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Abstract

In general, submerged pipes passing over the sedimentary bed of seas are installed for transmitting oil and gas to coastal regions.
The stability of submerged pipes can be threatened with waves and coastal flows occurring at coastal regions. In this study, for the
first time, the adaptive neuro-fuzzy inference system (ANFIS) is optimized using the particle swarm optimization (PSO) algo-
rithm, and a meta-heuristic artificial intelligence model is developed for simulating the scour pattern around submerged pipes
located in sedimentary beds. Afterward, six ANFIS-PSO models are developed by means of parameters affecting the scour depth.
Then, the superior model is detected through sensitivity analysis. This model has the function of all input parameters. The
calculated correlation coefficient and scatter index for this model are 0.993 and 0.047, respectively. The ratio of the pipe distance
from the sedimentary bed to the submerged pipe diameter is introduced as the most effective input parameter. PSO significantly
improves the performance of the ANFIS model. Approximately 36% of the scour depths simulated using the ANFIS model have
an error less than 5%, whereas the value for ANFIS-PSO is roughly 72%.

Keywords Adaptive neuro-fuzzy inference system (ANFIS) - Meta-heuristic model - Particle swarm optimization (PSO) - Scour

around submerged pipes - Coastal regions

1 Introduction

Nowadays, given the operation of undersea oil and gas reser-
voirs located in coastal regions, the transport of these fossil
fuels to lands requires the use of pipelines. Pipelines are gen-
erally placed near erodible sea beds, and scour formation can
possibly occur due to the existence of flows and waves. As an
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erodible bed is scoured, the stability of pipelines is threatened
with the risk of large deformations and failure.

Thus, given the importance of this issue, experimental,
analytical, and numerical studies have been carried out on
the scour pattern in the vicinity of submerged pipelines.
Fredsoe et al. (1988) experimentally investigated the two-
dimensional scour pattern in the vicinity of submerged pipes
located horizontally on a sedimentary bed. Through the anal-
ysis of experimental results, they forecasted the development
pattern of the scour hole as horizontal. Sumer and Fredsoe
(1990) proposed an equation to estimate the scour around
submerged pipes. They evaluated the influence of waves cre-
ated from the interaction between the sedimentary bed and
pipelines. Chiew (1993) conducted experimental measure-
ments on the behavior of sheets installed on pipelines and
showed that the existence of these sheets intensified the
scouring process in the vicinity of submerged pipes. Brors
(1999) simulated the scour pattern around submerged pipes
placed horizontally on a sedimentary bed by developing a
numerical model. He implemented Navier—Stocks equations
for solving the flow field. He compared the results of his
model with the experimental data and stated that the model
had reasonable accuracy. Moncada-M and Aguirre-Pe (1999)



R. G. Moghadam et al.: Optimization of ANFIS Network Using Particle Swarm Optimization Modeling of Scour around Submerged Pipes 445

