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Abstract
Command governor–based adaptive control (CGAC) is a recent control strategy that has been explored as a possible candidate
for the challenging task of precise maneuvering of unmanned underwater vehicles (UUVs) with parameter variations. CGAC is
derived from standard model reference adaptive control (MRAC) by adding a command governor that guarantees acceptable
transient performance without compromising stability and a command filter that improves the robustness against noise and time
delay. Although simulation and experimental studies have shown substantial overall performance improvements of CGAC over
MRAC for UUVs, it has also shown that the command filter leads to a marked reduction in initial tracking performance of
CGAC. As a solution, this paper proposes the replacement of the command filter by a weight filter to improve the initial tracking
performance without compromising robustness and the addition of a closed-loop state predictor to further improve the overall
tracking performance. The new modified CGAC (M-CGAC) has been experimentally validated and the results indicate that it
successfully mitigates the initial tracking performance reduction, significantly improves the overall tracking performance, uses
less control force, and increases the robustness to noise and time delay. Thus, M-CGAC is a viable adaptive control algorithm for
current and future UUV applications.

Keywords Command governor adaptive control . Measurement noise . Time delay . Transient tracking . Unmanned underwater
vehicles . Robustness

1 Introduction

Unmanned underwater vehicles (UUVs) are being increasing-
ly used in underwater operations, replacing or supplementing
divers, driven by the demand from the offshore oil industry,

heightened maritime security concerns, and the need for com-
prehensive ocean data collection and ocean floor mapping
(Brun 2012). Over the years, continuous developments have
led to some form of autonomous control of many UUVs. Such
autonomous control is challenging, mainly due to model un-
certainty, highly nonlinear and time-varying hydrodynamic
effects, and non-deterministic external disturbances. During
operations, UUVs are consistently subjected to various param-
eter changes that affect the vehicle motion such as changes in
the weight due to different payloads (Cavalletti et al. 2011),
changes in buoyancy due to variations in the pressure, tem-
perature, and salinity (Wu et al. 2014), change in the control
effectiveness due to partial loss of thrust (Pivano 2008), and
changes in the hydrodynamic load near the free surface (Sayer
1996). The mitigation of the effects of such changes on the
motion of the vehicle is a crucial factor in complex UUV
applications that require precise maneuvers. These include
semi-autonomous remotely operated vehicles (ROVs) used
in applications such as tidal energy infrastructure servicing
under high-flow conditions (Proctor et al. 2015), autonomous
underwater vehicles (AUVs) used for assisting divers to carry
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out underwater task (Stilinović et al. 2015), and launching and
recovering of torpedo-shaped AUVs from submarines for mil-
itary purposes (Rodgers et al. 2008). To enable these applica-
tions, it is essential that UUVs have good tracking perfor-
mance throughout their entire mission. Good tracking perfor-
mance in UUVs is fundamentally dependent on the motion
control system (MCS) which mainly consist of the control
system and guidance system supported by the navigation sys-
tem. (Fossen 2011). Therefore, theMCS used inUUVs should
adapt to the changes and ensure good tracking in both steady
state and, more importantly, transient time.

Guidance system generates feasible desired reference path/
trajectories as input to the control system, thus providing in-
formation on where the craft should go and how it should get
there (Fossen 2011). Line-of-sight (LOS) is a popular and
effective guidance law used extensively for autonomous ma-
rine vehicles due to its simplicity and intuitiveness.
Traditional LOS methods usually steer the vessel toward a
point lying at a constant distance ahead of the vehicle (look-
ahead distance) along the desired path (Fossen et al. 2003).
Lekkas and Fossen (2012) proposed a revised version of LOS,
using a time-varying look-ahead distance, while Borhaug
et al. (2008) has proposed an addition of integral actions to
LOS (ILOS) to overcome disturbances. An extension of ILOS
based on adaptive sideslip observe has been proposed by
Fossen and Lekkas (2017) that can compensate effectively
for the drift forces. Another guidance law that has gained
traction recently for guidance of marine vehicles is vector
field–based approach. A path-following controller for an au-
tonomous marine vehicle using a vector field guidance law
was developed in Xu and Guedes Soares (2016). This was
extended to a time-varying vector field guidance law with a
proof of uniform semiglobal exponential stability (USGES) in
Xu et al. (2019) and Xu et al. (2020). A comparison between
the vector field and the ILOS guidance laws for a UUV is
given in Caharija et al. (2015).

Control system enables the vehicle to achieve a certain
control objective despite environmental forces by determining
the required control forces and moments to be provided by the
actuators (Fossen 2011). Numerous advanced solutions for
control system of UUVs have been proposed, with more re-
cent literature covering robust control techniques such as
higher order sliding mode control (Guerrero et al. 2019),
model-based optimization techniques such as model predic-
tive control (Zhang et al. 2019), intelligent control techniques
such as fuzzy control (Yu et al. 2017), neural networks (Elhaki
and Shojaei 2020), and probabilistic inference learning (Ariza
Ramirez et al. 2020). Adaptive control is another important set
of control techniques that have a unique advantage in UUV
applications due to their inherent ability to adapt to changes
that affect the vehicle behavior (von Ellenrieder 2021). This is
further highlighted by the fact that some form of adaptation
has been built into all of the aforementioned control solutions.

Model Reference Adaptive Control (MRAC) is one subset
of adaptive control in which the desired characteristics of the
system are represented usually by a reference model (Ioannou
and Fidan 2006). The basic MRAC architecture has been
modified over the years to yield; reduced parameter drift and
increased robustness to unmodeled dynamics (Narendra and
Annaswamy 1987; Macnab 2019), improved transient perfor-
mance (Duarte-Mermoud and Narendra 1989; Yang et al.
2020), and increased robustness to time delay (Dydek et al.
2010). In addition, MRAC has been proposed as an outer loop
for improved disturbance rejection of a classical PID (Alagoz
et al. 2020) and fractional order PID control systems
(Tepljakov et al. 2018).

Even though adaptive control has been proposed as a
promising solution for UUVs (Antonelli et al. 2001; Fossen
and Fjellstad 1996; McFarland and Whitcomb 2014;
Valladarez and Toit 2015; Yuh et al. 1999), there are certain
drawbacks that prevent their widespread use in advanced ap-
plications. One of the major drawbacks is the trade-off be-
tween transient tracking performance and adaptation gains.
High adaptation gains are known to achieve accurate transient
tracking, which in turn leads to oscillations in the control
signal (Stepanyan and Krishnakumar 2012), reduced robust-
ness to noise and time delay, and instability (Crespo et al.
2010). On the other hand, low adaptation gain mitigates the
above issues, but it leads to poor reference tracking in the
transient region (Zang and Bitmead 1994) that can be danger-
ous in cluttered environments. Several solutions (Cao and
Hovakimyan 2006; Stepanyan and Krishnakumar 2010;
Yucelen and Haddad 2012; Yucelen and Johnson 2012a) to
this conundrum have been proposed in the past decade includ-
ing L1 adaptive control (Cao and Hovakimyan 2006) which
has been applied to UUVs by Maalouf (2013) and Valladarez
(2015) with encouraging results. This method uses a modified
MRAC architecture that places a low-pass filter in a unique
position that subverts the high-frequency signals and decou-
ples adaptation from robustness (Cao and Hovakimyan 2006).
This decoupling theoretically enables the use of high adapta-
tion gains to increase transient tracking but concern has been
expressed by several researches that high adaptation gains
could lead to numerical instability (Campbell et al. 2010;
Ioannou et al. 2014) and parameter freezing (Ortega and
Panteley 2014). Some of the other solutions (Stepanyan and
Krishnakumar 2010; Yucelen and Haddad 2012), although
not widely applied, also use some form of filtering with high
adaptation gains and could face the same questions as L1
adaptive control.

