore 
wind energy resource in Porto Santo Island and found that 
in comparisons with observations, WRF was shown to be 
proficient at simulations of wind speed and direction.

With the rise of big data, soft computing and artificial 
intelligence methods, the forecast of wind energy resources, 
particularly on short timescales is especially useful for off-
shore wind power scheduling and operation control. Zheng 
et al. (2018) used a deep neural network to extract deep data 
characteristics to improve the forecasting model efficiency. 
As compared to the back propagation (BP) and wavelet neu-
ral networks, the deep neural network outperformed both by 
more than 40%. Long short-term memory (LSTM) networks 
were also used to perform wind speed forecasting. Shi et al. 
(2019) compared LSTM to other conventional BP, extreme 
learning machines, and support vector machine (SVM) mod-
els, and found that LSTM had much lower error values and 
could be used to forecast wind speed at adjacent turbines. 
Li et al. used LSTM for ultra-short-term wind power fore-
casting in a Western China wind farm and found that the 
model, when Spearman rank correlation was used to iden-
tify LSTM hyper-parameters, outperformed traditional arti-
ficial neural networks. For short-time wind speed forecasts, 
Ibrahim et al. (2019) compared four neural network-based 
algorithms: artificial neural networks, convolutional neural 
networks, LSTM, and a hybrid convolutional LSTM (con-
vLSTM) network and one SVM model and found that while 
SVM was most accurate, convLTSM was less computation-
ally expensive and still provided high prediction accuracy.

Within the Caribbean Sea, Rueda-Bayona et al. (2019a) 
conducted a literature review of international actions 
geared towards encouraging different countries to estab-
lish strategies to reduce CO2 emissions, in addition to 
advances and challenges in implementing offshore wind 
technology, and the administrative framework of renew-
able energy in Colombia. There, it was demonstrated 
through the usage of satellite data, it was identified that 
a previously reported wind power density of 1700 W/m2

was significantly higher than the observed values at La 
Guajira (482 W/m2 at 110.8 m), Barranquilla (857 W/m2 at 
323.2 m), and Santa Marta (658 W/m2 at 10 m). A dataset 
of wind speed and wind power density at four locations in 
Colombia accompanied the study (Rueda-Bayona et al., 
2019b). Chadee and Clarke (2014) characterized the wind 
energy potential of the Caribbean using 31 years of the 
near-surface reanalysis dataset and found that the regional 
area-averaged wind speed attains a primary maximum in 
January and a secondary maximum in July. Moreover, it 
was identified that under the influence of the Caribbean 
Low-Level Jet (CLLJ), wind power density was measured 
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at 300–400 W/m2. Chadee et al. (2017) attempted to find 
the optimum configuration for WRF to map the near-sur-
face wind energy resources in Trinidad and Tobago. A 
subsequent technical and economic assessment of wind-
generated electricity was conducted by Chadee and Clarke 
(2018) for the same country found that the usage of large 
contemporary wind turbines would be cost-competitive 
for Caribbean small island developing states (SIDS). Rog-
ers et al. (2019), though studying onshore wind energy, 
predicted a favorable levelized cost of electricity. With 
the accelerating global transition to renewable energy and 
at the precipice of the United Nations (UN) Decade of 
Ocean Science for Sustainable Development (2021–2030), 
investigating the offshore wind energy in a Caribbean Sea 
bordered by SIDS is an extremely relevant research topic, 
especially given the projections of increasing annual 
wind speeds (Costoya et al., 2019). For the Caribbean 
Sea that has significant potential to harness ocean renew-
able energy, understanding the spatiotemporal distribu-
tion of wind energy is also essential towards achieving the 
UN Sustainable Development Goals (SDGs; UN, 2019). 
Specifically, this paper seeks to contribute to the research 
that undergirds SDG 7 which concerns affordable, reliable, 
sustainable, and modern energy for all. Consequently, the 
rest of the paper is structured as follows: Sect. 2 describes 
the data and methodology. Section 3 contains the results 
which are bisected into the wind energy assessment and 
forecasting subsections. Section 4 presents the conclusion 
and a discussion.