conducted an experimental study and showed that the
Reynolds number had no significant effect on the scour
pattern around horizontal submerged pipes. Furthermore,
they stated that by increasing the Froude number, the
dimensions of the scour hole increased. Sumer et al. (2001)
carried out an experimental research and evaluated the scour
process around submerged pipes subjected to waves and
flows. They observed that by starting the scour process, the
scour hole expanded longitudinally along the pipeline.
Myrhaug and Rue (2003) provided separate relationships for
estimating the scour pattern in terms of the depth and width of
the scour hole in regular and random wave conditions. They
compared the results of their analytical study with the
experimental values. Teh et al. (2006) examined the stability
of horizontal submerged pipes located on loose soils by
conducting an analytical study and investigated the fracture
mechanism of pipes. Furthermore, they measured the pipe
penetration into soil. Dey and Singh (2008) experimentally
studied the scour depth in the vicinity of submerged pipes in
clear-water condition. They studied the effect of various
hydraulic and geometric parameters on the scour pattern and
stated that the scour hole dimensions increased with the
increase in the depth of inflow. Wu and Chiew (2012) con-
ducted an experimental research on the scour behavior around
submerged pipes located on sedimentary beds and exhibited
that the Froude number and Shields parameter are the most
effective factors of scour pattern. Additionally, Azamathulla
et al. (2014) studied scour pattern in the vicinity of the sub-
merged skewed pipeline in an open channel experimentally.
The neural network and artificial intelligence (AI) models
have been widely used in modeling nonlinear systems and
solving complex problems in various sciences. These model-
ing techniques are also used in different fields (Najafzadeh
et al. 2014a; Azimi et al. 2017; Bonakdari and Ebtehaj 2017,
Shabanlou et al. 2018; Azimi et al. 2019a). Azamathulla and
Ab Ghani (2012) modeled the scour pattern around sub-
merged pipes in the vicinity of the live bed using the gene
programming (GP) model. They compared the results of their
model with those of an artificial neural network and concluded
that the GP model has higher accuracy. Furthermore, Etemad-
Shahidi et al. (2011) proposed relationships for predicting the
scour amount around horizontal pipes located on the sedimen-
tary bed in the clear condition using the M5’ learning ma-
chine. Najafzadeh et al. (2014a) predicted the scour pattern
around submerged pipes located on the sedimentary bed. They
used the group method of data handling (GMDH), the adap-
tive neuro-fuzzy inference system (ANFIS) model, the tree
model, and empirical relationships and, by evaluating the
results of these models, indicated that GMDH had the
highest accuracy. Najafzadeh et al. (2014b) simulated the
scour pattern around the pipes in clear-water and live-bed
circumstances by means of GMDH. Azimi et al. (2019b) de-
veloped a hybrid Al model to predict the scout around

abutments. The authors combined the genetic algorithm and
singular-value decomposition with ANFIS network to en-
hance the performance of simulation. Furthermore, Azimi
and Shiri (2020) evaluated the scour around subsea pipelines
by using gene expression programming (GEP). They per-
formed a sensitivity analysis to introduce the best GEP model
and the most important and effective parameters.

On the one hand, the vast majority of crude oil and natural
gases exploited in coastal regions are transported to land by
means of submerged pipelines. Additionally, the stability of
pipelines can be endangered because of scouring and erosion
around the infrastructures built at coastal districts. Thus, the
estimation and modeling of scour around submerged pipelines
play a crucial role in providing a safe and cost-effective
design.

On the other hand, Al techniques have been broadly used
in simulating numerous problems, accompanied by increasing
number of related studies. The Al methods are cheap, fast, and
accurate in predicting different phenomena.

Therefore, in the present study, for the first time, a novel
hybrid Al technique is employed to simulate the scour around
submerged pipelines. The ANFIS model and particle swarm
optimization (PSO) algorithm are combined, and a meta-
heuristic model named “ANFIS-PSO” is developed to esti-
mate the scour depth for the first time. All input parameters
affecting the scour depth around submerged pipelines are in-
troduced, and six ANFIS-PSO models are defined using the
input parameters. Through sensitivity analysis, the superior
ANFIS-PSO model and the most effective input parameter
are detected. Finally, the ANFIS and ANFIS-PSO models
are compared.

2 Materials and Methods
2.1 Experimental Model

The experimental values measured by Moncada-M and
Aguirre-Pe (1999) are used to verify the results of the numer-
ical models. The experimental model is composed of a rect-
angular flume with a length of 8.3 m, a width of 0.5 m, and a
height of 0.5 m. The submerged pipes in four different sizes
are placed horizontally on an erodible bed. Two types of sed-
iments are used for the experiments. Table 1 lists the range of
experimental values used in this study. Figure 1 illustrates the
schematic layout of the experimental model and scour pattern
around the submerged pipes.

