
RESEARCH ARTICLE

Influence of Support Conditions on the Hydroelastic Behaviour
of Floating Thick Elastic Plate

K. M. Praveen1
& D. Karmakar1 & C. Guedes Soares2

Received: 6 May 2018 /Accepted: 12 November 2018 /Published online: 29 July 2019
# Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The hydroelastic response of very large floating structures (VLFS) under the action of ocean waves is analysed considering the
small amplitude wave theory. The very large floating structure is modelled as a floating thick elastic plate based on Timoshenko-
Mindlin plate theory, and the analysis for the hydroelastic response is performed considering different edge boundary conditions.
The numerical study is performed to analyse the wave reflection and transmission characteristics of the floating plate under the
influence of different support conditions using eigenfunction expansion method along with the orthogonal mode-coupling
relation in the case of finite water depth. Further, the analysis is extended for shallow water depth, and the continuity of energy
andmass flux is applied along the edges of the plate to obtain the solution for the problem. The hydroelastic behaviour in terms of
reflection and transmission coefficients, plate deflection, strain, bending moment and shear force of the floating thick elastic plate
with support conditions is analysed and compared for finite and shallow water depth. The study reveals an interesting aspect in the
analysis of thick floating elastic plate with support condition due to the presence of the rotary inertia and transverse shear defor-
mation. The present study will be helpful for the design and analysis of the VLFS in the case of finite and shallow water depth.

Keywords Timoshenko-Mindlin plate theory .Very large floating structure . Support condition . Rotary inertia . Transverse shear
deformation

1 Introduction

The analysis and design of very large floating structures
(VLFS) have increased significantly in the past few de-
cades as compared with traditional offshore structures
and land reclamation techniques. These structures have a

lesser impact on the marine ecosystem, are rapid in instal-
lation and are immune to seismic activities as compared
with other offshore structures. The VLFS are usually built
in offshore regions, and the wavelength of ocean waves is
in general too short as compared with the huge size of the
structure to induce the rigid body motions. These structures
are considered to be flexible as compared with other off-
shore structures, and hence, the study of hydroelastic be-
haviour is more important than the rigid body motions.
These large floating structures are constructed for building
infrastructures like floating airports, mobile offshore bases,
floating cities, floating storage device and recreational
parks. There has been a considerable study in the
hydroelastic analysis of floating structures in the recent
years, and many researchers performed a detailed study
on the design and development of VLFS. The detailed re-
view of the recent progress and future studies on the VLFS
can be found in Kashiwagi (2000), Watanabe et al. (2004),
Ohmatsu (2005), Chen et al. (2006) and Pardo et al.
(2015). In addition, the application of VLFS is discussed
and categorised the advantages and disadvantages of dif-
ferent types of VLFS in comparison with other types of
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floating structures. The study also includes various models,
depths and proximity of the structures around the coast.

The hydroelastic analysis of a very large floating structure
reported in the literatures is mostly based on the Euler-
Bernoulli beam theory (Meylan and Squire 1994, 1996;
Namba and Ohkusu 1999; Taylor and Ohkusu 2000;
Khabakhpasheva and Korobkin 2002; Ohkusu and Namba
2004; Andrianov and Hermans 2003, 2006; Hermans 2003,
2004, 2007; Karmakar et al. 2009). The analysis using the
Euler-Bernoulli beam theory neglects the effect of rotary
inertia and shear deformation but the very large floating
structures being huge in length and width also have a
considerable depth. So, the study to include rotary inertia
and shear deformation is very important for the hydroelastic
response analysis. Mindlin (1951) introduced the theory to
consider the effect of rotary inertia and shear deformation on
elastic plates and the application of Timoshenko-Mindlin plate
theory provides a better hydroelastic analysis of VLFS. Some
of the significant studies considering the Timoshenko-Mindlin
plate theory for the ocean wave interaction with ice floe/VLFS
of infinite length are performed by Fox and Squire (1991),
Balmforth and Craster (1999), Karmakar and Sahoo (2006),
Tay and Wang (2012), Gao et al. (2013), Zhao et al. (2015)
and Praveen et al. (2016, 2018). Most of the study on the
hydroelastic behaviour of VLFS considers the structure to be
freely floating based on free edge boundary condition. The
wave interaction with large floating structures induces vertical
and horizontal motions, and a mooring system is necessary to
restrain the floating structure from wave-induced motion. In
practical, the VLFSs are anchored to the seabed with a moor-
ing system or supported at the edges by different edge condi-
tions such as simply supported or fixed edge support.

In order to study the influence of edge support conditions,
various researchers have attempted to consider different edge
support conditions based on the requirement of the structure.
Teng et al. (2001) used modified eigenfunction expansion
method to analyse the reflection and transmission of ocean
waves for semi-infinite thin elastic plate. The study was ex-
tended for the cases of simply supported and built-in edges,
and it was demonstrated that the modified error function
method satisfies well for the energy conservation relation at
all three cases of edge conditions. Sahoo et al. (2001) devel-
oped orthogonal mode-coupling model based on
eigenfunction expansion approach to study the scattering of
waves due to a floating semi-infinite elastic plate in the case of
finite water depth. The influence of different edge conditions
was investigated for the case of free-free, simply supported
and a built-in edge. The study summarized that the built-in
edge condition induces the maximum wave reflection and the
minimum wave transmission. The hydroelastic behaviour of a
semi-infinite horizontal elastic plate floating on a homogenous
fluid of finite depth is analysed by Xu and Lu (2009), and the
study concluded that the plate thickness and the density of the

plate do not influence the wave reflection and transmission
characteristics. Kohout and Meylan (2009) studied the wave
scattering by multiple floating elastic plates with spring con-
nectors or hinges at the plate edges. The behaviour of the plate
which is observed depends strongly on the boundary condi-
tions at the plate edges. Xu and Lu (2011) developed an ana-
lytical method to analyse an arbitrary geometry of floating
plate for the hydroelastic analysis based on thin plate theory.
The analysis is performed considering vertical and angular
eigenfunction methods to formulate different cases of edge
boundary conditions. Gao et al. (2011) presented the
hydroelastic response of pontoon-type, VLFS with a flexible
line connection based on Mindlin plate theory. The modal
expansion method is adopted in the frequency domain with
combined BEM-FEM method. Karmakar and Guedes Soares
(2012) analysed the wave scattering by a finite floating elastic
plate connected with mooring lines at its corners in the pres-
ence of lateral pressure load. The hydroelastic behaviour of
the floating elastic plate is investigated by analysing the effect
of the stiffness of the mooring lines on the reflection and
transmission characteristics of the gravity waves.
Loukogeorgaki et al. (2014) implemented a 3D experimental
and numerical investigation for the performance of a pontoon-
type floating structure. The pontoon-type floating structure
configuration is considered consisting of modules connected
with hinge-type connectors and moored with chains. The
study focused on the analysis of the wave characteristic effect
on mooring line tension and hydroelastic response of the
pontoon-type floating structure.

In the recent years, the hydroelastic performance of a float-
ing structure is given more attention due to the increased de-
sign and analysis of multi-use combined platform for the de-
velopment of infrastructure in the ocean environment. Wang
et al. (2016) developed a finite element model to analyse the
hydroelastic response of a horizontal elastic plate. The thresh-
old values of the forward speed and compressive force for the
beam are calculated for various lengths and different edge
boundary conditions. The deflection in the middle points of
the plate with three different boundary conditions is compared
with available experimental and numerical results, and the
study suggests that the deflection in the beam is affected large-
ly due to the beam length and boundary conditions. The
hydroelastic behaviour of an elastic floating plate connected
to the sea bed using a time-domain approach was examined
(Karperaki et al. 2016). The elastic plate is modelled based on
the Euler-Bernoulli theory in shallow water depth, and the
study mainly concentrates on the multiple elastic connectors
joined by simple spring-dashpot systems along the structure.
Guo et al. (2016) discussed the oblique wave scattering by a
semi-infinite elastic plate with finite draft floating on the
ocean with stepped topography. The effects of three different
edge conditions are examined, and it was concluded that the
change of the plate edge conditions has significant effects on
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the plate deflection and moment. Loukogeorgaki et al. (2017)
conducted 3D experiments to investigate the hydroelastic and
the structural response of a pontoon-type modular floating
breakwater moored with chains modules, under the action of
perpendicular and oblique regular waves. The effect of the
incident wave on the hydroelastic and structural response of
the floating breakwater is analysed. Koley et al. (2018) per-
formed the scattering of obliquely incident surface waves by a
floating flexible porous plate in both the cases of finite and
infinite water depths. The effects of three types of plate edge
conditions, namely free-free, fixed and simply supported, are
analysed, and the study suggested that the strain is lower in the
case of a plate having free edges compared with that of fixed
and simply supported edges.