2 � Data and Methodology

2.1 � Data

A total of four buoys owned and maintained by the 
National Buoy Data Center (NDBC) are accessed for their 
surface wind speed observations in the area enclosed by 
8°N–20°N and 60°W–90°W (Figure 1, Table 1). This 
data ranged from 2009 to 2019 and possesses an hourly 
resolution. Extensive data curation was done to eliminate 
invalid entries and characterize the volume of missing 
data to ensure that analyses were representative of the 
full 11-year period. Relevant buoy statistics are provided 
in Tables 1 and 2.

Using Eq. (1), wind speeds were converted to the 100 m 
height using the simplified log-law equation: 

where U(z) is the wind speed at height z, z0 is the rough-
ness length (0.01), and zR is a reference height. Although the 
roughness length for open sea conditions is much smaller 
(0.0002), early studies by Frank et al. (2000) and Barthelmie 
(2001) suggest that provided wind speed being vertically 
extrapolated is greater than 10 m above sea level, any vari-
ation in the roughness length of the sea surface is too small 
to have a significant impact on average wind resources at 
typical turbine hub heights (Barthelmie et al., 2007). This 

(1)U(z) = U
(
zR
) log

(
z

z0

)

log
(

zR

z0

)

Figure 1   Study area with 
National Data Buoy Center 
buoy locations marked. Shading 
is the water depth (m)

Table 1   Accessed National 
Buoy Data Center buoys and 
their relevant statistics

NDBC ID Latitude (°N) Longitude (°W) Anemom-
eter height 
(m)

Water depth (m) Number of 
observations

Data avail-
ability (%)

42057 16.906 81.422 3.8 377 73,959 76.71
42058 14.776 74.548 3.8 4158 73,284 68.23
42059 15.252 67.483 4.1 4784 76,521 78.78
42060 16.433 63.331 3.8 1469 75,815 78.64
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value is also used widely in other studies (e.g., Ma et al., 
2021) and will be used here to maintain consistency.

In addition to in situ buoy observations of wind speed, 
ASCAT scatterometer-observed wind speed, and direction 
are also acquired on a spatial resolution of 0.25°×0.25° and 
ranges 8°N–20°N and 60°W–90°W. Temporally, the data 
ranges from January 1, 2009, to December 31, 2019, and is 
on a daily resolution. Data is downloaded via the OPeNDAP 
Server maintained by the Asia–Pacific Data-Research Center.

2.2 � Methodology

2.2.1 � Wind Energy Estimation

Given a sufficiently long time series of wind speed data for 
a given region, the wind power density P per unit area A is 
given by:

where v is the wind speed (m/s) and ρ is the air density 
(1.025 kg/m3). Following the estimation of wind energy 
resources, how the resources vary on interannual scales is 
also crucial in identifying optimum locations for energy 
exploitation. Consequently, the dimensionless coefficient of 
variation index is used to estimate this interannual variability 
on monthly (3) and seasonal (4) scales (Rusu et al., 2018):

The capacity factor, which is an indicator of performance, 
is calculated and is defined as the ratio of the actual electri-
cal produced to its nameplate capacity:

The corresponding output function for a wind turbine is 
defined as follows (Sohoni et al., 2016):

(2)
P

A
=

1

2
�v3

(3)MV =
PMmax − PMmin

PYear

(4)SV =
PSmax − PSmin

PYear

(5)Capacity Factor =
Actual Energy Production (MWh)

Nameplate capacity (MW) × Time

To simulate the total theoretical power generation at 
each buoy location, this paper selects the Swiss Electric 
YZ150/10.2 offshore wind turbine. Statistics concerning the 
rated power, cut-in, rated, cut-out, and survival wind speeds 
are listed in Table 3.

2.2.2 The Long Short‑term Memory Network

Following the wind energy assessment, wind speed forecasts 
are performed for each location using available buoy obser-
vations converted to the 100-m height. For grid stability and 
reliability considerations, in addition to the optimization of 
market design, proper maintenance/operations, and power 
scheduling, frequency response reserves etc., forecasting 
wind power generation is crucial (Lledó et al., 2019; Al-
Dahidi et al., 2020).