2.2 Adaptive Neuro-Fuzzy Inference System
Jang (1993) provided the ANFIS that can combine the two

mentioned methods. This method is practically developed in
the field of engineering. ANFIS has a good ability to learn,
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Table 1 Experimental measurements used in this study

Parameter e/D D/dsq y/D T Fr dJ/D

Range 0-1.068 3.289-66.667 1.067-5 0.038-0.665 0.234-0.836 0.008-1.0606

construct, and classify. It also allows the extraction of fuzzy
rules from numerical information of expert knowledge and
adaptively establishes a rule. Furthermore, ANFIS can adjust
the complex transformation of mankind intelligence into
fuzzy systems. The main problem is that the ANFIS prediction
model requires considerable time to learn the structure and
determine parameters. For simplification, we assume that the
interference system requires two inputs (x and y) and an output
(v). Figure 2 provides the architecture of an ANFIS network
(Jang 1993).

For a first-order Takagi—Sugeno fuzzy model, a sample
rule set with two fuzzy if-then rules can be expressed as fol-
lows (Jang 1993):

Rule 1: If x is A, and y is By, then:

U =pix gy (1)
Rule 2: If x is A,, and y is B», then:
D=px gyt (2)

where {r\p1, q1, 2, P2, q»} are the linear parameters in the
antecedent part of the first-order Takagi—Sugeno fuzzy model.
The structure of the ANFIS system includes five layers (Jang
1993).

First layer (input nodes): Each node of this layer produces
membership values belonging to appropriate fuzzy sets using
the membership function.

Second layer: The AND operator is utilized to obtain the
output (firing strength) representing the front part of that rule.
Firing strength is the front part of an estimated fuzzy rule
which forms the output function of that rule.

Third layer (medium nodes): The main objective in the
third layer is to determine the ratio of each firing strength as
the ith rule to the sum of all firing strength of rules.

Submerged pipe

Sediment

Figure 1 Schematic layout of experimental model and scour pattern
around submerged pipes
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Fourth layer (result nodes): The node function of the fourth
layer calculates the distribution layer of the ith rule to the total
output.

Fifth layer (output node): This single node calculates the
total output by summing all input signals. Thus, in this layer,
the nonfuzzy making process alters the results of each fuzzy
rule to a nonfuzz output.

Modeling of the ANFIS system requires the definition of the
provided method to produce the fuzzy interference system. In
this study, the fuzzy clustering method is used. In fuzzy systems,
the accuracy and validity of the trained ANFIS system depend on
structural parameters and parameters related to learning of these
systems. Parameters related to learning include the optimization
method, the rate of increase and decrease in steps, and the termi-
nation criterion of the learning process. Furthermore, the trained
system must comprise correct answers in the new error condition.
The size and shape of these systems are important factors, be-
cause by increasing the number of membership functions, the if-
then fuzzy rules in the network structure grows larges. As a
result, the generalization characteristics of ANFIS for predicting
the data decrease. The membership function includes various
adjustable parameters that must be optimized for reaching the
optimized modeling. Thus, a stronger algorithm is needed for
defining values. Several optimization algorithms can enhance
the performance of fuzzy systems. The PSO algorithm is one
of such algorithms that are suitable for optimization. This algo-
rithm can minimize the error between the model output and the
real value of learning data (Jang 1993).

2.3 Particle Swarm Optimization Algorithm (PSO)

PSO is a group intelligence method developed by Eberhart
and Kennedy (1995). This algorithm is inspired by the social
behavior of birds in constructing nests. PSO is a population-
based method in which each particle represents a solution. The

| Ist layer 2nd layer 3rdlayer 4thlayer Sth layer |

A }’

. W
v < @vm’@ ’\er
N

Figure 2 Architecture of ANFIS network
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situation of particles in the search environment is determined
by two factors: situation and speed. Given that each popula-
tion includes m particles in the M-dimension problem envi-
ronment, the situation (x) and speed (v) of particle i are respec-
tively defined as follows (Eberhart and Kennedy 1995):

Sxip)i=1,2,....m (3)
~>ViD) (4)

Xi = (xilaxib .-
Vi = (Vi1,Vi27 .-

The optimization process of PSO starts with a randomly
selected population, which is then optimized for
updating generations, in the search environment. Each
particle is updated based on two distinctive particles.
The first particle (Pye = (Pf1:Phs - Pip) ) is the best
solution achieved by the particles thus far. The second

particle gy = (pgl,pi,z,...,pg,D) is the best result
achieved by all particles in the population. The funda-

mental relationships of the PSO algorithm can be provided as
follows (Eberhart and Kennedy 1995):