In the present study, the wave interaction with VLFS is
analysed based on the Timoshenko-Mindlin plate theory in
both finite and shallow water depths for different edge support
conditions. The hydroelastic behaviour of the floating elastic
plate in finite water depth is compared for different edge
boundary conditions. A mathematical model based on the
eigenfunction expansion method along with mode-coupling
relation (Karmakar et al. 2007) is used to analyse the wave
interaction with VLFS. The generalized model is modified
based on the Timoshenko-Mindlin plate theory to obtain the
solution for the wave interaction with floating elastic plate in
finite water depth. The numerical computation is performed to
analyse the wave reflection and transmission characteristics
and hydroelastic behaviour of the elastic plate under the action
of a normally incident wave, and a comparative study of the
free-free edge, simply supported edge and fixed edge condi-
tion is analysed in detail. The present analysis is restricted to
normally incident waves on a floating plate of infinite extent
in the transverse direction, and the extension to the case on an
obliquely incident waves is presented in the Appendix A.

2 Mathematical Formulation

The wave interaction with the finite floating elastic plate with
different edge support conditions is analysed based on the
Timoshenko-Mindlin plate theory under the assumption of
linearised wave theory. A two-dimensional coordinate system
is considered for the wave-interaction with floating plate as
shown in Fig.1. The wave is incident normally along the

positive x-axis horizontally, and the y-axis is considered pos-
itive vertically downward. The thick elastic plate is considered
to be floating at the free surface of the fluid (I2 ≡ − a < x < 0,
y = 0) and termed as plate-covered region 2. The open water
surface divided into upstream open water domain (I1 ≡ 0 < x
< ∞ , 0 < y < h) termed as region 1 and downstream open water
domain (I3 ≡ − ∞ < x < − a, 0 < y < h) termed as region 3. The
two edges of the floating thick elastic plate at x = 0 and x = − a
are considered to satisfy edge support boundary conditions.

Under the assumption of linearised wave theory, the
velocity potential, Φ, satisfies Laplace’s equation given
by

∇2Φ j ¼ 0 at −∞ < x < ∞; 0 < y < h ð1Þ

The linearised kinematic boundary condition at the mean
free surface is of the form

ζjt ¼ Φjy; at y ¼ 0 ð2Þ

The dynamic free surface boundary condition is given by

ρΦjt−ρgζ j ¼ patm at y ¼ 0 ð3Þ

where patm is the atmospheric pressure. The bottom boundary
condition is given by

Φjy ¼ 0; at y ¼ h ð4Þ

In the plate-covered region j = 2, it is assumed that the plate
satisfies the Timoshenko-Mindlin theory (Fox and Squire
1991) which includes the effect of rotary inertia and transverse
shear deformation of the form

∂2x−
ρp
μGd

∂2t

� �
EI∂2x−

ρpd
3

12
∂2t

 !
ζ j þ ρpd∂

2
t ζ j

¼ − 1−
EI
μGd

∂2x þ
ρpd

2

12μG
∂2t

 !
p ð5Þ

where d is the plate thickness, ρp is the plate density, EI = Ed3/
12(1 − ν2) is the plate rigidity, E is the Youngmodulus, ν is the
Poisson ratio,G = E/2(1 + μ) is the shear modulus of the plate,
p is the pressure and μ is the transverse shear coefficient of the
plate.

Assuming that the wave elevation and the plate deflection
are simple harmonic motion in time with the frequency ω, the
velocity potential Φj(x, y, t) and the surface deflection ζj(x, t)
can be written as Φj(x, y, t) = Re {ϕj(x, y)}e

−iωt and ζj(x, t) =
Re {ζj(x)}e

−iωt where Re denotes the real part. In the open
water region, the linearised free surface boundary condition
is given by

ϕjy x; yð Þ−κϕ j x; yð Þ ¼ 0; for x > 0 and x < −a ð6ÞFig. 1 Schematic diagram for floating elastic plate
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where κ = ω2/g. The plate-covered boundary condition in the
region j = 2 is obtained by combining the linearised kinematic
condition at the surface, Bernoulli’s equation and
Timoshenko-Mindlin equation as

EI
ρg−msω2ð Þ ∂

4
x þ

msω2I
ρg−msω2ð Þ −S

� �
∂2x þ 1−

msω2IS
EI

� �� �
ϕjy x; yð Þ

þ ρω2

ρg−msω2ð Þ 1−
msω2IS
EI

−S∂2x

� �
ϕ j x; yð Þ ¼ 0

for −a < x < 0

ð7Þ
where ρ is the density of water, g is the acceleration due to
gravity, ms = ρpd is the mass per unit area, ρp is the density of
plate, d is the plate thickness, I = d2/12 is the rotary inertia and
S = EI/μGd is the shear deformation. The continuity of veloc-
ity and pressure at the interface x = − a and x = 0 for j = 1, 2; 0
< y < h, is given by

ϕjx x; yð Þ ¼ ϕ jþ1ð Þx x; yð Þ and ϕ j x; yð Þ ¼ ϕ jþ1ð Þ x; yð Þ at

x ¼ −a and x ¼ 0; 0 < y < h

ð8Þ

The far-field radiation condition is given by

ϕ j xð Þ ¼ e−ik10x þ R0e
ik10x

� �
f 10 yð Þ as x→∞

T0e
−ik30x

� �
f 30 yð Þ as x→−∞

�
ð9Þ

where R0 and T0 are the complex amplitudes of the reflected
and transmitted waves. The eigenfunctions fj0(y)’s for j = 1, 3
are of the form fj0(y) = cosh kj0(h − y)/ cosh kj0h and kj0 for j =
1, 3 are the positive real roots which satisfy the dispersion
relation in the case of finite water depth given by

k j0tanhk j0h−ω2=g ¼ 0 ð10Þ

3 Edge Support Condition of the Elastic Plate

The type of supports at the edge forms a boundary condition
at the plate edges. In the wave interaction with floating
elastic plate, different support conditions are considered in
the study for the hydroelastic performance of the elastic
plate under the action of ocean waves. The support condi-
tions are based on the vertical shear forces along with the
bending and twisting moments acting on the plate edges.
These conditions represent the slope, deflection, bending
moment and generalized shear force at the edges of the
elastic plate. The consideration of the edge boundary condi-
tion in the hydroelastic analysis of large floating structures
helps in the analysis and design of the VLFS. The major
application of free-free edge boundary condition is in the
study of the ocean wave interaction with the sea ice. The
study mainly includes the wave attenuation due to the pres-
ence of sea ice and the breaking of the ice sheets due to

incident ocean waves (Williams et al. 2013). However, most
of the manmade large floating structures such as floating
runways, floating oil storage base and offshore renewable
energy plants need to be anchored at the edges by cables,
ropes or piles to ensure safety and stability of structures. The
floating oil storage base requires the structure to be stable
under the action of ocean waves, which requires strong edge
support to restrain the heave motion of the structure. Hence,
the consideration of support conditions such as simply sup-
ported or fixed edge support condition becomes significant
in the analysis. The floating elastic plate is considered to
satisfy one of the following edge support conditions
(Timoshenko and Krieger 1959; Rao 2007).

3.1 Freely Floating Elastic Plate

The freely floating elastic plate represents zero bending
moment and zero shear force at the plate edge. In the
case of finite water depth, the shear force and bending
moment at the plate edge x = 0, − a for j = 2 satisfy the
relation given by

∂3yϕ j x; yð Þ ¼ 0 and ∂4xy3ϕ j x; yð Þ ¼ ℘∂2xyϕ j x; yð Þ for

x ¼ 0;−a at y ¼ 0

ð11Þ

In the case of shallow water approximation, the zero shear
force and zero bending moment at the plate edge x = 0, − a
satisfy the relation given by

∂4xϕ j xð Þ ¼ 0 and ∂5xϕ j xð Þ ¼ ℘∂3xϕ j xð Þ for x ¼ 0;−a ð12Þ

where ℘ ¼ mω2 SþIð Þ
EI

n o
.