Although a variety of methods exist for wind speed fore-
casts and include numerical weather prediction models such 
as WRF, statistical methods, spatial correlation models, 
artificial intelligence, or hybrid methods (Han et al., 2015; 
Chang, 2014), an artificial intelligence method, the long 
short-term memory (LSTM) network, is employed due to 
low computational expense and its high degree of accuracy 
(Gangwar et al., 2019; Ibrahim et al., 2020; Marndi et al., 
2020). The LSTM network (Figure 2) is a type of recurrent 
neural network that is widely used for complex time series 
analyses, machine translation, speech recognition and as 
relevant for this paper, wind speed predictions (Gökgöz and 
Filiz, 2018; Zhang et al., 2019; Banik et al., 2020) because 
it overcomes the well-known vanishing gradient problem as 
it employs a function whose second derivative can persist 

(6)Pw(V) =

⎧
⎪⎨⎪⎩

1

(V3

R
−V3

C)

�
V3 − V3

C

�
PR, VC ≤ V ≤ VR

PR, VR ≤ V ≤ VF

0, elsewhere

Table 2   Accessed National 
Buoy Data Center buoys 
and their relevant statistics 
continued

NDBC ID Latitude (°N) Longitude (°W) Max. wind 
speed (m/s)

Min. wind 
speed (m/s)

Standard 
deviation 
(m/s)

42057 16.906 81.422 33.18 0.001 3.26
42058 14.776 74.548 51.47 0.001 3.34
42059 15.252 67.483 33.98 0.001 3.34
42060 16.433 63.331 49 0.001 3.36

Table 3 Swiss Electric YZ150/10.2 turbine power curve coefficients

Rated power 
(MW)

Cut-in speed 
(m/s)

Rated speed 
(m/s)

Cut-out 
speed (m/s)

Survival 
speed (m/s)

10 3 13 25 70
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for a long while before reducing to zero. One of the ben-
efits of using deep learning methods is that though relation-
ships between nonlinear data may be hidden, they can still 
be extracted, and predictions performed. Through a series 
of forget (ft), input (it), and output (ot) gates, patterns in 
long sequences of data can be selectively conserved and this 
process gives the network an advantage over conventional 
feed-forward neural networks and other RNNs. Information 
to be forgotten is identified by passing data (ht−1 and xt) 
through a sigmoid function that ranges from 0 to 1, so that if 
the output is 0, information is forgotten, and if 1, information 
is retained. Conserved information is saved in the input gate 
and the sigmoid function is applied to the results before fur-
ther processing with the tanh function and Hadamard prod-
uct operator (ʘ; Yu et al., 2019). The strength and direction 
of current information storage (it) ranges from 0 to 1, and 
ct ranges from − 1 to 1. Each gate is computed as follows:

where t is the time step, Xt is the input vector, Ct−1 is 
the memory from the previous block, ht−1 is the output of 
the previous block, Ct and ht are respectively the memory 
and output of the current block, � is the sigmoid, tanh is 
the hyperbolic tangent, ʘ is the Hadamard operator, W is 

(7)ft = �
(

Wxf xt +Whf ht−1 + bf
)

(8)it = �
(

Wxixt +Whiht + bi
)

(9)ot = �
(

Wxoxt +Whoht−1 + bo
)

(10)gt = tan h
(

Wxgxt +Whght−1 + bg
)

(11)ct = ft ⊙ ct−1 + it ⊙ ct

(12)ht = ot ⊙ tan h
(

ct
)

each layer’s assigned weight, xt is the input time step t, b
is the bias for each gate. In Figure 2, Xt is the input vec-
tor, Ct−1 is the memory from the previous block, ht−1 is the 
output of the previous block, Ct and ht are respectively the 
memory and output of the current block, σ is the sigmoid, 
tanh is the hyperbolic tangent, 0 is the bias, × and + are the 
element-wise multiplication and summation/concatenation,
respectively.