Therefore, the authors have focused on modifications to
MRAC that uses low adaptive gains, which provide an em-
phasis on stability and smooth control signals while improv-
ing transient performance (Makavita 2018). One such method
is Command Governor Adaptive Control (CGAC) (Yucelen
and Johnson 2012a) which uses an additional linear
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dynamical system, driven by the system error, named com-
mand governor to modify the command signal. This in turn
leads to improved transient performance at low adaptation
gains and an inherent disturbance rejection capability
(Yucelen and Johnson 2012b). The authors initially applied
CGAC to a UUV in simulation to verify the tracking and
disturbance rejection improvements in Makavita et al.
(2015) and confirmed that CGAC disturbance rejection ability
allowed it to overcome a significant actuator dead-zone with-
out using an additional dead-zone inverse in Makavita et al.
(2016a). The authors validated through experiments the track-
ing improvement, disturbance rejection, and dead-zone over-
coming effect inMakavita et al. (2019a) for heading control of
a UUV, i.e., the AMC ROV.

A possible drawback of CGAC is that the command gov-
ernor has the tendency to amplify measurement noise
(Yucelen and Johnson 2012b) into the control signal that ad-
versely affect the robustness properties of CGAC. A solution
to this was provided in Yucelen and Johnson (2012b) that uses
a low-pass filter named the command filter to filter out noise
from the command governor signal. The authors confirmed
through simulations the efficacy of this solution for UUV
operations in Makavita et al. (2016a) and showed that at high
noise levels the command filter by itself was insufficient and
some input filtering of sensor measurements was also re-
quired. In addition, it was shown that the command filter also
increases robustness to time delay that can cause instability. A
further experimental study (Makavita et al. 2019b) of depth
control provided an opportunity to show the effect on CGAC
of high input noise and time delay due to depth rate estimation
and input filtering, respectively. It was shown that although a
command filter can be designed to reduce the measurement
noise in tandem with input filtering and concurrently
overcome instability from time delay, it causes an initial
period of very poor reference tracking and the control signal
noise level remain much higher than standard MRAC.

Even though CGAC outperformed MRAC in all perfor-
mance indicators after a sufficient time has passed, it was
apparent that a solution was required for this initial period of
poor performance as well as further reducing noise levels
without sacrificing tracking performance or robustness if
CGAC was to achieve its full potential for UUV operations.
To this end, this paper presents a possible solution by remov-
ing the command filter and combining CGAC with a weight
filter and state predictor based on Yucelen and Haddad (2013)
and Lavretsky et al. (2010) respectively to improve the overall
tracking performance while retaining an improved robustness
to noise and time delay without incurring an initial period of
poor tracking. The final control system with these modifica-
tions is termed modified CGAC (M-CGAC), which is tested
using experiments for depth control and compared with
previous results derived in Makavita et al. (2019b) for depth
control using the CGAC.

2 Adaptive Control Architecture

This section gives a brief introduction to MRAC, CGAC, and
modified CGAC.

2.1 Model Reference Adaptive Control

As described in Yucelen and Johnson (2013), consider the
nonlinear uncertain dynamical system given by,

ẋ tð Þ ¼ Ax tð Þ þΗδ x tð Þð Þ þ Bu tð Þ; x 0ð Þ ¼ x0; t ¼ ℝþ ð1Þ

where x(t) ∈ ℝp is the state vector, u(t) ∈ ℝq is the control
input, δ : ℝp → ℝq is an uncertainty, A ∈ ℝp × p is a known
system matrix, B ∈ ℝp × q is an unknown control input
matrix, H ∈ ℝp × q is a known uncertainty input matrix,
and the pair (A, B) is controllable. It is also assumed that
δ(x) is parameterized as δ(x) = WTσ(x), where W ∈ ℝs × q

is an unknown weight matrix, and σ : ℝq → ℝs is a known
basis function of the form σ(x) = [σ1(x), σ2(x), …., σs(x)]

T.
It is further assumed that B is parameterized as B = HΛ,
where det(HTH) ≠ 0, andΛ ∈ ℝq × q is an unknown control
effectiveness matrix.

The ideal reference model that specifies a desired closed-
loop dynamical system performance is given by

ẋm tð Þ ¼ Amxm tð Þ þ Bmc tð Þ; xm 0ð Þ ¼ x0; t ¼ ℝþ ð2Þ

where xm(t) ∈ ℝp is the reference state vector, c(t) ∈ ℝq is the
given uniformly continuous bounded command,Am ∈ ℝp × p

is the Hurwitz reference system matrix, and Bm ∈ ℝp × q is
the command input matrix.

The objective ofMRAC is to design a feedback control law
u(t) such that x(t) asymptotically follows xm(t), i.e.,
lim
t→∞

emk k ¼ 0, where em ≙ x − xm is the system error. Let

u(t) be given by

u tð Þ ¼ un tð Þ þ ua tð Þ ð3Þ

where un(t) ∈ ℝq is the nominal feedback control law and
ua(t) ∈ ℝq is the adaptive feedback control law. The nominal
control law is given by

un tð Þ ¼ K1x tð Þ þ K2c tð Þ ð4Þ

where K1 ∈ ℝq × p is the nominal feedback gain andK2 ∈ ℝq

× q is the nominal feedforward gain, such that the following
matching condition holds.

Am ¼ AþHK1; Bm ¼ HK2; and det K2ð Þ≠0 ð5Þ

Applying the control law defined in Eq. (3) into Eq. (1) and
simplifying yields
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ẋ tð Þ ¼ Amx tð Þ þ Bmc tð Þ þHΛ WT
unun tð Þþ

ua tð Þ þWT
σσ xð Þ

� �
ð6Þ

whereWun ≜ 1 − Λ−1 ∈ ℝq × q andWσ ≜ WΛ−1 ∈ ℝs × q.
Furthermore, the adaptive feedback law is selected as

ua tð Þ ¼ − bWun

T
tð Þun tð Þ− bWσ

T
tð Þσ xð Þ ð7Þ

where bWun tð Þ∈ℝq�q and bWσ tð Þ∈ℝs�q are estimates of Wun

and Wσ, satisfying the update laws given by

ḃWun tð Þ ¼ Γunun tð ÞemTPH ð8Þ
ḃWσ tð Þ ¼ Γσσ x tð Þð ÞemTPH ð9Þ

where Γun ∈ ℝq × q and Γσ ∈ ℝs × s are learning rates and P
= PT > 0 is the solution of the Lyapunov equation 0 ¼ AT

mP
þPAm þ Q for some Q = QT > 0. Now using Eq. (7) in Eq.
(6) yields

ẋ tð Þ ¼ Amx tð Þ þ Bmc tð Þ−HΛ
eWT

un tð Þun tð ÞþeWT

σ tð Þσ xð Þ

2
4

3
5 ð10Þ

where eWun tð Þ≜ bWun tð Þ−Wun∈ℝq�q and eWσ tð Þ≜ bWσ tð Þ−Wσ∈ℝs�q.
The system error dynamics is derived by subtracting Eq. (2)
from Eq. (10) to give

ėm tð Þ ¼ Amem tð Þ−HΛ eWun

T
tð Þun tð Þ þ eWσ

T
tð Þσ xð Þ

� �
ð11Þ

It is shown by the Lyapunov analysis in Yucelen and
Johnson (2013) that for the update laws Eq. (8) and Eq. (9),
the system is asymptotically stable, i.e., lim

t→∞
emk k ¼ 0.