3.2 Simply Supported Floating Elastic Plate

The simply supported edge condition represents the
bending moment and deflection to vanish at the edges
or at the supports for finite water depth. The plate edge
is considered to be having zero deflection/displacement
and zero bending moment at x = 0, − a and j = 2 satisfy-
ing the relation

∂yϕ j x; yð Þ ¼ 0 and ∂3yϕ j x; yð Þ ¼ 0 for x ¼ 0;−a at y ¼ 0

ð13Þ

In the case of shallow water approximation, the zero
deflection/displacement and zero bending moment at the plate
edge x = 0, − a satisfy the relation

∂2xϕ j xð Þ ¼ 0 and ∂4xϕ j xð Þ ¼ 0 for x ¼ 0;−a ð14Þ
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3.3 Fixed Edge Floating Elastic Plate

In the case of fixed edge condition, the deflection and
slope vanish at the edge. So, for finite water depth, we
consider zero slope and zero deflection/displacement at
the plate edge x = 0, − a and j = 2 which satisfy the re-
lation

∂yϕ j x; yð Þ ¼ 0 and ∂2xyϕ j x; yð Þ ¼ 0 for x ¼ 0; −a at y ¼ 0 ð15Þ

In the case of shallow water approximation, we consider
zero slope and zero deflection/displacement at the plate edge
x = 0, − a which satisfy the relation

∂2xϕ j xð Þ ¼ 0 and ∂3xϕ j xð Þ ¼ 0 for x ¼ 0;−a ð16Þ

In the next section, the solution procedure for the wave
interaction with the finite floating elastic plate is presented
and discussed in detail.

4 Method of Solution

In this section, the scattering of waves due to the float-
ing elastic plate is analysed based on the Timoshenko-
Mindlin plate theory, and the solution procedure associ-
ated with the wave structure interaction is presented for
both the cases of finite water depth and shallow water
approximation.

4.1 Finite Water Depth

The boundary value problem for the scattering of the
wave by a finite floating elastic plate with different
edge boundary conditions is formulated in the case of
finite water depth. The velocity potentials ϕj(x, y) for
j = 1, 2, 3 satisfying governing Eq. (1) along with
boundary conditions (4), (6), (7) and (9) are of the form

ϕ1 x; yð Þ ¼ I0e−ik10x þ R0e
ik10x

� �
f 10 yð Þ þ ∑

∞

n¼1
Rne

−κ1nx f 1n yð Þ for x > 0

ϕ2 x; yð Þ ¼ ∑
II

n¼0;I
Ane

−ik2nx þ Bne
ik2nx

� �
f 2n yð Þ

þ ∑
∞

n¼1
Ane

κ2nx þ Bne
−κ2nxð Þ f 2n yð Þ for−a < x < 0

ϕ3 x; yð Þ ¼ T0e
−ik30x f 30 yð Þ þ ∑

∞

n¼1
Tne

κ3nx f 3n yð Þ for x < −a

ð17Þ
where Rn, n = 0, 1, 2…, An, Bn, n = 0, I, II, 1, 2… and
Tn, n = 0, 1, 2… are the unknown constants to be

determined. The eigenfunctions fjn(y)’s for j = 2 are giv-
en by

f jn yð Þ ¼ coshkjn h−yð Þ
coshkjnh

for n ¼ 0; I ; II and

f jn yð Þ ¼ cosκjn h−yð Þ
cosκjnh

for n ¼ 1; 2; :::

ð18aÞ

and the eigenfunctions fjn(y)’s for j = 1, 3 are of the
form

f jn yð Þ ¼ coshkjn h−yð Þ
coshkjnh

for n ¼ 0and f jn yð Þ

¼ cosκjn h−yð Þ
cosκjnh

for n ¼ 1; 2; ::: ð18bÞ

where kjn for j = 1, 3 and n = 0 are the eigenvalues
which satisfy the dispersion relation in the open water
region given by

k j0tanhk j0h−ω2=g ¼ 0 ð19Þ

with kjn = iκjn for n = 1, 2…, and the dispersion rela-
tion has one real root kj0 and an infinite number of
purely imaginary roots κjn for n = 1, 2… In the
plate-covered region, the kjn for j = 2 satisfies the dis-
persion relation given by

α0−α1k2jn þ α2k4jn
� 	

kjntanhkjnh− β0−β1k
2
jn

� 	
¼ 0 ð20Þ

where α0 ¼ 1−msω2 IS
EI Þ
� 
�

, α1 ¼ msω2I
ρg−msω2ð Þ −S

n o
,

α2 ¼ EI
ρg−msω2ð Þ,β0 ¼ ρω2

ρg−msω2ð Þ 1−msω2 IS
EI Þ

�
, β1 ¼ − ρω2S

ρg−msω2ð Þ
and I = d2/12 are the rotary inertia, EI = Ed3/12(1 − ν2)
is the plate rigidity, S = EI/μGd is the shear deformation
of the plate, G = E/2(1 + ν) is the shear modulus of elas-

tic material, μ ¼ π2

12 is the transverse shear coefficient, E
is Young’s modulus, ν is Poisson’s ratio and ms is the
mass of the plate. The dispersion relation as in Eq. (20)
has two real roots kj0 and four complex roots kjn for
n = I, II, III, IV of the form ±α ± iβ. In addition, there
are infinite numbers of purely imaginary roots κjn for
n = 1, 2….

In order to visualize the variation of the roots of the
plate-covered dispersion relation, the contour plots are
presented in Figs. 2(a)–(d) and 3 which demonstrate the
existence of two real and four complex conjugate roots
along with infinitely many imaginary roots for the plate-
covered region. The occurrences of the infinitely many
imaginary roots show the existence of evanescent modes
(Manam et al. 2006). The roots of the dispersion rela-
tion are determined using the Newton-Raphson method
and the contour plots help to identify the initial guess.
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It may be noted that the eigenfunctions fjn(y)’s in the open
water and plate-covered region satisfy the orthogonality rela-
tion as given by

f jm; f jn
D E

j¼1;3
¼ 0 for m≠n;

C
0
n for m ¼ n;

and f jm; f jn
D E

j¼2
¼ 0 for m≠n

C″
n for m ¼ n

��

ð21Þ
with respect to the orthogonal mode-coupling relation defined
by

f jm; f jn
D E

j¼1;3
¼ ∫

h

0
f jm yð Þ f jn yð Þdy ð22Þ

f jm; f jn
D E

j¼2
¼ ∫

h

0
f jm yð Þ f jn yð Þdy− α1

Q kjn
� � f

0
jm 0ð Þ f 0

jn 0ð Þ
n o

þ α2

Q kjn
� � f ‴jm 0ð Þ f 0

jn 0ð Þ þ f
0
jm 0ð Þ f ‴jn 0ð Þ

n o

þ β1

P kjn
� � f jm 0ð Þ f jn 0ð Þ

ð23Þ
where C

0
n ¼ 2kjnhþsinh2kjnh

4kjncosh2kjnh
for j = 1, 3, m = n = 0

C″
n ¼

α0−α1k2jn þ α2k4jn
� 	

2kjnhþ α0−3α1k2jn þ 5α2k4jn
� 	

sinh2kjnhþ 4β1kjncosh
2kjnh

� �
4kjncosh2kjnh
� �

α0−α1k2jn þ α2k4jn
� 	

for j ¼ 2;m ¼ n ¼ 0; I; II

(a) Contour plot for k10h = 5 (b) Contour plot for k10h = 10

(c) Contour plot for k10h = 15 (d) Contour plot for k10h = 20

Fig. 2 Contour plot for the roots for the plate-covered dispersion relation considering h/L = 0.15, E = 5GPa and d/L = 0.02

Fig. 3 Contour plot of infinite number of imaginary roots for the plate-
covered dispersion relation considering h/L = 0.15, E = 5 GPa and d/L =
0.02 at k10h = 10
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w i t h P k2nð Þ ¼ α0−α1k22n þ α2k42n
� �

a n d
Q k2nð Þ ¼ β0−β1k

2
2n

� �
.

The constant termsC
0
n;C

″
n; P(kjn) andQ(kjn) for n = 1, 2,…

are obtained by substituting kjn = iκjn for j = 1, 2, 3. In order
to determine the unknown coefficients, the mode-coupling
relation is applied on the velocity potential along with the
respective eigenfunction and the edge conditions to obtain
the system of linear equation.