2.2.3 � Performance Indicators

To quantitatively evaluate the LSTM forecast performance, 
four commonly used statistical techniques are applied. The 
root mean square error (RMSE), relative RMSE (RRMSE), 
mean absolute error (MAE), and correlation coefficient (r2) 
are given as follows:

where yi and ẏi respectively the observed and forecasted 
wind speed, and 

−
y
i is the mean wind speed. Typically, 

smaller values of each measure indicate better forecasting 
skill and r2 is the goodness-of-fit measure for LSTM. The 
larger r2 is, the better the model fit.

3 � Results

3.1 � Scatterometer Results

Employing daily scatterometer observations of surface wind 
speed, it can be observed in the 2009–2019, 11-year means 
plotted in Figure 3a that wind speeds indeed exceed 10 m/s 
throughout the majority of the CS, peaking at approxi-
mately 15 m/s along the Caribbean Colombian coastline. 
When these wind speeds are processed into wind energy 
density in Figure 3b, minute spatial deviations in wind 
speed throughout the region become more pronounced due 
to the cubed relationship between wind speed and energy 
density (Eq. 2). The wind power density (WPD) over the 
study period reached an 11-year maximum mean of 1000 W/
m2, though this value is observed only along the Colom-
bian Caribbean coastline. In the central Caribbean, WPD 
decreased radially from that point to 480–800 W/m2 in the 
eastern and western Caribbean Sea, before reaching a mini-
mum of approximately 200 W/m2 in the Colombian Basin, 
Gulf of Honduras, Gulf of Gonâve, and along the northern 

(13)
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Figure  2   Block diagram of the long short-term memory recurrent 
neural network cell unit
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Venezuelan coastline. The Lesser Antilles in the eastern 
Caribbean Sea also feature relatively a relatively high wind 
power density of 400–600 W/m2.

On a monthly scale, plotted in Figure 4, it can be observed 
that the highest wind speeds, i.e., those exceeding 8 m/s, and 
over the widest surface area are found over 8 months rang-
ing from January to April and July, August, October, and 
November. This pattern, and the general pattern of surface 
wind speed, is caused by the presence and activity of the 
CLLJ, which is the one of the main regional climatic fea-
tures (Whyte et al., 2008; Durán-Quesada, et al., 2020). For 
the remaining months, mean wind speeds dip below 8 m/s, 
and its area of effect is significantly reduced as compared 
to the more active months. June, in particular, has very low 
wind speeds and only the eastern CS has wind speeds rang-
ing from 6–7 m/s, though this pattern is eliminated during 
July. Additionally, and most relevant for this study, while 
the highest wind speeds are observed in the Colombian CS, 
the largest area of intense winds are in the central Caribbean 
Sea, far offshore. It should also be noted that under direct 
CLLJ forcing, the highest mean wave heights and winds 
(inclusive of extremes) would also be found in this area 
(Appendini et al., 2014, 2015: Devis-Morales et al., 2017), 
thus encumbering offshore operations.

Using Eq. 2, wind speeds converted to the 100 m height 
were processed into WPD, with results plotted in Figure 5. 
There, it can be observed that maximum WPD occurs tem-
porally in January, July, and October and can reach approxi-
mately 1500 W/m2, though the spatial distribution of these 
values is constricted to a very small area just off the Colom-
bian CS. A WPD of 750 W/m2 is observed in the central 
CS that lasts from January–May, July, August, October, and 

November, a 9-month period. At this juncture, it is worth 
noting that results observed from scatterometer measure-
ments are in strong agreement with those as derived from 
reanalysis (Chadee and Clarke, 2014; Soares et al., 2020), 
thereby demonstrating the interchangeability of datasets for 
wind energy resource assessments.