Vsl = wal, + ¢ x rand; x (pl;~x},) + ¢ x rand,
t !
X (pgd_xid> (5)
t+1 __ +1
Xig = %ig + Vi (6)
where vi7! is the velocity of the ith particle in ¢ iteration, ¢; and

¢, are positive constant values, and w; is the inertia weight
controlling the influence of previous velocity of particles on
current velocities. Two random variables are distributed in the
range of O to 1. xijl is the current situation of the ith particle. A
restricting factor is introduced to the PSO standard algorithm
to ensure the search convergence; then, the following equation
is provided (Eberhart and Kennedy 1995):

Vil = [V;d + ¢ x rand; x (pj~x;) + ¢z X rand; x (pi,d*xf.d)} (7)

2
X=1T——F— (8)
’2—<p—\/ w2—4<p‘

According to the above equation, Y is restricted by ¢; and
¢,. The vibration range of particles decreases when they reach
the best position. However, despite the (ANFIS) V,ax = Ximax
limitation, the particles can achieve a desirable performance.
Evidently, a restricting factor in PSO provides a better solu-
tion than the standard PSO.

2.4 Parameters Affecting the Scour Around
Submerged Pipes

Moncada-M and Aguirre-Pe (1999) stated that the scour in the
vicinity of horizontal submerged pipes (d;) is a function of
parameters, such as the flow average velocity (U), normal

flow depth (), density of water (p), density of sediments
(ps), dynamic viscosity of water (1), channel slope (Sp), chan-
nel width (B), diameter of bed materials (dsq), pipe diameter
(D), distance between the pipe and sedimentary bed before
scour (e), and acceleration of gravity (g). The following
is then obtained:

dS:f(U7y7pvpsnu'asoaBadSOvaeﬂg) (9)

In addition, Moncada-M and Aguirre-Pe (1999) introduced
eight dimensionless groups using the Buckingham theory and
rewrote Eq. (15) as follows:

D e y
7_7_:S07_
dso ' D B

In Eq. (15), Fr = U/./gy, Re=UDpulg, and 7° = u/g.
(p,/(p—1)) .dsy are the Froude number, Reynolds number,
and Shields parameter, respectively. Moncada-M and
Aguirre-Pe (1999) assumed that the channel slope (Sy) is con-
stant, and parameter )/B and the Reynolds number cause no
significant influence on the scour pattern, providing Eq. (11)
as follows:

ds

— = f(Fr7 Re, 7",

> (10)

Ol

dy/D = f(Fr,7",y/D,D/dso,e/D) (11)

In the current numerical study, the effects of the pa-
rameters in Eq. (11) are used as the input parameters of
various ANFIS-PSO models. Figure 3 shows the combi-
nations of these parameters. In addition, in this study,
Monte Carlo simulations are utilized to enhance the

ANFIS-PSO(1): [1, 2, 3,4, 5]
ANFIS-PSO(2): [1, 2, 3, 4]
ANFIS-PSO(3): [1. 2, 3, 5]
ANFIS-PSO4): [1,2, 4, 5]
ANFIS-PSO(5): [1, 3, 4, 5]
ANFIS-PSO(6): [2. 3, 4. 5]

Figure 3 Combinations of input parameters for six ANFIS-PSO models
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capability of the ANFIS-PSO models. These simulations
are a broad classification of a computational algorithm
that uses random sampling for calculating numerical re-
sults. The main idea of this approach relies on this basis
that using random decision-making attempts to solve
problems that might be real in nature. Monte Carlo
methods are usually implemented for simulating physical
and mathematical systems which are unsolvable when
using other methods. Monte Carlo simulation is generally
employed using the probability distribution for solving
various problems, such as optimization and numerical in-
tegration. Furthermore, the k-fold validation method is
used in this study for training and testing the mentioned
numerical models. In this method, the main sample, which
consists of all data, is randomly divided into k subsamples
with the same size. Among subsamples, a sample is se-
lected as the testing data, and the remaining data (k-1) are
used as the training data of numerical models. Then, the k
validation procedure is repeated k times, and each sub-
sample is used as the testing data once. In this study, &
is considered equal to 6. Figure 4 illustrates the schematic
layout of the k-fold cross validation method.