The mode-coupling relation as in Eq. (23) is applied on the
velocity potential ϕ2(x, y) at x = 0, − a along with the
eigenfunction f2m(y) to obtain the equations given by

ϕ2 0; yð Þ; f 2m yð Þh i ¼ ∫
h

0
ϕ2 0; yð Þ f 2m yð Þdy− α1

Q k2nð Þ ϕ2y 0; yð Þ f 0
2m 0ð Þ

n o

þ α2

Q k2nð Þ ϕ2yyy 0; 0ð Þ f 0
2m 0ð Þ þ ϕ2y 0; 0ð Þ f ‴2m 0ð Þ

n o

þ β1

P k2nð Þϕ2 0; 0ð Þ f 2m 0ð Þ

ð24aÞ

ϕ2 −a; yð Þ; f 2m yð Þh i ¼ ∫
h

0
ϕ2 −a; yð Þ f 2m yð Þdy− α1

Q k2nð Þ ϕ2y −a; yð Þ f 0
2m 0ð Þ

n o

þ α2

Q k2nð Þ ϕ2yyy −a; 0ð Þ f 0
2m 0ð Þ þ ϕ2y −a; 0ð Þ f ‴2m 0ð Þ

n o

þ β1

P k2nð Þϕ2 −a; 0ð Þ f 2m 0ð Þ

ð24bÞ
for m = 0, I, II, 1, 2, ….

The mode-coupling relation as in Eq. (23) is applied on the
velocity potential ϕ2x(x, y) at x = 0, − a along with the
eigenfunction f2m(y) to obtain the equations given by

ϕ2x 0; yð Þ; f 2m yð Þh i ¼ ∫
h

0
ϕ2x 0; yð Þ f 2m yð Þdy− α1

Q k2nð Þ ϕ2xy 0; yð Þ f 0
2m 0ð Þ

n o

þ α2

Q k2nð Þ ϕ2xyyy 0; 0ð Þ f 0
2m 0ð Þ þ ϕ2xy 0; 0ð Þ f ‴2m 0ð Þ

n o

þ β1

P k2nð Þϕ2x 0; 0ð Þ f 2m 0ð Þ

ð25aÞ

ϕ2x −a; yð Þ; f 2m yð Þh i ¼ ∫
h

0
ϕ2x −a; yð Þ f 2m yð Þdy− α1

Q k2nð Þ ϕ2xy −a; yð Þ f 0
2m 0ð Þ

n o

þ α2

Q k2nð Þ ϕ2xyyy −a; 0ð Þ f 0
2m 0ð Þ þ ϕ2xy −a; 0ð Þ f ‴2m 0ð Þ

n o

þ β1

P k2nð Þϕ2x −a; 0ð Þ f 2m 0ð Þ

ð25bÞ
for m = 0, I, II, 1, 2, ….

The linear system of equation in Eqs. (24(a), (b)) and
(25(a), (b)) is reformulated using the orthogonal proper-
ty of the eigenfunction f2m(y) as in Eq. (21) along with
continuity of pressure and velocity across the vertical
interface x = 0, − a and 0 < y < h as in Eq. (8). Further,
the equations are simplified using the suitable edge
boundary conditions to obtain a linear system of alge-
braic equations. The modified system of equation using

the edge support condition is described in detail in the
next subsection.

4.1.1 Free-Free Edge Support Condition

In the case of free-free edge condition, the bending moment
and shear force terms vanish, and the system of equations is
simplified as

R0 ∫
h

0
f10 yð Þ f2m yð Þdyþ ∑

Nþ2

n¼1
Rn ∫

h

0
f1n yð Þ f2m yð Þdy

þ ∑
II

n¼0;I
An þ Bnð Þ þ ∑

N

n¼1
An þ Bnð Þ

( )h α2

Q k2nð Þ f
0
2n 0ð Þ f 0 0 0

2m 0ð Þ− α1

Q k2nð Þ f
0
2n 0ð Þ f 0

2m 0ð Þ

þ β1

P k2nð Þ f2n 0ð Þ f2m 0ð Þ−δmn f2n; f2mh i
i
¼ −I0 ∫

h

0
f10 yð Þ f2m yð Þdy

ð26aÞ
T0e

ik30a ∫
h

0
f30 yð Þ f2m yð Þdyþ ∑

Nþ2

n¼1
Tne

−κ3na ∫
h

0
f3n yð Þ f2m yð Þdyþ ∑

N

n¼0;I;II
Ane

−ik2na þ Bne
ik2na

� �
α2

Q k2nð Þ f
0
2n 0ð Þ f 0 0 0

2m 0ð Þ− α1

Q k2nð Þ f
0
2n 0ð Þ f 0

2m 0ð Þ
� �

þ β1

P k2nð Þ f2n 0ð Þ f2m 0ð Þ−δmn f2n; f2mh i
� 


¼ 0

ð26bÞ
ik10R0 ∫

h

0
f10 yð Þ f2m yð Þdy − κ1n ∑

Nþ2

n¼1
Rn ∫

h

0
f 1n yð Þ f 2m yð Þdyþ

n
ik2n ∑

II

n¼0;I
An−Bnð Þ

−κ2n ∑
N

n¼1
An−Bnð Þ

oh α2

Q k2nð Þ ℘ f
0
2n 0ð Þ f 0

2m 0ð Þ þ f
0
2n 0ð Þ f 0 0 0

2m 0ð Þ
n o

−
α1

Q k2nð Þ f
0
2n 0ð Þ f 0

2m 0ð Þ

þ β1

P k2nð Þ f2n 0ð Þ f2m 0ð Þ−δmn f2n; f2mh i
i
¼ −ik10I0 ∫

h

0
f10 yð Þ f2m yð Þdy

ð26cÞ

−ik30T 0e
ik30a ∫

h

0
f30 yð Þ f2m yð Þdyþ κ3n ∑

Nþ2

n¼1
Tne

−κ3na ∫
h

0
f3n yð Þ f2m yð Þdy

þ ik2n ∑
II

n¼0;I
Ane

−ik2na−Bne
ik2na

� �
−κ2n ∑

N

n¼1
Ane

κ2na−Bne
−κ2nað Þ

( )

h α2

Q k2nð Þ ℘ f
0
2n 0ð Þ f 0

2m 0ð Þ þ f
0
2n 0ð Þ f 0 0 0

2m 0ð Þ
n o

−
α1

Q k2nð Þ f
0
2n 0ð Þ f 0

2m 0ð Þ

þ β1

P k2nð Þ f2n 0ð Þ f2m 0ð Þ−δmn f2n; f2mh i
i
¼ 0

ð26dÞ
for m = 0, I, II, 1, 2, ….

4.1.2 Simply Supported Edge Condition

In the case of simply supported edge condition, the bending
moment and deflection terms vanish, and the system of equa-
tion is simplified as

R0 ∫
h

0
f10 yð Þ f2m yð Þdyþ ∑

Nþ2

n¼1
Rn ∫

h

0
f1n yð Þ f2m yð Þdyþ ∑

II

n¼0;I
An þ Bnð Þ þ ∑

N

n¼1
An þ Bnð Þ

( )

β1

P k2nð Þ f2n 0ð Þ f2m 0ð Þ−δmn f2n; f2mh i
� 


¼ −I0 ∫
h

0
f 10 yð Þ f 2m yð Þdy

ð27aÞ

T0e
ik30a ∫

h

0
f 30 yð Þ f 2m yð Þdyþ ∑

Nþ2

n¼1
Tne

−κ3na ∫
h

0
f 3n yð Þ f 2m yð Þdyþ ∑

N

n¼0;I;II
Ane

−ik2na þ Bne
ik2na

� �
β1

P k2nð Þ f 2n 0ð Þ f 2m 0ð Þ−δmn f 2n; f 2mh i
� 


¼ 0

ð27bÞ
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ik10R0 ∫
h

0
f10 yð Þ f2m yð Þdy − κ1n ∑

Nþ2

n¼1
Rn ∫

h

0
f1n yð Þ f2m yð Þdyþ

n
ik2n ∑

II

n¼0;I
An−Bnð Þ

þ −κ2n ∑
N

n¼1
An−Bnð Þ

oh α2

Q k2nð Þ f
0 0 0
2n 0ð Þ f 0

2m 0ð Þ þ f
0
2n 0ð Þ f 0 0 0

2m 0ð Þ
n o

−
α1

Q k2nð Þ f
0
2n 0ð Þ f 0

2m 0ð Þ

þ β1

P k2nð Þ f2n 0ð Þ f2m 0ð Þ−δmn f2n; f2mh i
i
¼ −ik10I0 ∫

h

0
f10 yð Þ f2m yð Þdy

ð27cÞ

−ik30T0e
ik30a ∫

h

0
f30 yð Þ f2m yð Þdyþ κ3n ∑

Nþ2

n¼1
Tne

−κ3na ∫
h

0
f3n yð Þ f2m yð Þdy

þ ik2n ∑
II

n¼0;I
Ane

−ik2na−Bne
ik2na

� �
−κ2n ∑

N

n¼1
Ane

κ2na−Bne
−κ2nað Þ

( )

h α2

Q k2nð Þ f
0 0 0
2n 0ð Þ f 0

2m 0ð Þ þ f
0
2n 0ð Þ f 0 0 0

2m 0ð Þ
n o

−
α1

Q k2nð Þ f
0
2n 0ð Þ f 0

2m 0ð Þ

þ β1

P k2nð Þ f2n 0ð Þ f2m 0ð Þ−δmn f2n; f2mh i
i
¼ 0

ð27dÞ
for m = 0, I, II, 1, 2, ….