2.2 Command Governor Adaptive Control

Let the command signal in Eqs. (2) and (4) be given by

c tð Þ ¼ cd tð Þ þ Gg f tð Þ ð12Þ

where cd(t) ∈ ℝq is now the given uniformly continuous
bounded command and Ggf(t) ∈ ℝq × q is the command
governor signal with G ∈ ℝq × p being, the matrix defined by

G ¼ K−1
2 HL ¼ K−1

2 HTH
� �−1

HT ð13Þ

and gf(t) ∈ ℝp × q is the low-pass-filtered command governor
output, g(t) ∈ ℝp × q generated by

ḟ tð Þ ¼ −λ f tð Þ þ λem tð Þ; f 0ð Þ ¼ 0; t∈ℝþ ð14Þ
g tð Þ ¼ λ f tð Þ þ Am−λIp

� �
em tð Þ ð15Þ

ġ f tð Þ ¼ −κg f tð Þ þ κg tð Þ; g f 0ð Þ ¼ 0; t∈ℝþ ð16Þ

where f(t) is the command governor state vector, λ = ℝ+ is the
command governor gain, and κ = ℝ+ is the command gover-
nor filter gain that should be selected sufficiently small to
ensure efficient low-pass filtering.

Due to the command governor output in Eq. (12), Eqs. (2)
and (10) are respectively modified as

ẋm tð Þ ¼ Amxm tð Þ þ Bmcd tð Þ þ PHg f tð Þ ð17Þ
ẋ tð Þ ¼ Amx tð Þ þ Bmcd tð Þ

þ PHg f tð Þ−HΛ
eWT

unun tð ÞþeWT

σσ xð Þ

2
4

3
5 ð18Þ

where PH = H(HTH)−1HT. However, this does not change the
system error dynamics given by Eq. (11) as seen by
subtracting Eq. (17) from Eq. (18). Therefore, the update laws
in Eqs. (8) and (9) also remain the same.

It has been shown in Yucelen and Johnson (2013) using
Lyapunov analysis that the system with the command gover-
nor is also asymptotically stable, i.e., lim

t→∞
emk k ¼ 0; and that

lim
t→∞

g f tð Þ ¼ 0. From this it can be shown that the modified

reference model given in Eq. (17) asymptotically converge to
the ideal reference model given by

ẋl tð Þ ¼ Amxl tð Þ þ Bmcd tð Þ; ð19Þ

where xl(t) ∈ ℝp is the ideal reference vector. Therefore, the
uncertain dynamical system in Eq. (1) approaches the ideal
reference model in Eq. (19) in steady state.

In addition, from Proposition 7.1 in Yucelen and Johnson
(2013), if λ is sufficiently large, the system approximates the
ideal reference model in Eq. (19) modified by a term PH(gf(t)
− g(t)), in transient time without using high learning rates.

Although it is shown that lim
t→∞

PH g f tð Þ−g tð Þ
� �

¼ 0, it is ex-

pected that there will be deviations from the ideal reference
model initially until the modification term has died down. The
deviation in transient time depends on the magnitude of the
term gf(t) − g(t). A small command governor filter rate κ as
required for increased robustness under high noise and time
delay conditions also increase the magnitude of the term thus
adversely affecting the initial tracking performance of CGAC.

2.3 Modified Command Governor Adaptive Control

The CGAC given in Section 2.3.1 is modified in three stages
to derive M-CGAC. These three stages and expected advan-
tage of each modification are given below.
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2.3.1 Removal of Command Filter

If the command filter given by Eq. (16) is removed, then Eqs.
(14) and (15) still holds and Eqs. (17) and (18) are modified to

ẋm tð Þ ¼ Amxm tð Þ þ Bmcd tð Þ þ PHg tð Þ ð20Þ
ẋ tð Þ ¼ Amx tð Þ þ Bmcd tð Þ

þ PHg tð Þ−HΛ
eWT

unun tð ÞþeWT

σσ xð Þ

2
4

3
5 ð21Þ

However, this does not change the system error dynamics
given by Eq. (11) as seen by subtracting Eq. (20) from Eq.
(21). Therefore, the update laws in Eqs. (8) and (9) also remain
the same. In addition, the term PH(gf(t) − g(t)) will no longer
modify ideal reference model in Eq. (19) thus from
Proposition 6.1 in Yucelen and Johnson (2013), if λ is suffi-

ciently large, the uncertainties HΛ eWT

unun tð Þ þ eWT

σσ xð Þ
h i

in

Eq. (21) are rapidly suppressed in transient time through
PHg(t), and the system approximates the ideal reference model
of Eq. (19) in transient time without using high learning rates.

Expected advantage: Improve initial transient perfor-
mance compared to CGAC due to removal of modification
term PH(gf(t) − g(t)).

2.3.2 Addition of Weight Filter Modification

As proposed by Yucelen and Haddad (2013) taking bW tð Þ∈ℝa�b

as a general weight estimate that can represent both bWun tð Þ andbWσ tð Þ, a low-pass-filtered weight estimate bW f tð Þ∈ℝa�b of bW
tð Þ is given by

ḃW f tð Þ ¼ Γ f bW tð Þ− bW f tð Þ
h i

; bW f 0ð Þ ¼ bW0; t≥0 ð22Þ

where Γf ∈ ℝa × a is a positive definite filter gain matrix
chosen such that λmax(Γf) ≤ γf, max, and where γf, max ≥ 0 is
a design parameter that needs to be small enough to cut off

high frequencies from bW tð Þ.
For clarity, both Eqs. (8) and (9) are represented by a gen-

eral update law given by

ḃW tð Þ ¼ Γβ tð ÞeTmPH ð23Þ

where Γ = Γun or Γσ and β(t) = σ(x(t)) or un(t). A modifica-
tion term was added to the update law Eq. (23) to enforce a

distance condition between the trajectories of bW tð Þ and bW f tð Þ:
This leads to a minimization problem of the cost function J
given by

J bW; bW f

� �
¼ 1

2
bW− bW f

��� ���2
F

ð24Þ

with a negative gradient with respect to bW tð Þ given by

∂ −J
� bW tð Þ; bW f tð Þ

h i
∂ bW tð Þ

¼ − bW tð Þ− bW f tð Þ
� �

; t≥0 ð25Þ

which is also the structure of the proposed modification term.
This leads to the modified update law of Eq. (26) given by

ḃW tð Þ ¼ Γ β tð ÞeTmPH−α bW tð Þ− bW f tð Þ
� �h i

ð26Þ

which yield the following modified update laws for Eqs. (8)
and (9) respectively,

ḃWun tð Þ ¼ Γun un tð ÞeTmPH−α bWun tð Þ− bWunf tð Þ
� �h i

ð27Þ

ḃWσ tð Þ ¼ Γσ σ x tð Þð ÞeTmPH−α bWσ tð Þ− bWσf tð Þ
� �h i

ð28Þ

where α > 0 is a modification gain, and bWunf tð Þ and bWσf tð Þ
are the low-pass-filtered weight estimate of bWun tð Þ andbWσ tð Þ, respectively.

Expected advantage: Significant reduction of measure-
ment noise due to high-frequency filtering effect of weight
filter and additional input filtering made possible by the in-
creased robustness to time delay. This increase robustness to
time delay stems from improved phase margin of the closed-
loop system due to the weight filter (Yucelen and Haddad
2013).

Furthermore, CGAC with modifications given in Sections
2.3.1 and 2.3.2 is named robust CGAC (R-CGAC) in this
paper due to its increased robustness compared to original
CGAC.