Zn ((d /D) (Observed)i (dS/D)(Obscrvcd)> ((dS/D)(Prcdictcd)i_(dS /D)(Prcdictcd))

3 Results and Discussion

In this paper, statistical indices, including mean absolute per-
cent error (MAPE), root mean square error (RMSE), scatter
index (SI), BIAS index, and the correlation coefficient (R), are
used to evaluate the accuracy of the different numerical
models (Azimi et al. 2017):

)(d /D) (Predicted); (d /D) (Observed), ‘
(d»\‘ /D) (Observed),

MAPE:% 5 ( ) %100 (12)
i=1

RMSE = \/ % ((d /D) predicted), ™ (ds/ D) (0bserved), )z

(13)
(ds/D) (Observed)
1 n
BIAS = n igl ((d /D) (Predicted), —(d; /D) (Observed),; > (15)

\/z d / D (Observed)i

2
(dS D )(Observed)) Zf:l ((dY / D )(Predicted)i_

2
(ds D ) (Predicted) )

In these equations, the values of (dy/D)observedyis (ds/
D) predictedyi» and (ds/D) (Observed), Ar€ the experimental, pre-

dicted, and average experimental scours, respectively, and n
is the number of experimental measurements. The closeness
of MAPE, RMSE, and SI to zero shows that the Al models
have a desirable performance, whereas the closeness of the R
index to 1 indicates the highest correlation with observed
values.

Subsequently, the accuracy of the developed models is
studied. As discussed above, in this study, a hybrid model
predicts the scour by combining all input parameters
(ANFIS-PSO 1). Then, by eliminating each of the mentioned

Test Train
Hteration 000000000000
Iteration 2 OOOOO
1 OOOO000O00000000
leration A OOOOOO_

Data
Figure 4 Schematic layout of 4-fold cross validation method
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parameter, the sensitivity of the model is evaluated in terms of
the removed parameter. In other words, the ANFIS-PSO (2) to
ANFIS-PSO (6) models predict scour values by combining 4
input parameters. Figure 5 shows the comparison of the ob-
served and predicted scour values by the ANFIS-PSO models.
ANFIS-PSO (1) predicts the values of the objective function
in terms of all input parameters. Among all mentioned models,
this model has the minimum error value and the highest cor-
relation with the experimental values. The calculated values of
R and SI for ANFIS-PSO (1) model are 0.993 and 0.047,
respectively. The values of BIAS and RMSE for this model
are estimated at —1.15x1077 and 0.042, respectively.
Furthermore, in the study of the ANFIS-PSO (2) model, the
values of R, RMSE, and MAPE are equal to 0.973, 0.081, and
15.651, respectively. For this model, the influence of the
Froude number is eliminated. In other words, scour values
around submerged pipes are modeled in terms of 7', y/D,
D/ds, and e/D. Among the models with two input parameters,
ANFIS-PSO (3) has the highest accuracy. The calculated
values of MAPE and RMSE for this model are 12.428 and
0.078, respectively. The calculated values of R < SI and BIAS
for the mentioned model are 0.947, 0.089, and —4 x 1073,
respectively. This function predicts the values of the objective
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Figure 5 Comparison of observed and predicted values of scour by ANFIS-PSO models

function in terms of Fr, y/D, D/ds,, and e/D. For the men-
tioned hybrid model, the influence of the Shields dimension-
less parameter is eliminated due to sediment transport. The
study of the ANFIS-PSO (4) model shows the calculated
values of ST and R at 0.091 and 0.973, respectively. The values
of BIAS and RMSE for this model are — 1 x 107" and 0.080,
respectively. This model predicts the value of d/D by elimi-

nating parameter y/D. The ANFIS-PSO (4) model predicts the

objective function using Fr, 7, D/dso, and e/D. For modeling

the scour using the ANFIS-PSO (5) model, the influence of

parameter D/ds is neglected. For this model, the values of SI

and R approximate are 0.119 and 0.952, respectively. The
values of RMSE and MAPE for the mentioned model are