4.1.3 Fixed Edge/Built-in Edge Support Condition

In the case of fixed edge condition, the deflection and slope
terms vanish, and the system of equation is simplified as

R0 ∫
h

0
f10 yð Þ f2m yð Þdyþ ∑

Nþ2

n¼1
Rn ∫

h

0
f 1n yð Þ f2m yð Þdy

þ ∑
II

n¼0;I
An þ Bnð Þ þ ∑

N

n¼1
An þ Bnð Þ

( )

� α2

Q k2nð Þ f
0 0 0
2n 0ð Þ f 0

2m 0ð Þ þ β1

P k2nð Þ f2n 0ð Þ f2m 0ð Þ−δmn f2n; f2mh i
� 


¼ −I0 ∫
h

0
f10 yð Þ f2m yð Þdy

ð28aÞ

T 0e
ik30a ∫

h

0
f 30 yð Þ f 2m yð Þdyþ ∑

Nþ2

n¼1
Tne

−κ3na ∫
h

0
f 3n yð Þ f 2m yð Þdy

þ ∑
N

n¼0;I;II
Ane

−ik2na þ Bne
ik2na

� �

� α2

Q k2nð Þ f
0 0 0
2n 0ð Þ f 0

2m 0ð Þ þ β1

P k2nð Þ f 2n 0ð Þ f 2m 0ð Þ−δmn f 2n; f 2mh i
� 


¼ 0

ð28bÞ

ik10R0 ∫
h

0
f 10 yð Þ f 2m yð Þdy−κ1n ∑

Nþ2

n¼1
Rn ∫

h

0
f 1n yð Þ f 2m yð Þdy

þ ik2n ∑
II

n¼0;I
An−Bnð Þ−κ2n ∑

N

n¼1
An−Bnð Þ

( )

� α2

Q k2nð Þ f
0 0 0
2n 0ð Þ f 0

2m 0ð Þ þ β1

P k2nð Þ f 2n 0ð Þ f 2m 0ð Þ−δmn f 2n; f 2mh i
� 


¼ −ik10I0 ∫
h

0
f 10 yð Þ f 2m yð Þdy

ð28cÞ

−ik30T0e
ik30a ∫

h

0
f 30 yð Þ f 2m yð Þdyþ κ3n ∑

Nþ2

n¼1
Tne

−κ3na ∫
h

0
f 3n yð Þ f 2m yð Þdy

þ ik2n ∑
II

n¼0;I
Ane

−ik2na−Bne
ik2na

� �
−κ2n ∑

N

n¼1
Ane

κ2na−Bne
−κ2nað Þ

( )

α2

Q k2nð Þ f
0 0 0
2n 0ð Þ f 0

2m 0ð Þ þ β1

P k2nð Þ f 2n 0ð Þ f 2m 0ð Þ−δmn f 2n; f 2mh i
� 


¼ 0

ð28dÞ
for m = 0, I, II, 1, 2, ….

Using the edge conditions, the linear equations as in
Sections 4.1.1–4.1.3 for different edge conditions are truncat-
ed up to a finite number ofN terms in order to solve the system
of (4N + 12) equations. The velocity potentials for each of the
three regions as in Eq. (17) consist of (4N + 12) unknown
coefficients such as Rn, Tn, n = 0, 1, 2, ...N, N + 1, N + 2, An,
Bn, n = 0, I, II, 1, 2, ..., N. On solving the system of the alge-
braic equation, the full solution is obtained in terms of the
potential functions with the reflection and transmission coef-
ficients which are obtained as

Kr¼ ∣R0j and Kt¼ ∣
k30tanh k30h
k10tanh k10h

T0j ð29Þ

The reflection and transmission coefficients are observed to

satisfy the energy balance relation K2
r þ K2

t ¼ 1.

4.2 Shallow Water Approximation

In the present section, the wave scattering due to finite floating
thick elastic plate with different support conditions is analysed
based on shallow water approximation. The geometry of the
physical problem is considered the same as discussed in
Section 2 but the wave motion is based on linearised long
wave theory. Integrating the equation of continuity for fluids
over the water depth, the relation between velocity potential
and elevation for long waves is derived as

ζjt ¼ h∂2xΦ j for j ¼ 1; 2; 3 ð30Þ

The long wave equation of motion in the fluid domain for
j = 1, 3 is given by

Φjt−gζ j ¼ 0; for x > 0 and x < −a ð31Þ

Considering the wave elevation and deflection in the plate
to be in simple harmonic in time with wave frequency ω, the
velocity potential is expressed asΦj(x, t) = Re {ϕj(x)}e

−iωt, and
the elastic plate deflection is expressed as ζj(x, t) =
Re {ζj(x)}e

−iωt, where Re denotes the real part. Combining
the long wave equation of continuity as in Eq. (30) and the
long wave equation of motion in the fluid domain given by
Eq. (31), the linearised long wave equation in the fluid domain
is derived as
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h∂2xϕ j−κϕ j ¼ 0; for x > 0 and x < −a ð32Þ

The long wave equation of motion in the plate-covered
region is obtained by combining the equation of motion of
the fluid and the Timoshenko-Mindlin plate equation given by

h
EI

ρg−msω2ð Þ ∂
4
x þ

msω2I
ρg−msω2ð Þ −S

� �
∂2x þ 1−

msω2IS
EI

� �� �
∂2xϕ2

þ ρω2

ρg−msω2ð Þ 1−
msω2IS
EI

−S∂2x

� �
ϕ2 ¼ 0; for −a < x < 0

ð33Þ
where ρ is the density of water,ms is the mass of the plate, ν is
Poisson’s ratio, EI = Ed3/12(1 − ν2) is the flexural rigidity, E is
Young’s modulus, G = E/2(1 + μ) is the shear modulus and μ
is the transverse shear coefficient of the thick plate. The con-
tinuity of energy and mass flux at the interface x = − a and
x = 0 for j = 1, 2 is given by

ϕjx xð Þ ¼ ϕ jþ1ð Þx xð Þ and ϕ j xð Þ ¼ ϕ jþ1ð Þ xð Þ at

x ¼ −a and x ¼ 0

ð34Þ

Further, the floating elastic plate is considered to satisfy the
edge support conditions as described in Section 3 for the case
of shallow water depth. The far-field radiation condition in
terms of velocity potential is given by

ϕ j xð Þ ¼
(
e−ik10x þ R0e

ik10x as x→∞
T0e

−ik30x as x→−∞
ð35Þ

where R0 and T0 are the complex coefficient of reflection and
transmission and kj0 at j = 1, 3 are the roots of dispersion
relation in shallow water

k2j0−
ω2

gh

� �
¼ 0 ð36Þ

In order to analyse the wave scattering by a floating elastic
plate based on shallow water approximation, the fluid domain
is divided into three subdomains as in Fig. 1. The velocity
potentials ϕj(x) for j = 1, 2, 3 at the free surface and the
plate-covered regions are of the form

ϕ j xð Þ ¼
I0e−ik10x þ R0e

ik10x
� �

for x > 0

A0e
−ik20x þ A0e

ik20x ∑
IV

n¼I;II
Ane

−ik2nx for −a < x < 0

T 0e
−ik30x for x < −a

8>><
>>:

ð37Þ

where R0, T0 and An, n = 0, I, .., IV and A0 are the unknown
constants to be determined with kjn at j = 2 and n = 0, I, II, III,
IV are the eigenvalues that satisfy the dispersion relation

h
EI

ρg−msω2ð Þ k
6
n þ

msω2I
ρg−msω2ð Þ −S

� �
k4n þ 1−

msω2IS
EI

� �
−

ρω2S
h ρg−msω2ð Þ

� �
k2n

� 


−
ρω2

ρg−msω2ð Þ 1−
msω2IS
EI

� �
¼ 0; for −a < x < 0

ð38Þ

On application of the continuity equations as in Eq. (35)
and edge boundary conditions as in Section 3 for the case of
shallow water depth, a system of eight linear algebraic equa-
tions is obtained having the unknown constants R0, T0, A0 and
An, n = 0, I,…, IV. The unknown constants associated with the
amplitude of the waves are determined by solving the system
of algebraic equations. Once the unknowns R0 and T0 are
obtained, the reflection and transmission coefficients are de-
rived from the relation

Kr¼ ∣R0j and Kt¼ ∣
k230
k210

 !
T 0j ð39Þ

The reflection and transmission coefficients obtained for
the shallow water approximation satisfy the energy balance
relation K2

r þ K2
t ¼ 1.