To investigate the stability of wind energy, nondimen-
sional monthly and seasonal coefficients of variation were 
computed (Eqs. 3 and 4, respectively) with the results plot-
ted in Figure 6. On monthly scales (Figure 6a), it is easily 
observed that WPD in the southern Colombian Basin in the 
Mosquito and Darien Gulfs is very unstable, though stability 
increases gradually towards the north and reaches compara-
ble levels of stability as compared to the Venezuelan Basin 
at the 16°N line of latitude. Similar patterns can be observed 
on seasonal scales (Figure 6b), though to a significantly 
reduced degree. Consequently, in terms of resource avail-
ability (Figure 3) and stability, the central CS is suggested to 
be the optimum location for offshore wind turbine installa-
tions. To confirm this hypothesis, buoys located throughout 
the CS are accessed and their data used in the subsequent 
section to calculate wind turbine electricity output.

3.2 � Buoy Results

Using the available records, wind roses were plotted for each 
of the NDBC buoys and are displayed in Figure 7. The most 
prominent feature is that regardless of buoy, winds primar-
ily blow from the east, though more directional spread can 
be observed at buoy 42,057 (Figure 7a), than any other. 
Additionally, wind speed in no case was observed to exceed 
14 m/s, but this is naturally deceptive as it is relatively 
unlikely for hurricanes that enter the region to pass close 
enough to any buoy to have its data recorded without instru-
mentation damage. Consequently, and based on this observa-
tion, in the future selection of offshore wind turbines, class 1 
turbines should be chosen as these are designed to endure the 
tough operating conditions experienced at sites with average 
wind speeds above 8.5 m/s. Turbine selection should also 
consider hurricane activity.

To estimate candidate site suitability, Eq. 4 is used to 
compute the theoretical energy output for the Swiss Electric 
YZ150/10.2 turbine based on the wind power curves which, 
in Figure 8, graphically display the relationship between the 
rated wind turbine hub height and wind speed (Lydia et al., 
2014; 2015). In each case, it can be observed that wind 
speeds observed by the buoys exceeded the cut-out speed of 
the turbine, necessitating a shutdown. This can be attributed 
easily to either hurricane or in the case of buoy 42,058 that 
lies in the central CS, strong CLLJ activity.

Using the power curves of Figure  5, the theoretical 
average turbine power for each buoy location is given in 

Figure  3   Eleven-year (2009–2019) mean wind speed (a) and wind 
power density (b) derived from scatterometer observations converted 
the 100 m height
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Table 4, unsurprisingly, buoy 42,058, with 8.2 MW electric-
ity output approached closest to the turbine’s maximum of 
10 MW, followed by 42,059 at 6.5 MW, 42,060 at 6 MW, 
and 42,057 at 5.6 MW, thus illustrating that with increas-
ing distance away from the central CS and CLLJ, energy 

output correspondingly decreases. Consequently, purely in 
terms of electrical output potential, placing turbines further 
offshore would be ideal. However, additional considerations 
such as anchoring and mooring design which are dependent 
on water depth, seabed characteristics and environmental 

Figure 4   Mean monthly 
scatterometer-derived surface 
wind speeds over the 11-year, 
2009–2019 period
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impact complicate the identification of optimal installation 
sites (Jiang, 2021).

With reference to the water depths of each buoy listed in 
Table 2, it can be suggested that neither gravity base founda-
tion, monopile, nor jacket-supported bottom-fixed offshore 

wind turbines would be suitable as they are considered eco-
nomic for water depths of less than 10 m, 20–40 m, and 
50–70 m, respectively (Dong et al., 2011; Hermans and 
Peeringa, 2016; Wu et al., 2019). Consequently, floating 
wind turbines are perhaps the best choice as they can access 

Figure 5   Mean monthly 
scatterometer-derived surface 
wind power density over the 
11-year, 2009–2019 period