2.3.3 Addition of Closed-Loop State Predictor

A closed-loop state predictor is introduced to add a prediction
error in tandem with the system error for weight estimation.
As given in Lavretsky et al. (2010),

ḃx tð Þ ¼ Aprd bx tð Þ−x tð Þ
� �

þ Amx tð Þ þ Bmc tð Þ ð29Þ

where Aprd ∈ ℝp × p is a Hurwitz matrix, and bx tð Þ∈ℝp is the
predictor states vector. When added to CGAC, it will modify
Eq. (29) as

ḃx tð Þ ¼ Aprdbe tð Þ þ Amx tð Þ þ Bmcd tð Þ þ PHg tð Þ: ð30Þ

The prediction error is defined as be tð Þ≙bx tð Þ−x tð Þ. The pre-
dictor error dynamics can be derived by subtracting Eq. (21)
from Eq. (30) as

ḃe tð Þ ¼ Ambe tð Þ þHΛ eWT

un tð Þun tð Þ þ eWT

σ tð Þσ xð Þ
� �

: ð31Þ
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Now, if the update laws are given as shown in Eqs. (32) and
(33),

ḃWun tð Þ ¼ Γun

un tð Þ eTmP−beTPprd

	 

H−

α bWun tð Þ− bWunf tð Þ
� �

2
64

3
75 ð32Þ

ḃWσ tð Þ ¼ Γσ

σ x tð Þð Þ eTmP−beTPprd

	 

H−

α bWσ tð Þ− bWσf tð Þ
� �

2
64

3
75 ð33Þ

where Pprd ¼ PT
prd > 0 is the solution of the Lyapunov equa-

tion 0 ¼ AT
prdPprd þ Pprd Aprd þ Qprd for some

Qprd ¼ QT
prd > 0, then, it can be shown by a Lyapunov anal-

ysis that

1) The system error is uniformly ultimately bounded, square
integrable, and globally asymptotically stable, i.e.,
lim
t→∞

emk k ¼ 0;

2) The prediction error is uniformly ultimately bounded,
square integrable, and globally asymptotically stable,
i.e., lim

t→∞
bek k ¼ 0.

The proof is given in the Appendix.
Expected advantage: Improved overall reference tracking

due to composite adaptation using both tracking and predic-
tion errors based on the CMRAC conjecture (Lavretsky et al.
2010) and experimental results (Makavita et al. 2018).

The resulting adaptive control architecture with both
weight filter and state predictor is shown in Figure 1 and is
referred in this paper as modified CGAC (M-CGAC).

3 Control Plant Model

For the purpose of marine control system design, a simplified
model of the complex 6-DOF kinematics and dynamics must
be developed. This Control PlantModel (CPM) is also used as
a basis for analytical stability analysis and should capture only
the essential features of the system. This section describes the
CPM used in this study.

3.1 Reference Frames

It is convenient to use two reference frames to model the
dynamics of a UUV as shown in Figure 2.

& The Earth-fixed reference frame {E} that acts as the
inertial frame. The origin Oe is fixed relative to Earth,
with the axes Xe, Ye, and Ze pointing North, East, and
toward the center of Earth, respectively.

& The body-fixed reference frame {B} that acts as the mov-
ing frame. The origin Ob is fixed to the vehicle at a con-
venient location with axes Xb, Yb, and Zb coinciding with
the principal axes of inertia. The rotational directions are
defined in a clockwise motion about the three {B} frame
axes.

3.2 Thruster Model

In the actual vehicle, the vertical movement is achieved by a
vertical Seabotix© thruster (Le et al. 2013; SeaBotix 2015).
The thrust force of the Seabotix© thruster depends on the
input voltage, which is approximately represented by a simple
thruster model including a dead-zone as given in Makavita
et al. (2016a).

If it is assumed that the thruster dead-zone is overcome by a
dead-zone inverse, then the thrust F produced by the thruster,
which is also the vertical control effort (τw), is approximately
related to the thruster input voltageVi linearly by the multipli-
cation factor Kvf given as

τw ¼ F ¼ Kvf Vi: ð34Þ

The input voltage to a thruster is determined by the
appropriate input to the motor controller. The latter input
is specified using discrete unitless values between 0 and
255, where zero voltage is specified by 128. Therefore,
there is a conversion from the value specified to the motor
controller to the input voltage applied to the thruster. This
conversion consists of a multiplication factor and a con-
stant bias term. For simplicity, it is assumed that the mo-
tor control input denoted by Vm is continuous, although in
practice it can easily be converted to discrete values. The
multiplication factor is denoted by Kiv while the bias val-
ue is 128. Thus,

Vi ¼ Kiv Vm−128ð Þ: ð35Þ

Inserting Eq. (35) into Eq. (34) yields

τw ¼ Kvf Kiv Vm−128ð Þ ð36Þ

By denoting the normalized force as

eτw ¼ τw
Kvf Kiv

ð37Þ

Equation (36) is written as

eτw ¼ Vm−128ð Þ ð38Þ

The multiplicative factors can be assumed unknown in
adaptive controller design and estimated as part of the control
effectiveness. Therefore, the control algorithms will generate
the normalized force directly, which will then be converted

C. D. Makavita et al.: Experimental Study of a Modified Command Governor Adaptive Controller for Depth Control of an Unmanned... 509



back to continuous motor inputs using Eq. (39) and then
rounded to get the discrete motor inputs.

Vm ¼ eτw þ 128
� �

ð39Þ

3.3 Control Plant Model for Depth

Several CPMs with varying complexity have been proposed
in the literature (Antonelli et al. 2001; Fossen 1994; Healey
and Lienard 1993; Smallwood and Whitcomb 2004; Yoerger
and Slotine 1991) and their advantages and disadvantages are
concisely reported by Refsnes (2007). Of those discussed, a
simple and popular CPM is the 1-DOF CPM given in
Smallwood and Whitcomb (2004). This CPM has the follow-
ing general dynamic equation for each DOFi ,

miυ̇i tð Þ þ dLiυi tð Þ þ dQiυi tð Þ υi tð Þj j þ bi ¼ τ i ð40Þ

wheremi > 0 is the effective mass,dLi > 0 and dQi > 0 are the
linear and quadratic hydrodynamic drag coefficients, υi(t) is
the velocity, bi is the buoyancy, and τi is the net control force.

It is derived based on the following assumptions that are
not theoretically justified (Smallwood and Whitcomb 2004)
but are accepted to apply quite well for low-speed underwater
vehicles (Fossen 1994; Caccia et al. 2000).

Assumption 1 Ob is chosen to coincide with the center of
gravity, CG (i.e., xg = 0, yg = 0, zg = 0) with the body axes,
Xb, Yb, and Zb, coinciding with the principal axes of inertia
(Fossen 1994).

Assumption 2Off-diagonal components of the addedmass
matrix can be neglected (Fossen 1994) and the diagonal terms
are constant (Caccia et al. 2000).

Assumption 3 Damping terms higher than 2nd order and
off-diagonal terms can be neglected (Fossen 1994).

Assumption 4 Linear and nonlinear stabilizing damping
dominate the influence of the Coriolis forces and moments
(Refsnes 2007).

In addition, due to the structural design, the following as-
sumptions hold for the AMC ROV.

Assumption 5 CG and the center of buoyancy (CB) are
offset only in the Zb direction denoted by zb.

Assumption 6 Uncontrolled DOFs of pitch angle (θ) and
roll angle (ϕ) are assumed to be negligible.

This CPM had been successfully validated by several re-
searchers for different UUVs. In Smallwood and Whitcomb
(2004), the CPM for surge, sway, heave, and yaw is validated
using experimental data from the Johns Hopkins University
Remotely Operated Underwater Vehicle (JHUROV). They
derived the CPM parameters using system identification and
compared the simulated results with experimental results and
showed that the CPM predicted the actual behavior with a
mean absolute error of 0.016m/s for surge, sway, and heave

and 0.0288rad/s for yaw. Complete details of the identification
methods and procedure used to find the plant parameters are
given in Smallwood and Whitcomb (2003). In Caccia et al.
(2000), the models for surge, sway, and yaw were validated
using the UUV designed and developed by the Institute for
Ship Automation of the Italian National Research Council
named ROMEO, while in Ridao et al. (2001), the surge,
heave, and yaw models were validated, for the UUV designed
at the University of Girona named GARBI.