0.105 and 13.647, respectively. Among all the developed hy-
brid models, ANFIS-PSO (6) has the minimum accuracy. The
calculated values of SI, R, and BIAS for this model are 0.154,
0917, and — 1.1 x 1077, This model is a function of the di-
mensionless parameters Fr, T, /D, and D/ds. In other words,

30 45 60 75 90
Experiment number

(f) ANFIS-PSO (6)

the influence of e/D in this model is neglected. According to
the results of the 6 models, the ANFIS-PSO (1) model has the
highest accuracy. Thus, this model is introduced as the
superior model. Through the elimination of dimension-
less parameter e/D, the modeling accuracy decreases
significantly. Thus, this parameter is detected as the most ef-
fective parameter.

The discrepancy ratio (DR) is evaluated to further examine

i

the numerical models. This coefficient is defined as follows:

(dS /D) (Predicted) _(dS /D)(Observed) (17)

The maximum, minimum, and average DRs are denoted by

DRjaxs DRpyin, and DRy, respectively. Figure 6 shows the
change trend of DR versus the changes in the observed scour.
According to Eq. (17), the closeness of the parameter DR rep-
resents the closeness of the simulated values to the observed
findings. The values of DR, and DR, for ANFIS-PSO (1)
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Figure 8 Error distribution for ANFIS and ANFIS-PSO model

reach 1.014 and 2.249, respectively. The values of DR, for
ANFIS-PSO (2) and ANFIS-PSO (3) are 1.011 and 0.996,
respectively. The DR,,,x and DR, for ANFIS-PSO (4) are
5.475 and 1.005, respectively. Furthermore, the DR,;, for
ANFIS-PSO (5) is 0.264. The calculated DR,,,x, DRpin, and
DR,,. for the ANFIS-PSO (5) model are 2.681, 0.730, and
1.048, respectively.

The hybrid superior model (ANFIS-PSO 1) is compared
with the ANFIS model. Figure 7 illustrates the scatter plots of
the models. The PSO algorithm increases the modeling accu-
racy significantly. Thus, the mentioned algorithm optimizes
the ANFIS model properly. The calculated values of R and SI
for the ANFIS model are 0.968 and 0.099, respectively. The
values of MAPE and RMSE for this model are 12.441 and
0.087, respectively. Figure 8 depicts the error distribution for
ANFIS and ANFIS-PSO. Based on the error distribution,
about 36% of the scour depths simulated using the ANFIS
model have an error less than 5%, whereas the value for
ANFIS-PSO is roughly 72%. Moreover, almost 16% of the
results obtained from the ANFIS-PSO model have an error of
more than 10%. Therefore, ANFIS-PSO has a better perfor-
mance in simulating the scour depth around submerged pipe-
lines than ANFIS alone.

4 Conclusions

In this study, by combining the ANFIS model and the PSO
algorithm, a meta-heuristic model was developed for simulat-
ing the depth of the scour hole around submerged pipes. By
detecting the effective factors of scour depth, six distinctive
hybrid models were defined. The analysis of the mentioned
models indicated the high accuracy of the numerical models.
The obtained BIAS and RMSE values for the superior model
were —1.5x 1077 and 0.042, respectively. The calculated
DR,,. for the mentioned model was 1.014. This model pre-
dicted the scour values in terms of all input parameters and

examination of the input parameters and showed that the ratio
of the distance between the pipe and the sedimentary bed to
the pipe diameter is the most important and most effective
parameter. Subsequently, the hybrid superior model was com-
pared with the ANFIS model. The meta-heuristic model has
higher accuracy compared with the ANFIS model. Roughly
36% of the scour depths predicted by using the ANFIS model
had an error less than 5%, whereas the value for ANFIS-PSO
model was nearly 72%. Additional experimental and numer-
ical studies related to the scour pattern around subsea pipelines
should be performed.
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