565

1 3

 B. J. Bethel: Caribbean Sea Offshore Wind Energy Assessment and Forecasting  



depths of up to 700–1300 m (Musial et al., 2016), but this 
range excludes all locations but buoy 42,057 that possesses 
the lowest theoretical output. It is natural to consider that 
offshore wind turbine installations should therefore happen 
within significantly shallower water. For the Caribbean Sea 

that is comprised of SIDS and Central and South Ameri-
can coastal communities, this option is perhaps not feasible 
as their tourist-based economies rely heavily on unspoiled 
natural landscapes (Maslov et al., 2017; Jensen et al., 2018; 
WTTC, 2019; Peterson, 2020). In addition to installing wind 
turbines further offshore, another strategy to increase total 
electrical output of a possible wind farm could be to increase 
the rated wind power for a given turbine so more electricity 
can be produced at a given site. Generally, while these and 
past results have argued for the development of larger and 
taller wind turbines to harness more energy in the same geo-
graphical space, thereby increasing overall efficiency, it can 
be equivalently suggested that developing small but power-
ful and efficient (i.e., high power ratings) turbines would 
achieve similar results. Research into the optimization of 
wind turbine hub heights is thus essential for a given region 
(IEC, 2005; Sieros et al., 2012; Lee et al., 2019).

Forecasting of energy resources is crucial for optimum 
grid control and design in power plants, power allocation, in 
addition to economic scheduling, dispatching, among other 
operations (Nazir et al., 2020; Santhosh, et al., 2020). In this 
section, the forecasting of wind speed is performed using 
the LSTM neural network to demonstrate applicability on 
regional NDBC buoy observations. For each buoy case, 70% 
of the data was used to train the model, with the remaining 
30% forecasted. In each buoy case, preliminary experiments 

(b) Seasonal scale 

(a) Monthly scale 

Figure 6   Coefficient of variation. a Monthly scale. b Seasonal scale

Figure 7   a–d Wind roses for 
National Data Buoy Center 
buoys. Wind speed is given in 
m/s and was discretized into 8 
equally spaced, 45° wide bins
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showed that a time step of 3 h was optimum and was used 
to conduct hour-ahead forecasting. As shown in Figure 9
with results listed in Table 5, regardless of buoy location, 
LSTM forecasting accuracy exceeds 0.90, demonstrating its 
strong ability to forecast surface wind speed. With reference 
to Figure 1, it can also be observed that central CS buoys 
(42,058 and 42,059) had the highest r2 and lowest RMSE, 
RRMSE, and MAE values, with border CS buoys (42,057 
and 42,060) having comparatively lower forecast skill. As 
the main axis of the CLLJ lies at the 15°N, central CS buoys 
recorded winds direct from the jet, while border CS buoys 
recorded the weak winds at either the head of the CLLJ 
(buoy 42,060), or its tail (buoy 42,057), rather than its body 
(buoys 42,058 and 42,059).

Though this preliminary study restricted the forecast lag 
to 3 h, both increasing and decreasing the forecast horizon 
are the subjects of intensive study for short-term (inclusive 
of the ultra-short-term) and long-term predictions (Lu et al., 
2018; He and Xu, 2019; Akhtar et al., 2021) and as such, 
future studies should include additional variables such as 
air temperature and pressure that would make such forecasts 
feasible. Different forecast horizons are required for different 
applications, and thus, this research is of primary impor-
tance for a nascent offshore wind energy industry in the CS 
and should be conducted in subsequent research.

4 � Conclusion and Discussion

Global island and coastal communities are inextricably 
linked to the sea and for the small island developing states 
(SIDS) bordering the Caribbean Sea (CS), their economic 
health is especially coupled. At the precipice of the UN 
Decade of Ocean Science for Sustainable Development 
(2021–2030) and under the continued context of the global 
transition to renewables, conducting natural resource assess-
ments is crucial. Based on analyses of both in situ and sat-
ellite-observed surface wind speed, it was determined that 
purely in terms of resource availability, the central CS was 
the optimum location, and this is due primarily to Caribbean 
Low-Level Jet (CLLJ) activity that delivered intense winds 

Figure 8   a–d Swiss Electric YZ150/10.2 turbine power curves for NDBC buoys

Table 4   Capacity factor and average power at each NDBC buoy loca-
tion at the 100-m hub height for the Swiss Electric YZ150/10.2 off-
shore wind turbine

Buoy ID Capacity factor (%) Average 
turbine power 
(kW)