The CPM for depth (heave) in this study was developed as
follows. From Eq. (40), considering the depth DOF the fol-
lowing equation is obtained,

mwẇ ¼ Zwwþ Zw wj jw wj j þ FW−FBð Þ þ τw ð41Þ

wheremw, Zw, and Zw|w| are the effective mass, linear drag, and
quadratic drag in depth DOF, respectively, w is the velocity in

Figure 1 Visualization of the proposed M-CGAC architecture

Figure 2 The three thrusters AMC ROV showing the Earth-fixed {E}
and body-fixed {B} reference frames
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the Zb direction, FW is the weight of the vehicle, and FB is the

buoyancy force. Rearranging Eq. (41) for ẇ yields,

ẇ ¼ Zw

mw

	 

r þ Zw wj j

mw

	 

w wj j þ FW−FB

mw
þ 1

mw

	 

τw: ð42Þ

Replacing τw with the normalized moment using Eq. (37)

yields ẇ ¼ Zw
mw

� �
r þ Zw wj j

mw

� �
w wj j þ FW−FB

mw
þ Kvf Kiv

mw

� �eτw
or

ẇ ¼ θ1wþ θ2w wj j þ θ3 þ θ4τw ð43Þ

where θ1 ¼ Zw
mw

� �
, θ2 ¼ Zw wj j

mw

� �
, θ3 ¼ FW−FB

mw
, and θ4 ¼ Kvf Kiv

mw

� �
.

The general kinematic equation for depth of an underwater
vehicle is given by

ḋ ¼ −usinθþ vcosθsinϕþ wcosθcosϕ; ð44Þ

where d is the position in the Ze direction. Simplifying Eq.
(44) using Assumptions 5 and 6 give

ḋ ¼ w: ð45Þ

From Eqs. (43) and (45), the state space form of the depth
CPM is given as

ḋ ẇ
� �

¼ 0 1
0 0

	 

ḋ w
� �þ 0

1

	 

θ1wþ θ2w wj j þ θ3½ �

þ 0
1

	 

θ4eτw: ð46Þ

Equation (46) has the general state space form of Eq. (1)

with p = 2 and q = 1 where x ¼ d
w

	 

; A ¼ 0 1

0 0

	 

; H ¼ 0

1

	 

,

¼ HΛ ¼ 0
θ4

	 

; Λ = θ4, δ(x) = θ1x2 + θ2x2|x2| + θ3, and

u ¼ eτw .

3.4 Reference Model

A reference model that generates a feasible reference signal
must be developed for MRAC applications. There are numer-
ous reference model design methods proposed in the literature
(Fossen 2011; Fernandes et al. 2012; Fjellstad et al. 1992 ) out
of which the filter-based method in Fossen (2011) is the sim-
plest. As the CPM is a 2nd order system, the filter is selected
to be in the same order. The standard 2nd order filter with the
desired natural frequency (ωn) and damping ratio (ζ) is written
as

ḋm ẇm

� �
¼ 0 1

−ω2
n −2ζωn

	 

d
w

	 

þ 0

ω2
n

	 

c tð Þ ð47Þ

Equation (47) has the general state space form of (2) with p =

2 and q = 1where xm ¼ dm
wm

	 

, Bm ¼ 0

ω2
n

	 

, and Am ¼ 0 1

−ω2
n −2ζωn

	 

.

Applying the matching condition in (5) with A ¼ 0 1
0 0

	 

,

H ¼ 0
1

	 

, K1 = [k11 k12], and K2 = k2 yields

0 1
−ω2

n −2ζωn

	 

¼ 0 1

0 0

	 

þ 0

1

	 

k11 k12½ �

0
ω2
n

	 

¼ 0

1

	 

k2

ð48Þ

with the solutions k11 ¼ −ω2
n; k12 ¼ −2ζωn, and k2 ¼ ω2

n.

Thus, K1 ¼ −ω2
n −2ζωn

� �
and K2 ¼ ω2

n.
Since Eqs. (46) and (47) are second-order representations

of Eqs. (1) and (2) the derivations in Section 2 can be directly
applied for this CPM.

4 Experimental Setup and Test Cases

The experimental program was carried out using the ROV
shown in Figure 2 which was designed and built at the
AustralianMaritime College (AMC). Its mass is approximate-
ly 20 kg and has dimensions of 83 cm × 45 cm × 27 cm in
length, width, and height, respectively (Nguyen et al. 2011).
The vehicle consists of two horizontal thrusters for horizontal
motion and a vertical thruster for vertical motion. The
thrusters are Seabotix© BTD-150, which can deliver a maxi-
mum thrust of 22 N (SeaBotix 2015). Each thruster operates
with an input voltage up to 19V and has a measured thruster
dead-zone of approximately 20% of the input. The thrusters
are controlled by two MD22 motor controllers.

The depth measurement is obtained using a depth sensor
that uses a Measurement Specialties MS5837-30BA pressure
sensor (TE Connectivity 2015) which is pre-installed in a
waterproof aluminum body (BlueRobotics 2016). The sensor
can measure up to 300m in depth, with a resolution of 2mm
(BlueRobotics 2016). The precision of the sensor is mainly
affected by noise and drift and it has been shown by Gilooly
(2018) that the noise rms is only 2.5 mm. Although the drift
can be up to 1 cm per hour (Gilooly 2018), as the experiments
were conducted for around 150 s and initial depth was reset to
zero at beginning of each run, this led to a negligible effect on
precision due to drift. An ATmega2560 microcontroller is
used to interface sensors and motor controller boards to the
control program running in the host computer. The motors and
electronics are powered by three 18.5V-15Ah Li-Po batteries.
A 40 m tether is used to connect the UUV to the host com-
puter. Signals to and from the microcontroller were commu-
nicated through the tether cable using the RS485 communica-
tion protocol at a baud rate of 38400 bps. Although a tether
was used, operations were autonomous as there was no direct
human control of the vehicle.

The control algorithm was implemented as a continuous
algorithm using the MATLAB/SimulinkTM platform on the
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host computer. In addition, an input filter, dead-zone inverse
and thrust allocation block was also implemented. The AMC
ROV sensor outputs were relayed through the microcontrol-
ler, to the computer and captured by the stream input block.
The inputs to the motor controller on the AMC ROV were
received from the microcontroller through the stream output
block from the computer. To enable real-time operation, the
Simulink model was run using Simulink Desktop Real-
TimeTM (SDRT) in the external mode. The solver used was
the ode5 (Dormand-Prince, RK5) with a fixed step size of 0.01
s. A schematic view summarizing the system’s hardware ar-
chitecture is given in Figure 3.

According to Eq. (38), the normalized control force has a
range of −128 to 128, with 0 representing the zero thrust. The
unit of measurement is considered being dimensionless. The
tests were carried out over several weeks in the Survival
Centre pool at AMC, which has a length, width, and
maximum depth of 25m, 12m, and 4.2m, respectively.

4.1 Parameter Values

The adaptive control parameters were set as follows. For sim-
plicity, all learning rates were taken as dependent on a single
positive constant γ such that Γσ = γI3 and Γun = γ. Unless
otherwise specified, all controllers used γ = 1. The command
governor gain λwas set to 100 as done in both Makavita et al.
(2015) and Makavita et al. (2019b). The command filter gain
κ was set to 3 as done in Makavita et al. (2019b). For simplic-
ity, weight filter gains were taken as dependent on a single
positive constant γf such that Γunf = γf and Γσf = γfI3. γfwas
set to 1 as a compromise between low-pass filtering (smallγf)
and avoiding performance degradation (largeγf) (Fravolini
et al. 2014). The modification gain α was set to 10 as a com-
promise between enforcing learning through low frequencies
(high α) and maintaining the benefits of adaptation (low α)
(Yucelen and Haddad 2013). For the state predictor from
Lavretsky et al. (2010), it is proposed that Aprd = μAm and
Pprd = μPwhere μ is a positive scalar. The value for μ is set to
10 as done in both Makavita et al. (2016b) and Makavita et al.
(2018).