5 Numerical Results and Discussions

The hydroelastic behaviour of the floating elastic plate under
the action of the incident wave is analysed based on the
Timoshenko-Mindlin theory in finite and shallowwater depth.
The study is performed to analyse the reflection coefficientKr,
transmission coefficient Kt, plate deflection ζj, bending mo-
ment M(x), shear force W(x) and strain on the plate ε for
different support conditions. Three different cases of edge
support condition, i.e. free-free edge, simply supported edge
and fixed edge conditions, are considered and compared in the
present study. The numerical computations are carried out for
different water depths h/L and plate thickness d/L considering
Young’s modulus E = 5 GPa, ρp/ρw = 0.9, ν = 0.3 and g =
9.8m·s−2. The numerical parameters such as plate length L =
100m and non-dimensional wave number k10h = 5 for finite
water depth and k10h = 10 for shallow water depth are consid-
ered to be fixed unless otherwise mentioned. The accuracy of
the computed numerical results is checked with the energy
relation which satisfies the energy balance relation
K2

r þ K2
t ¼ 1.

The plate deflection versus the non-dimensional plate
length is validated with the results obtained by Andrianov
and Hermans (2006) as shown in Fig. 4 considering the plate
length L = 300m, plate thickness d = 2m and wavelength λ =
60 m. The analysis of floating elastic plate is based on
Kirchhoff thin plate theory by Andrianov and Hermans
(2006), and the present method is based on the Timoshenko-
Mindlin theory with negligible rotary inertia and transverse
shear deformation in finite water depth. The results obtained
using both the methods are observed to agree well considering
the plate length L = 300m. Further, it may be noted that with
the increase in the plate length, the plate deflection increases
which suggest that the hydroelastic behaviour is dominant
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than the rigid body motion with the increase in the length of
the elastic plate.

5.1 Finite Water Depth

In this section, the wave scattering due to floating thick elastic
plate in finite water depth is analysed considering different
edge support conditions. The hydroelastic behaviour of the
floating plate is studied by analysing the reflection and trans-
mission coefficients, surface deflection, strain in the elastic
plate, bending moment and shear force of the plate.

5.1.1 Reflection and Transmission Coefficient

The wave reflection and transmission coefficients for the
floating elastic plate in relation (29) are having the same wave
number in the incident and transmitted region. So the reflec-
tion and transmission coefficients reduces to

Kr¼ ∣R0j and Kt¼ ∣T0j ð40Þ

In Fig. 5(a), (b), the reflection and transmission coefficients
are plotted versus non-dimensional wavenumber k10h for dif-
ferent support conditions considering d/L = 0.02 and h/L =
0.15. The zeros in the reflection coefficient at certain values
of k10h indicate complete transmission of waves and may be
termed as local minima. Initially for 0 < k10h < 0.1, the wave
reflection is minimum, and the wave transmission is maxi-
mum for all the support conditions. The fixed edge support
shows higher wave reflection as compared with the free-free
edge and simply supported edge condition. The wave reflec-
tion coefficient approaches to one with the increase in k10h
which suggests that for the wave with smaller wavelength, the
wave reflection is higher. The forward shift in the zeros in the

wave reflection and transmission coefficient is noted for dif-
ferent support conditions. The transmission coefficient ap-
proaching one indicates complete wave transmission for that
particular k10h. In the case of simply supported edge condi-
tion, the zeros in reflection coefficient or full wave transmis-
sion are observed for 5 < k10h < 5.5 and 16 < k10h < 17, where-
as in the case of free-free edge condition, the full wave trans-
mission is observed for 8 < k10h < 9. The study shows that the
optimum values of wave reflection and transmission are
higher for the simply supported edge condition.

5.1.2 Plate Deflection and Wave-Induced Strain

The plate deflection and wave-induced strain in the floating
elastic plate are given by the relation

ζ j ¼
i
ω
ϕjy on y ¼ 0; j ¼ 2 ð41Þ

ε ¼ d
2
∂2xζ2 ¼

id
2ω

∂3x2yϕ2 at y ¼ 0 ð42Þ

In Fig. 6(a), the surface deflection along the length of the
plate for different support conditions is presented. The plate
deflection is found to be least for simply supported edge and
highest for free-free edge support condition. The lower value
to plate deflection for simply supported edge condition and
fixed edge condition as compared with free-free edge condi-
tion is due to the effect of restraints at the edge. Further, at the
incident edge x/L = 0, the plate deflection is higher for fixed
edge condition whereas at the transmitted edge x/L = − 1, the
plate deflection for the fixed edge is reduced and is observed
higher for free-free edge condition. On the other hand, in Fig.
6b, the strain induced in the floating elastic plate due to the
action of ocean waves is analysed for different support condi-
tions. The wave-induced strain is found to be least for the
simply supported edge and highest for fixed edge support
condition. The strain along the floating elastic plate is higher
for the free-free edge condition at the incident edge x/L = 0,
whereas the strain in the transmitted edge x/L = − 1 is higher
for the fixed edge condition. Further, for the case of fixed edge
support, it is observed that the wave-induced strain is reduced
at the centre of the floating elastic plate due to higher rigidity
at the edges of the structure.

5.1.3 Bending Moment and Shear Force

The bending moment and shear force of the floating elastic
plate due to the interaction of wave are given by the relation

M xð Þ ¼ EI∂3yϕ2 on y ¼ 0 ð43Þ

W xð Þ ¼ EI ∂4xy3ϕ2−℘∂
2
xyϕ2

n o
on y ¼ 0 ð44Þ

Fig. 4 Comparison of plate deflection with Andrianov and Hermans
(2006) along the plate length considering rotary inertia I = 0 and shear
deformation S = 0
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In Fig. 7(a), the bending moment resultants due to the wave
interaction with the floating elastic plate are plotted along the
plate length for different support conditions. The bending mo-
ment resultant is observed to be least for the floating structure
with a simply supported edge and highest for free-free edge
support condition. On the other hand, the bending moment is
observed to increase at the centre of the structure for the case
of free-free edge support which may be due to the change in
the phase of the incoming and outgoing waves propagating
below the floating elastic plate. The shear force resultants
(Fig. 7(b)) due to the wave interaction with the floating
elastic plate are plotted along the plate length for dif-
ferent support conditions. The shear force resultant is
observed to be least for floating structure with a simply
supported edge and highest for the free-free edge sup-
port condition as observed similar in the case of

bending moment along the plate length. The shear force
and bending moment for the simply supported edge and
fixed edge condition are minimum at the incident edge
x/L = 0 and at the transmitted edge x/L = − 1. Further, at
the centre of the plate, the shear force is higher for the
free-free edge condition as compared with the simply
supported and fixed edge conditions.

5.2 Comparison of Thin and Thick Elastic Plate

The comparison of the thin and thick elastic plate based on the
Timoshenko-Mindlin plate theory and Kirchhoff’s plate theo-
ry for the simply supported edge condition and fixed edge
condition is presented. The detailed comparison of thin and
thick plate is performed on analysing the hydroelastic charac-
teristics of the floating elastic plate.