42057 51.56 5672.27
42058 74.60 8206.06
42059 59.46 6541.52
42060 55.20 6072.33
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exceeding 8 m/s for 7 months of the year, and over a wide 
geographical area. This resulted in the observation that in 
a very narrow area off the Colombian CS coast, mean wind 
power density (WPD) values peaked at 1000 W/m2 at the 
100 m height. In January, July, and October, it was observed 
that WPD could increase even further to 1500 W/m2. For the 
majority of the CS, although the CLLJ does vary on both 
spatial and temporal scales, as determined by the coefficient 
of variation, WPD was also very stable, thus increasing its 
attractiveness to energy exploitation. Wind speed forecast-
ing is also crucial to this energy exploitation and through 
application of the LSTM neural network, it was found that 
wind speed was best predicted in the central CS under the 
direct influence of the CLLJ as represented by buoy 42,058. 
This was assessed using four common performance indi-
cators: the correlation coefficient (r2), root mean square 
error (RMSE), relative root mean square error (RRMSE), 
and mean absolute error (MAE). Specifically, buoy 42,058 

reached a maximum r2 of 0.94 with a RMSE of 1.14, a 
RRMSE of 0.13, and a MAE of 0.84. Further away from 
the CLLJ’s main area of effect, buoy 42,059 had a lower 
forecasting accuracy with r2, RMSE, RRMSE, and MAE 
being measured at 0.93, 1.16, 0.13, and 0.84, respectively. 
The lowest forecasting skill was observed at buoy 42,057 
that lies furthest away from the CLLJ main axis at the CS 
western border and possessed r2, RMSE, RRMSE, and MAE 
values of 0.90, 1.42, 0.13, and 0.98, respectively. Similarly, 
forecast accuracy for buoy 42,060 on the CS eastern bound-
ary was low with r2, RMSE, RRMSE, and MAE values 
being measured at 0.91, 1.48, 0.14, and 1.09, respectively. 
In subsequent studies, higher resolution data (e.g., 10 min, 
rather than hourly) can be used to develop and optimize a 
LSTM-based ultra-short-term wind speed forecasting model. 
Identically, to lengthen the forecast range, additional vari-
ables such as air temperature and pressure can be included 
in the model for greater robustness for extended forecasts.

This study limited its investigation to the theoretical and 
technical wind resource potentials leaving a great deal of 
additional research to be conducted. Based on these pre-
liminary results, however, it is strongly thought that offshore 
wind energy resources are sufficient that could, if turbines 
are arranged in wind farms and issues concerning their 
mooring/anchoring in deep water, and electricity transmis-
sions can be mitigated, if not eliminated through techno-
logical advancements or clever strategy. For example, the 
issue of transmission can be dealt with, if only partially, 

Figure 9   a–d Forecast (3 h) of buoy-observed wind speed extrapolated to the 100-m height results. Data points refer to the number of wind 
speed observations

Table 5   Three-hour 100-m wind speed forecast results

NDBC ID Performance Indicators

r2 RMSE (m/s) RRMSE (m/s) MAE (m/s)

42057 0.90 1.42 0.13 0.98
42058 0.94 1.16 0.13 0.84
42059 0.93 0.78 0.10 0.55
42060 0.91 1.48 0.14 1.09
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but offshore wind farms producing energy carriers such 
as hydrogen and this is transported to the mainland during 
operation and maintenance activities. This hydrogen can 
also be supplied to a new generation of hydrogen-powered 
shipping vessels in the maritime industry. Additionally, mul-
tipurpose platforms, such as those that co-locate wind and 
wave energy projects or merge offshore wind and a maricul-
ture facility could be built. This allows the disadvantages of 
placing such facilities so far offshore to be offset. Extreme 
waves and hurricane activity remain considerable hurdles to 
wind energy development in the CS and should be intensely 
studied in future research if the project is to be made not 
only economically viable, but one that SIDS and coastal 
communities Scan rely on for reducing carbon dioxide emis-
sions, triggering economic growth, and providing employ-
ment opportunities.
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