All the initial values of the CPM parameters were set to

zero ( bWun ¼ 0 and bWσ ¼ 0 0 0½ � ), thus assuming no a
priori knowledge. While this is an extreme assumption con-
sidering that some values are known, albeit approximately
(e.g., mass), it provides a good basis to test the ability of the
controller under severe uncertainty. The reference model pa-
rameters were set to ωn = 0.3 rad/s and ζ = 1, which yields
K1 ¼ −0:09 −0:6½ � and K2 = 0.09. The reference model
parameters were selected for a critically damped responsewith
an approximate rise time of tr = 10 s, settling time of ts = 20 s
by testing the feasibility of the reference signal.

4.2 Experimental Scenario

The experiments were conducted for CGAC, R-CGAC, and
M-CGAC under three different phases. The first phase was the
comparison between CGAC and R-CGAC for a normal depth
change command. The second phase was the comparison of
M-CGAC with both R-CGAC and CGAC for a normal depth
change command. The final phase was the evaluation of M-
CGAC with CGAC for performance under a sudden parame-
ter change represented by the change in control effectiveness
due to thrust loss. More details on the experimental scenarios
are given below:

4.2.1 CGAC vs R-CGAC

CGAC and R-CGAC were applied to a depth change maneu-
ver of 150 s duration, and their performances were compared,
with the main objective of comparing tracking performance in
the initial 50 s. In addition, tracking performance during the
next 100 s (after the initial 50 s), and control signal noise
levels and frequency content was also analyzed.

4.2.2 M-CGAC

The vehicle was tested for depth change for M-CGAC and
compared with R-CGAC and CGAC. The main objective
was to counteract the negative effect of weight filtering on
tracking and to further improve tracking over CGAC.

Figure 3 Depth control hardware architecture

Journal of Marine Science and Application512



Furthermore, the learning rate was increased slightly with the
objective of improving the tracking performance to meet the
design specification of having rms depth tracking error of 0.02
m or lower for the entire run. In addition, control signal noise
levels and frequency content were also analyzed.

4.2.3 Sudden Parameter Variation

This was represented by a 50% loss of thrust in the vertical
thruster during operation. This type of partial failure can occur
due to an electrical or mechanical malfunction. This situation
was created by halving the voltage to the motor controllers.
The partial failure was activated at 85 s after the start at a depth
of 1 m. The objective was to ascertain the ability of M-CGAC
to overcome such a failure and maintain the depth.

5 Experimental Results

For the purpose of measuring system performance, the system
states were compared with the ideal reference states. Thus, the
tracking error is defined as el ≙ x − xl. Performance of con-
trol methods was measured using six performance indices
shown in Table 1. The first four indices were based on the
tracking errors in depth (ed) and depth rate (ew), where
eTl ¼ ed ew½ �, while the last two are based on the control
effort. These performance indices were designed based on the
work of Fossen and Fjellstad (1996).

In addition, other performance indices such as settling time
were used as required. The vertical thruster force, when given
numerically or graphically, is the value before the dead-zone
inverse value is added.

5.1 CGAC vs R-CGAC

The experiments were conducted as mentioned in Section 4.2.
Initially CGAC (with the command filter) was compared with
R-CGAC (with the weight filter). The results are given in
Table 2, Figure 4, and Figure 5. In addition, the evolution of
the estimated weight parameters for both CGAC and R-
CGAC is given in Figure 6. As evident in Figure 4, under
CGAC the vehicle depth and depth rate have a significant
deviation in the initial 50 s. It then settles to a reasonably
acceptable tracking performance in the next 100s after the
modification term due to the filter has died down. In contrast
for R-CGAC, tracking in the initial 50 s has significantly
improved (Figure 5). A more quantitative analysis can be car-
ried out using the performance metrics presented in Table 2, in
which the CGAC and R-CGAC performance indices are given
in three parts: full run, first 50 s, and last 100 s. Thus, this
analysis will look at the first 50 s and next 100 s separately and
compare the performances to capture the clear distinction in
performance between first 50 s and next 100 s.

In the first 50 s, the first four indices that represent tracking
errors, de _ rms, de _ max, we _ rms, and we _ max of R-CGAC
are lower than those of CGAC by 79% (a factor of 4.8), 72%
(a factor of 3.5), 64% (a factor of 2.8), and 60% (a factor of
2.5), respectively. The last two indices that represent control
effort, eτw rms and eτw max, of R-CGAC are lower than those of
CGAC by 79% (a factor of 4.8) and 66% (a factor of 3),
respectively. Thus, there is a clear improvement in all perfor-
mance metrics for R-CGAC over CGAC.

In the next 100 s although we _ rms and we _ max of R-
CGAC are still lower than those of CGAC by 23% (a factor of
1.3), and 27% (a factor of 1.4), respectively, de _ rms and de _

max of R-CGAC are higher than those of CGAC by 55% (a
factor of 1.5) and 62% (a factor of 1.6), respectively.
Furthermore, eτw rms and eτw max of R-CGAC remains lower
than CGAC by 27% (a factor of 1.4) and 44% (a factor of
1.8), respectively. Thus, although R-CGAC improves on
depth rate tracking and control effort over CGAC, it
underperforms in the crucial depth tracking metric.

For further analysis of the control signal, the discrete rate of

change of the control signal Δu
Δt

� �
versus time is provided in

Figure 7 and the frequency spectrum is provided in Figure 8. It
is clear from these figures that there is a significant reduction
in noise levels and high frequencies in R-CGAC compared to
CGAC. This is due to (a) the inherent filtering effect of weight
filter and (b) the decrease of the cut-off frequency of the input
filter from 12 to 6 rad/s without instability made possible by
the increased robustness to time delay of the weight filter.

Although, R-CGAC has several advantages over CGAC,
the reduced performance of R-CGAC in depth tracking after
the first 50 s should be remedied as it affects the long-term
tracking performance. An additional concern is that the

Table 1 Definition of the six performance indices

Description Formulae

rms depth error
de rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑

N

i¼1
edð Þ2

s

rms depth rate error
we rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑

N

i¼1
ewð Þ2

s

maximum depth error de_max=max(|ed|)

maximum depth rate error we_max=max(|ew|)

rms normalized control effort eτw rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑

N

i¼1
τwð Þ2

s

maximum normalized control
effort

eτw max ¼ max τwj jð Þ
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Table 2 Performance indices for CGAC and R-CGAC

Performance indices CGAC R-CGAC

Full run First 50s Next 100s Full run First 50s Next 100s

de_rms (m) 0.153 0.265 0.018 0.039 0.055 0.028

de_max (m) 0.600 0.600 0.064 0.170 0.170 0.104

we_rms(deg/s) 0.045 0.075 0.017 0.0187 0.027 0.013

we_max (deg/s) 0.267 0.267 0.067 0.107 0.107 0.049eτw rms 70.588 116.619 25.942 20.752 24.365 18.903eτw max 334 334 104 112 112 58

(a) Depth response

(b) Depth rate response

Figure 4 CGAC

(a) Depth response

(b) Depth rate response

Figure 5 R-CGAC
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performance in the first 50 s, although much improved, is still
much lower than that of the next 100 s.

5.2 M-CGAC

As explained in Section 2.3.3, R-CGAC was combined with
closed-loop state predictor to produce modified CGAC (M-
CGAC). The performance of M-CGAC at γ = 1 (denoted by
M-CGAC1) is given in Figure 9 and Table 3. Furthermore, the
estimated weight parameter variation for M-CGAC1 is given
in Figure 10a.

An immediate improvement is seen with the addition of the
prediction error at a learning rate γ = 1. In the first 50 s, the
first four indices that represent tracking errors,de _ rms, de _

max, we _ rms, and we _ max of M-CGAC1 are lower than those
of R-CGAC by 49% (a factor of 2), 41% (a factor of 1.7), 26%
(a factor of 1.4), and 24% (a factor of 1.3), respectively. The
last two indices that represent control effort,eτw rms and eτw max, of M-CGAC1 are increased in comparison
with those of R-CGAC by 4% (a factor of ~1) and 11%
(a factor of 1.1), respectively. Thus, M-CGAC1 improves its
tracking performance with only a slight increase in control
effort.