(a) Reflection coefficient (b) Transmission coefficient

(a) Plate deflection (b) Wave induced strain of floating plate

Fig. 6 Plate deflection and wave-induced strain along the plate length x/L for different edge support conditions at k10h = 5, d/L = 0.02 and h/L = 0.15
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Fig. 5 Wave reflection and transmission coefficients versus non-dimensional wavenumber k10h for different support conditions at d/L = 0.02 and
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5.2.1 Simply Supported Edge Condition

The wave reflection and transmission coefficients (Fig. 8(a),
(b)) based on the thin plate theory is compared with thick plate
theory varying non-dimensional wave number in the case of
simply supported edge condition. The wave reflection and
transmission characteristics for both the plate theories are the
same for 0 < k10h < 2.5, but with the increase in the non-
dimensional wave number, the deviation in the Kr and Kt is
noted. The wave transmission is observed more for the thin
plate theory for higher values of non-dimensional wave num-
ber. This suggests that for lower wavelength, the wave trans-
mission is more in the case of the thin plate theory. The
Timoshenko-Mindlin plate theory shows higher resistance to
wave transformation, whereas the complete transmission
peaks are observed to be similar for both the theories. The
comparison using both plate theories suggests that the

presence of rotary inertia and shear deformation is significant
in the wave transformation and hydroelastic behaviour of the
floating elastic plate.

In Fig. 9(a)–(d), the plate deflection, wave-induced strain,
bending moment and shear force of a floating elastic plate are
compared based on Timoshenko-Mindlin’s plate theory and
Kirchhoff’s plate theory for the simply supported edge condi-
tion. The variation in the plate deflection (Fig. 9(a)) using both
the plate theories is minimal but the deflection is higher at the
plate centre and at the incident edge x/L = 0 of the plate. A
significant variation in the strain in the floating elastic plate
(Fig. 9(b)) using both Kirchhoff ’s plate theory and
Timoshenko-Mindlin plate theory is noted. The strain in the
floating elastic plate is higher for the Timoshenko-Mindlin
plate theory. The bending moment and shear force (Fig. 9(c),
(d)) are higher for Kirchhoff’s plate theory as compared with
the Timoshenko-Mindlin plate theory. Thus, the study shows

(a) Bending moment of floating plate (b) Shear force of floating plate 

Fig. 7 Bending moment and shear force resultants along the plate length x/L for different edge support conditions at k10h = 5, d/L = 0.02 and h/L = 0.15

(a) Reflection coefficient (b) Transmission coefficient
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Fig. 8 Wave reflection and transmission coefficient versus non-dimensional wavenumber k10h considering E = 5GPa and h/L = 0.15, d/L = 0.02



that due to the presence of rotary inertia and shear deforma-
tion, a significant reduction in bending moment and shear
force with a slight reduction in plate deflection and increase
in wave-induced strain is obtained as compared with
Kirchhoff’s thin plate theory.

5.2.2 Fixed Edge Support Condition

The wave reflection and transmission coefficients based on
Kirchhoff ’s thin plate theory is compared with the
Timoshenko-Mindlin plate theory versus the non-
dimensional wave number for the fixe edge condition in
Fig.10(a), (b). The variation in the Kr and Kt is significant
for 2.5 < k10h < 7.5, and with the increase in the non-
dimensional wave number, the variation is minimal. The wave
reflection and transmission characteristics using the
Timoshenko-Mindlin plate theory are higher whereas the
complete transmission of waves is observed to be the same
within 5 < k10h < 5.5 for both the plate theories. The variation
of Kr and Kt using both the theories suggests that the presence

of rotary inertia and shear deformation plays a significant role
in the wave transformation and hydroelastic behaviour of
fixed edge supported floating elastic plate.

The hydroelastic behaviour in terms of plate deflection,
wave-induced strain, bending moment and shear force of a
floating elastic plate with fixed edge support is compared
based on Timoshenko-Mindlin’s plate theory and
Kirchhoff’s plate theory in Fig. 11(a)–(d). The variation in
plate deflection (Fig. 11(a)) is significant as compared using
both Timoshenko-Mindlin’s plate theory and Kirchhoff’s
plate theory.

The plate deflection near the incident edge x/L = 0 is higher
for Kirchhoff’s plate theory whereas at the central plate sec-
tion, the plate deflection using the Timoshenko-Mindlin plate
theory is slightly more as compared to Kirchhoff’s plate the-
ory. The strain (Fig. 10(b)) in the floating elastic plate is higher
for the Timoshenko-Mindlin plate theory, and the reduction in
the bending moment and shear force (Fig. 11(a), (b)) is ob-
served for the Timoshenko-Mindlin plate theory. Thus, the
presence of rotary inertia and shear deformation shows

(a) Plate deflection (b) Wave induced strain of floating plate

(c) Bending moment of floating plate (d) Shear force of floating plate
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Fig. 9 Plate deflection, wave-induced strain, bending moment and shear force along the plate length considering k10h = 5, E = 5 GPa and h/L = 0.15, d/
L = 0.02



reduction in the plate deflection, wave-induced strain, bending
moment and shear force at the incident edge of the floating

plate, whereas an increase in hydroelastic behaviour is ob-
served at the transmitted edge.

(a) Plate deflection (b) Wave induced strain of floating plate

(c) Bending moment of floating plate (d) Shear force of floating plate

Fig. 11 Plate deflection, wave-induced strain, bending moment and shear force along the plate length considering k10h = 3, E = 5GPa and h/L = 0.15, d/
L = 0.02

(a) Reflection coefficient (b) Transmission coefficient

Fig. 10 Wave reflection and transmission coefficients versus non-dimensional wavenumber k10h considering E = 5 GPa and h/L = 0.15, d/L = 0.02
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5.3 Shallow Water Approximation

In this section, the wave interaction with a floating elastic plate
is analysed based on shallow water approximation. The
hydroelastic behaviour of the floating elastic plate in shallow
water depth is analysed and compared with the different cases
of edge support conditions.

5.3.1 Reflection and Transmission Coefficient

The reflection and transmission coefficients for the floating
elastic plate based on shallow water approximation are the
same as described in Eq. (40). In Fig. 12(a), (b), the reflection
and transmission coefficients versus the non-dimensional
wave number are plotted for different cases of edge support
conditions. It is observed that the zeros in the wave reflection
are least for the free-free edge support condition and higher for
the fixed edge support condition. At very low values of non-
dimensional wave number, the variation in reflection and
transmission coefficients is observed to be more as compared
with higher values of k10h. Further, higher transmission of
waves is observed at very low frequencies for the free-free
edge support condition due to zero restraints at the edges.
The simply supported edge is observed to transmit a higher
number of waves as compared with fixed support edge but
lesser than the free-free support condition due to the constraint
in deflection at the edges.

5.3.2 Plate Deflection and Wave-Induced Strain

The plate deflection and wave-induced strain of the elastic
plate in shallow water depth are given by the relation

ζ j ¼
ih
ω
∂2xϕ j for j ¼ 2 ð45Þ

ε ¼ d
2
∂2xζ2 ¼

idh
2ω

∂4xϕ2 ð46Þ

The plate deflection along the length of the plate at different
edge support conditions is presented in Fig. 13(a). The plate
deflection is observed to be zero at the edges of the plate for
the case of simply supported and fixed edge support condi-
tions, which is due to restraints at the edges. The plate deflec-
tion is observed to be higher at the edges of the plate for the
free-free edge boundary condition due to zero restraints at the
edges. Due to the zero deflection at the plate edge for the
simply supported edge and fixed edge conditions, the deflec-
tion is observed to be lesser for the simply supported edge and
fixed edge conditions as compared with the free-free edge
support.

In Fig.13(b), the strain induced in the plate due the action of
ocean waves is plotted for different support edge conditions. It
is observed that the wave-induced strain is highest at the plate
edges for the fixed edge support condition and zero for the
cases of the free-free edge and simply supported edge condi-
tions which is mainly due to restraints in the plate for the
corresponding edge conditions. A lower strain is observed
for the free-free edge and simply supported edge due non-
zero slope condition. An increase in wave-induced strain is
observed at the centre of the structure for the case of the fixed
edge condition due to zero slope condition.

5.3.3 Bending Moment and Shear Force

The bending moment and shear force of the floating elastic
plates are given by

M xð Þ ¼ EI∂4xϕ2 ð47Þ
W xð Þ ¼ EI ∂5xϕ2−℘∂

3
xϕ2

� 
 ð48Þ

(a) Reflection coefficient (b) Transmission coefficient

Fig. 12 Wave reflection and transmission coefficients versus non-dimensional wavenumber k10h for different support conditions at d/L = 0.02 and
h/L = 0.10
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In Fig. 14(a), the bending moment on the plate due
to incident waves is plotted along the length of the plate
for different edge support conditions. At the edges of
the plate, the bending moment is observed to be zero
for the case of a free-free edge and simply supported
edge due to zero moment condition. On the other hand,
a maximum bending moment is observed at the edges
and at the centre of the structure due to the edge re-
straints in the case of the fixed edge support condition.
The shear force on the plate due to incident waves is
plotted along the length of the plate in Fig. 14(b) for
different edge support conditions. At the plate edges,
zero shear force is observed for the case of a free-free
edge condition but for the case of the fixed edge sup-
port, a maximum shear force is observed at the edges
and zero at the centre of the structure due to edge
constraints.