In the next 100 s, de _ rms, de _ max, we _ rms, and we _ max

of M-CGAC1 are lower than those of R-CGAC by 46% (a
factor of 1.9), 42% (a factor of 1.7), 15% (a factor of 1.2), and
4% (a factor of ~1), respectively. In addition, they are also
lower than those of CGAC by 16% (a factor of 1.2), 6% (a
factor of 1.1), 35% (a factor of 1.5), and 30% (a factor of 1.4),
respectively. Furthermore, eτw rms and eτw max of M-CGAC1

while increased from R-CGAC by 8% (a factor of 1.1) and
33% (a factor of 1.5), respectively, are lower than CGAC by
21% (a factor of 1.3) and 26% (a factor of 1.4), respectively.

Thus, M-CGAC has better tracking than R-CGAC and
remedies the reduced depth tracking performance of
R-CGAC for a marginal increase in control effort.
Furthermore, this analysis clearly shows that M-CGAC out-
performs CGAC in every single performance index. In addi-
tion, if we compare the performances of each individual meth-
od in the first 50 s with the next 100 s, M-CGAC has the more
homogeneous response compared to CGAC.

(a) CGAC

(b) R-CGAC

Figure 6 CPM parameter evolution

Figure 7 Discrete derivative (Δu
Δt ) of CGAC and R-CGAC

Figure 8 Frequency spectrum of CGAC and R-CGAC

C. D. Makavita et al.: Experimental Study of a Modified Command Governor Adaptive Controller for Depth Control of an Unmanned... 515



While the performance of M-CGAC at γ = 1 was quite
satisfactory, it was decided to see if any additional improve-
ments can be made by increasing the learning rate to improve

depth tracking such that de _ rms ≤ 0.02 m for both the first
50 s and the next 100 s of the run. This specification was
achieved by a small increase in learning rate to γ = 3, denoted
by M-CGAC3. The performance indices for this condition are

Table 3 Performance indices for M-CGAC at learning rates of γ = 1 and γ = 3

Performance indices M-CGAC at γ=1 M-CGAC at γ=3

Full run First 50s Next 100s Full run First 50s Next 100s

de_rms (m) 0.020 0.028 0.015 0.016 0.020 0.014

de_max (m) 0.101 0.101 0.060 0.073 0.073 0.051

we_rms(deg/s) 0.014 0.020 0.011 0.011 0.014 0.010

we_max (deg/s) 0.081 0.081 0.047 0.055 0.054 0.055eτw rms 22.062 25.292 20.44 18.003 17.320 18.303eτw max 126 126 77 69 46 69

(a) Depth response

(b) Depth rate response

Figure 9 M-CGAC1

(a) M-CGAC1

(b) M-CGAC3

Figure 10 a, b CPM parameter evolution
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also given in Table 3 and its parameter evolution is given in
Figure 10b.

Comparing these with M-CGAC1 in the first 50s, de _ rms,
de _ max,we _ rms, and we _ max of M-CGAC3 are lower than
those M-CGAC1 by 29% (a factor of 1.4), 28% (a factor of
1.4), 30% (a factor of 1.4), and 33% (a factor of 1.5), respec-
tively. In addition, the control effort indices of eτw rms andeτw max of M-CGAC3 are lower than those of M-CGAC1 by
32% and 63%, respectively.

In the next 100s, the tracking performance indices of M-
CGAC3 are approximately equal to the performance indices of
M-CGAC1 while the control effort indices have reduced
slightly.

It is important to ensure that these performance improve-
ments are not at the expense of noise or high frequencies in the
control signal. To verify this, the discrete derivative and the
frequency spectrum of the control signal for R-CGAC, M-
CGAC1, and M-CGAC3 are given in Figures 11 and 12.
From both figures, it is clearly seen that the noise levels and
frequency distributions are approximately the same. A closer
analysis shows, though there is a slight increase in high fre-
quencies and noise for M-CGAC1 over R-CGAC, this de-
creases at M-CGAC3.

5.3 Sudden Parameter Variation

A further experiment was carried out to verify the capability of
M-CGAC3 by comparing it with CGAC for a thrust loss anom-
aly. A thrust loss manifests itself as a sudden variation of the
control effectiveness parameter and is a good candidate to check
the ability of the controller to perform under such a variation. The
results for 50% thrust loss while holding constant depth are given
in Table 4, while the results for changing depth after the thrust
loss is given in Table 5 and Figure 13. The parameter evolution
for the duration of the run is given in Figure 14.

From Table 4, it is seen that both methods have similar per-
formances in tracking before and after thrust loss.M-CGAC3 has
an advantage in terms of maximum deviation which is 40% (a

factor of 1.7) less than CGAC and only 0.001 m outside the 2%
settling time band of ±0.02 m. As this difference is within the
resolution of the depth sensor, it is negligible and thus settling
time is not applicable for M-CGAC3. In addition, the advantage
of having a reduced control effort is carried through even after
thrust loss, although the control magnitudes have increased to
accommodate the reduced thrust.

From Table 5, it is seen that when a depth change is done
after thrust loss at 120s, M-CGAC3 has better performance in
all performance indices other than the maximum thrust which
is equal for the two. Further insight can be had by observing
the plots in Figure 13. It is seen that M-CGAC3 has increased
oscillations in comparison to CGAC just after thrust loss. In
addition, CGAC in contrast to M-CGAC3 undershoots the
command in first down step with a peak undershoot of 8.6%
and in the second step it is prevented from undershooting only
by the physical constraint of hitting the water surface.

Thus, after partial thrust loss both CGAC and M-CGAC3

perform well, but M-CGAC3 does have an advantage in both
maintaining and changing depth.

5.4 Summary of Results

Overall, the results indicate that the proposed method of M-
CGAC, which is an extension of CGAC by replacing the com-
mand filter with the weight filter and adding the closed-loop
state predictor, has the following advantages over CGAC:

a)Resolves the initial poor tracking problem
b)Overall better tracking performance
c)Less energy consumption due to lower control effort
d)Less noise and high frequencies in the control signal
e)Improved handling of sudden parameter changes

6 Conclusion

This paper proposes an extension to the command governor
adaptive control to enhance the initial tracking performance of

Figure 11 Discrete derivative of the control signal for R-CGAC, M-
CGAC1, and M-CGAC3

Figure 12 Frequency spectrum of the control signal for R-CGAC,
M-CGAC1, and M-CGAC3
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UUVs intended to use in advanced applications that require
precise maneuvring. The proposed M-CGAC replaces the
command filter with a weight filter and adds a closed-loop
state predictor. Experimental results and analysis indicate that
the weight filter alone produces better tracking performance at
the start with substantial improvement in reducing control
effort, control signal noise, and high frequencies. However,
its overall depth tracking performance is reduced compared to
that of CGAC. The subsequent addition of the closed-loop
state predictor has resolved this issue and improved the overall
tracking performance while retaining lower control effort,
lower control signal noise, and lower high frequencies. A
further increase of the learning rate from 1 to 3 enabled the
achievement of a specific design specification for depth track-
ing. In addition, M-CGAC outperformed CGAC under a 50%
partial thruster failure in the vertical thruster.

Thus, M-CGAC has an overall improvement over CGAC and
has highly promising performance metrics without using high
learning rates. Therefore, it is concluded that M-CGAC is a viable
candidate for underwater missions that require precise maneuvres.

Appendix: Lyapunov stability proof
of M-CGAC

In order to derive the stable adaptive laws, consider the fol-
lowing Lyapunov function candidate

V em; be; eWun; eWσ; eWunf ; eWσ f

� �
¼ eTmPemþbeTPprdbeþtrace

eWunΛ
1
2

� �T
Γ−1
un

eWunΛ
1
2

� �
þ

eWσΛ
1
2

� �T
Γ−1
σ

eWσΛ
1
2

� �
2
64

3
75

ð49Þ

where eWun tð Þ≜ bWun tð Þ−Wun∈ℝq�q and eWσ tð Þ≜ bWσ tð Þ−Wσ∈
ℝs�q are weight estimation errors, eWun f tð Þ≜ bWun f tð Þ−Wun∈
ℝq�q and eWσ f tð Þ≜ bWσ tð Þ−Wσ∈ℝs�q are low-pass-filtered

weights estimation errors.
Note that V(0, 0, 0, 0, 0, 0) = 0 and

V em; be; eWun; eWσ; eWun f ; eWσ f

� �
> 0 for all em; be; eWun; eWσ; eWun f ; eWσ f

� �
≠ 0; 0; 0; 0; 0; 0ð Þ. In addition, V em; be; eWun; eWσ; eWun f ; eWσ f

� �
is

radially unbounded.

Table 4 Performance indices for 50% thrust loss for CGAC and M-CGAC3

Performance indices CGAC M-
CGAC3

de_rms before thrust loss (m) 0.006 0.005

de_rms after thrust loss (m) 0.014 0.012

de_max after thrust loss (m) 0.035 0.021

Time to depth response to settle to final value (s) 22 N/Aeτw rms before thrust loss 21.04 17.24eτw rms after thrust loss 34.49 29.39eτw max before thrust loss 77 61eτw max after thrust loss 82 64

Table 5 Performance indices for
depth change after thrust loss Performance indices CGAC M-

CGAC3

de_rms (m) 0.029 0.019

de_max (m) 0.099 0.071

we_rms(deg/s) 0.019 0.015

we_max (deg/s) 0.070 0.054eτw rms 43.441 34.092eτw max 100 100
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Now, differentiating Eq. (49) yields

V̇ em; be; eWun; eWσ; eWun f ; eWσ f

� �

¼ ė
T

mPemþeTmPėmþḃeTPprdbeþbeTPprdḃe
þ2trace eWun

T
Γ−1
un
ḃWun þ eWσ

T
Γ−1
σ
ḃWσ

	 

Λ

� �

þ2αtrace eWT

un f Γ
−1
un f
ḃWun f þ eWT

σ f Γ
−1
σ f
ḃWσ f

	 

Λ

� �

ð50Þ

Substituting from error dynamics of Eqs. (11) and (31) in
Eq. (50) yields

V̇ em; be; eWun; eWσ; eWun f ; eWσ f

� �
¼ Amem−HΛ eWT

unun tð Þ þ eWT

σσ xð Þ
� �	 
T

Pem

þeTmP Amem−HΛ eWT

un tð Þun tð Þ þ eWT

σσ xð Þ
� �	 


þ AmbeþHΛ eWT

unun tð Þ þ eWT

σσ xð Þ
� �	 
T
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þbeTPprd AmbeþHΛ eWT

unun tð Þ þ eWT

σσ xð Þ
� �	 
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� �

þ2αtrace eWT

un f Γ
−1
un f
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σ f Γ
−1
σ f
ḃWσ f

	 

Λ

� �

ð51Þ

Simplyfing Eq. (51) yields

V̇ em; be; eWun; eWσ; eWun f ; eWσ f

� �

¼ eTm AT
mP þ PAm

� �
em þ beT AT

prdPprdþAprdPprd

h i
e

−2eTmPHΛ eWT

unun tð Þ þ eWT

σσ xð Þ
� �

þ2beTPprdHΛ eWT

unun tð Þ þ eWT

σσ xð Þ
� �

þ2trace eWun

T
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un
ḃWun þ eWσ

T
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σ
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Λ

� �

þ2αtrace eWT

un f Γ
−1
un f
ḃWun f þ eWT

σ f Γ
−1
σ f
ḃWσ f

	 

Λ

� �

ð52Þ

Substituting in Eq. (52) from the Lyapunov equations 0 ¼ AT
m

P þ PAm þ Q for someQ = QT > 0 and 0 ¼ AT
prdPprd þ Pprd

Aprd þ Qprd for some Qprd ¼ QT
prd > 0 yields

(a) R-CGAC

(b) M-CGAC3

Figure 13 Depth response of CGAC andM-CGAC3 for a 50% thrust loss
at 85 s

(a) CGAC

(b) M-CGAC3

Figure 14 CPM parameter evolution of CGAC and M-CGAC3 for 50%
thrust loss
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V̇ em; be; eWun; eWσ; eWun f ; eWσ f

� �

¼ −eTmQem−beTQprdeþ2 beTPprd−eTmP
	 


HΛ eWun

T
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T
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ḃWun þ eWσ

T
Γ−1
σ
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Λ
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ð53Þ

Defining e ¼ beTPprd−eTmP
� �

H Eq. (53) simplify to

V̇ em; be; eWun; eWσ; eWun f ; eWσ f

� �
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ð54Þ

Using the trace identity aTb = trace(baT) in Eq. (54) gives

V̇ em; be; eWun; eWσ; eWun f ; eWσ f

� �
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ð55Þ

Substituting from the filtered weights Eq. (22) and pro-
posed M-CGAC weight update laws given by (32) and (33)
in Eq. (55) yields

V̇ em; be; eWun; eWσ; eWun f ; eWσ f

� �
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Further simplifying Eq. (56)

V̇ em; be; eWun; eWσ; eWun f ; eWσ f

� �

¼ −eTmQem−beTQprde −2αtrace eWun− eWun f
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By definition

trace eWun− eWun f

� ��h
T eWun− eWun f

� �
Þ Λ� ¼ ∑

N

i¼1
∑
M

j¼1

eWun− eWun f

� �
2
ijΛii≥ eWun− eWun f

��� ��� 2
FΛmin where

eWun− eWun f

��� ���2
F
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N

i¼1
∑
M

j¼1

eWun− eWun f

� �
2
ij is the Forbenius

norm of eWun− eWun f

� �
and Λmin is the minimum diagonal

element of Λ. A similar definition is applicable to trace

eWσ
T
− eWT

σ f

� ��h
T eWσ− eWσ f

� �
ÞΛ�.

Thus, Eq. (57) reduces to

V̇ em; be; eWun; eWσ; eWun f ; eWσ f

� �
≤−eTmQem−beTQprde−2α

eWun− eWun f

��� ���2
F
Λmin−2α eWσ− eWσ f

��� ���2
F
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ð58Þ

Therefore, as Λmin is positive and the Forbenius norm is
positive

V̇ em; be; eWun; eWσ; eWun f ; eWσ f

� �
≤−eTmQem−beTQprde≤0

Hence, this proves that the closed-loop system is Lyapunov

stable and that em; be; eWun; eWσ; eWun f ; and eWσ f are uni-

formly ultimately bounded. Since c(t)is bounded and Amis

Hurwitz, then xm(t) and ẋm tð Þ are bounded. Hence, the system
state x(t) is bounded. This implies bx tð Þ, un(t), and σ(x) are

bounded. Since the weight estimation errors eWun; eWσ are
bounded and the ideal weights Wun, Wσ are constant, the

weight estimations bWun; bWσ are also bounded. Thus, it fol-

lows from Eqs. (11) and (31) that ėm; ḃe are also bounded.

Therefore,
::
V em; be; eWun; eWσ; eWun f ; eWσ f

� �
is bounded.

Now, it follows from Barbalat’s lemma (Ioannou and Fidan

2006) that lim
t→∞

V̇ em; be; eWun; eWσ; eWun f ; eWσ f

� �
¼ 0,

which consequently shows that em(t) and be tð Þ asymptotically
converge to zero as t → ∞. Moreover, since the Lyapunov
function V is radially unbounded, this convergence is global.

Thus, the system error and prediction error are globally,
uniformly asymptotically stable, i.e., lim

t→∞
emk k ¼ 0 and

lim
t→∞

bek k ¼ 0. This completes the proof.
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