6 Conclusion

The influence of edge support conditions on the hydroelastic
behaviour of floating elastic plate based on the Timoshenko-
Mindlin plate theory is analysed. The study of normally inci-
dent wave on floating elastic plate is performed for finite and
shallowwater depths. The numerical study is performed based
on the eigenfunction expansion method. The wave reflection
and transmission coefficients are computed and observed to
satisfy the energy balance relation for both the cases of water
depths. The hydroelastic characteristics of floating elastic
plate are compared for different support conditions. In addi-
tion, a brief comparison of the numerical results for the simply
supported edge condition and fixed edge condition for both
Kirchhoff’s plate theory and Timoshenko-Mindlin plate theo-
ry is discussed in detail. The results demonstrating the effects
of wave directionality on the application of the present model

(a) Bending moment of floating plate (b) Shear force of floating plate

(a) Plate deflection (b) Wave induced strain of floating plate

Fig. 13 Plate deflection and wave-induced strain along the plate length x/L for different edge support conditions at k10h = 10, d/L = 0.02 and h/L = 0.10
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Fig. 14 Bendingmoment and shear force resultants along the plate length x/L for different edge support conditions at k10h = 10, d/L = 0.02 and h/L = 0.10



will be presented in the future work. The following conclu-
sions drawn from the present study are as follows:

& The high variations in reflection and transmission behav-
iour are observed for higher values of non-dimensional
wave numbers for different support conditions in the case
of finite and shallow water depths.

& The free-free edge support condition shows higher trans-
mission of waves whereas lower wave transmission for
the fixed edge support is observed at finite and shallow
water depths.

& The hydroelastic behaviour is found to be higher for the
free-free edge support conditions and least for the fixed
edge due to restraints from the boundary conditions in the
case of finite water depth. On the other hand, the bending
moment and shear force resultants are found to be highest
for the fixed edge support and least for the simply sup-
ported edge condition in the case of shallow water depth.

& The bending moment is observed to increase at the centre
of the structure for the case of the free-free edge support at
finite water depth which may be due to the change in the
phase of the incoming and outgoing waves propagating
below the floating elastic plate.

& The comparison of the floating elastic plate for different
edge conditions using both Kirchhoff’s plate theory and
Timoshenko-Mindlin’s plate theory suggests that the pres-
ence of rotary inertia and shear deformation is significant
in the hydroelastic behaviour of the floating elastic plate.

& At shallow water depth, the plate deflection is observed to
be zero for the case of the simply supported and fixed edge
support conditions. Further, wave-induced strain is found
to be zero for the free-free edge and simply supported edge
conditions.

& The bending moment and shear force resultants are zero
for the free-free edge and simply supported edge due to the
restraints at the edges in shallow water depth.
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Appendix A: Oblique Wave Interaction
with Floating Thick Plate

The oblique wave interaction with the finite floating elastic
plate is analysed based on the Timoshenko-Mindlin plate the-
ory for different edge support conditions. In Fig. A1, the wave
is obliquely incident along the x − z plane horizontally and the
y−axis is considered vertically downward positive. The float-
ing plate is considered to extend infinitely along the z−axis

and floating along −a < x < 0. The elastic plate is assumed to
be at finite water depth, and a monochromatic wave is
obliquely incident at an angle θ. The edges of the plate at
x = 0 and x = − a are considered to satisfy edge support
boundary conditions.

The velocity potential Φ satisfies the partial differential
equation

∇2
xyzΦ j ¼ 0 at −∞ < x; z < ∞; 0 < y < h ðA1Þ

The linearised free surface boundary condition, dynamic
free surface boundary condition and bottom boundary con-
dition are the same as in Eqs. (2–4). The plate-covered
boundary condition based on the Timoshenko-Mindlin
plate theory (Magrab 1979) for −a < x < 0, − ∞ < z < ∞ ,
is given by

EI∇2
xz−msI∂2t

� �
∇2
xz−

msS
EI

∂2t

� �
þ ms∂2t

� �
Φ2y

þ ρg 1−S∇2
xz þ

msIS
EI

∂2t

� �
Φ2y ¼ ρ 1−S∇2

xz þ
msIS
EI

∂2t

� �
∂2t Φ2

ðA2Þ
where ρ is the density of water, ms is the mass of the
plate, I = d2/12 is the rotary inertia and S = EI/μGd is the
shear deformation for the Timoshenko-Mindlin equation.
The structural edge conditions for oblique wave interaction
with floating thick elastic plate are as follows:

Case I: freely floating elastic plate
The freely floating elastic plate represents zero bending

moment and zero shear force at the plate edge. In the case of
finite water depth, the shear force and bending moment at the
plate edge x = 0 and x = − a satisfy the relation given by

EI
∂
∂x2

þ ν
∂
∂z2

� �
∂yΦ2

¼ 0 and EI
∂
∂x

∇2
xz þ 1−νð Þ ∂

∂z2

� �
þ msω

2 S þ Ið Þ
� 


∂yΦ2 ¼ 0

ðA3Þ

Case II: simply supported floating elastic plate
In this case, the simply supported edge condition represents

the bending moment and deflection to vanish at the edges or at
the supports for finite water depth. The plate edge is consid-
ered to be having zero deflection and zero bending moment at
x = 0, − a satisfying the relation

∂yΦ2 ¼ 0 and EI
∂
∂x2

þ ν
∂
∂z2

� �
∂yΦ2 ¼ 0 ðA4Þ

Case III: fixed edge floating elastic plate
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In this case of fixed edge condition, the deflection and
slope vanish at the support. In finite water depth, we consider
zero deflection and zero slope at the plate edge x = 0, − a
which satisfy the relation

∂yΦ2 ¼ 0 and ∂2xyΦ2 ¼ 0 at y ¼ 0 ðA5Þ

Assuming that the wave elevation and the plate deflection
are simple harmonic motion in time with the frequency ω, the
velocity potentialΦj(x, y, z, t) and the surface deflection ζj(x, z,
t) can be written as Φj(x, y, z, t) = Re {ϕj(x, y)e

ilz − iωt} and ζj(x,
z, t) = Re {ζj(x)e

ilz − iωt} where Re denotes the real part, and l is
the component of the wave number along the z-direction
which is of the form l = γ10 sin θ. Thus, the spatial velocity
potential ϕj(x, y) satisfies Helmholtz’s equation. The continu-
ity of velocity and pressure at the interface x = − a and x = 0
for j = 1, 2; 0 < y < h, and the velocity potential in each of the
open water and plate-covered region are the same as described
in Sections 2 and 3 where the eigenfunctions fjn(y)’s are given
by

f jn yð Þ ¼ cosh γ jn h−yð Þ
cosh γ jnh

for n ¼ 0; I; II and f jn yð Þ

¼ cos γ jn h−yð Þ
cos γ jnh

for n ¼ 1; 2; ::: ðA6Þ

where γjn for j = 1, 3 and n = 0 are the eigenvalues that
satisfy the dispersion relation in the open water region given
by

γ j0tanh γ j0h−ω
2=g ¼ 0 ðA7Þ

with γ2jn ¼ k2jn þ l2 where l ¼ γ10sinθ. In addition, there are

an infinite number of purely imaginary roots γjn = iγjn for

n = 1, 2.... with γ2jn ¼ k2jn−l
2. In the plate-covered region, the

eigenvalues γjn for j = 2 satisfy the dispersion relation given
by

α0−α1γ
2
jn þ α2γ

4
jn

� 	
γ jntanh γ jnh− β0−β1γ

2
jn

� 	
¼ 0 ðA8Þ

where α0, α1, α2, β0, and β1 are the same as defined in Eq.
(20). Proceeding in a similar manner as in Section 4, applying
the mode-coupling relation along with using the continuity of
mass flux and pressure across the interfaces as in Eq. (8) and
the edge support conditions, a system of linear equations can
be obtained for the determination of the unknown coefficients
whose details are deferred here to avoid repetition.
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