Cummings DE (1973) Numerical prediction of propeller characteristics. J Ship Res 17(1):12-18
Greeley DS, Kerwin JE (1982) Numerical methods for propeller design and analysis in steady flow. Transactions-Soc Naval Arch Mar Eng 90:415-453
He W, Tingqiu L, Ziru L (2014) Numerical simulation of fluid-solid coupling of propeller based on VBA. J Wuhan Univ Technol (Transmission Science and Engineering) 38(6):1272-1276. https://doi.org/10.3963/j.issn.2095-3844.2014.06.020
Hoshino T (1990) Hydrodynamic analysis of propellers in steady flow using a surface panel method. Naval Arch Ocean Eng 28:19-37. https://doi.org/10.2534/jjasnaoe1968.1989.55
Huang S, Bai XF, Sun XJ (2015) Numerical simulation of hydrodynamic performance of propeller based on fluid-solid coupling. Ships 1:25-30. https://doi.org/10.3969/j.issn.1001-9855.2015.01.006
Huang Z, Xiong Y, Sun HT (2017a) Thicken and pre-deformed design of composite marine propellers. J Propulsion Technol 38(9):2107-2114. https://doi.org/10.13675/j.cnki.tjjs.2017.09.024
Huang Z, Xiong Y, Yang G (2017) A fluid-structure coupling method for composite propellers based on ANSYS ACP module. Chin J Comput Mech 34(4):501-506. https://doi.org/10.7495/j.issn.1009-3486.2017.04.006
Huang Z, Xiong Y, Yang G (2017) A comparative study of one-way and two way fluid-structure coupling of copper and carbon fiber propeller. J Nav Univ Eng 29(4):31-35. https://doi.org/10.7511/jslx201704016
Kerwin J (1987) A surface panel method for the hydrodynamic analysis of ducted propellers. Soc Naval Arch Mar Eng-Trans 95:93-122
Kerwin JE, Lee CS (1978) Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory. Sname Transactions 86:1-30
Koyama K (1994) Application of a panel method to the unsteady hydrodynamic analysis of marine propellers. Unsteady Flow.
Lee CS (1980) Prediction of the transient cavitation on marine propellers by numerical lifting-surface theory. Thirteenth Symposium on Naval Hydrodynamics, Tokyo
Lee JA (1987) A potential based panel method for the analysis of marine propellers in steady flow. PhD thesis Department of Ocean Engineering Mit:1987
DOI:1721.1/14641
Lerbs HW (1952) Moderately loaded propellers with a finite number of blades and an arbitrary distribution of circulations. Transactions-Soc Naval Arch Mar Eng 60:73-123
Li J, Zhang ZG, Hua H (2018) Hydro-elastic analysis for dynamic characteristics of marine propellers using finite element method and panel method. J Vib Shock 37:22-29. https://doi.org/10.13465/j.cnki.jvs.2018.21.003
Li Z, Li G, He P, He W (2019) Numerical analysis of unsteady fluid-structure interaction of composite marine propellers. Huazhong Univ. of Sci. & Tech. 47(9):7-13. https://doi.org/10.13245/j.hust.190902
Lin HJ, Lin J (1996) Nonlinear hydroelastic behavior of propellers using a finite-element method and lifting surface theory. J Mar Sci Technol 1(2):114-124. https://doi.org/10.1007/BF02391167
Miao YY, Sun JL (2011) CFD Analysis of Hydrodynamic Performance of Propeller in Open Water. Chin Ship Res 6(5):63-68. https://doi.org/10.3969/j.issn.1673-3185.2011.05.013
Ren H, Li F, Ling D (2015) Numerical calculation of influence of fluid-solid coupling on propeller strength. Journal of Wuhan University of Technology. Transp Sci Eng 39(1):144-147. https://doi.org/10.3963/j.issn.2095-3844.2015.01.033
Sparenberg JA (1960) Application of lifting surface theory to ship screws. Int Shipbuild Prog 7(67):99-106. https://doi.org/10.3233/ISP-1960-76701
Tsakonas S, Jacobs WR, Rank PHJ (1966) Unsteady propeller lifting-surface theory with finite number of chordwise modes. 12(1):14-45.
Wang H, Zhiwei Z, Zhibo Z (2014) Method for checking the strength of controllable-pitch propeller blade based on numerical calculation. Chin Ship Res 9(5):53-59. https://doi.org/10.3969/j.issn.1673-3185.2014.05.010
Yamasaki H, Ikehata M (1992) Numerical analysis of steady open characteristics of marine propeller by surface vortex lattice method. J Soc Naval Arch Jpn 1992(172):203-212. https://doi.org/10.2534/jjasnaoe1968.1992.172_203
Yang G, Ying X, Zheng H (2015) Two-way fluid-solid coupling calculation of composite propeller. Ship Sci Technol 37(10):16-20. https://doi.org/10.3404/j.issn.1672-7649.2015.10.004
Yin LY, Kinnas SA (2001) A BEM for the prediction of unsteady midchord face and/or back propeller cavitation. J Fluids Eng 123(2):403-419. https://doi.org/10.1115/1.1363611
Young YL (2007) Time-dependent hydroelastic analysis of cavitating propulsors. J Fluids Struct 23(2):269-295. https://doi.org/10.1016/j.jfluidstructs.2006.09.003
Zhang S, Zhu X, Zhenlong Z, Hailiang H (2014) Analysis of fluid-solid coupling characteristics of propellers of the easily deformable ships. J Nav Univ Eng 1:48-53. https://doi.org/10.7495/j.issn.1009-3486.2014.01.011
Zhao B (2003) Research on the strength of large-slanting propeller. Huazhong Univ Sci Technol. https://doi.org/10.7666/d.y498868
Zou J, Jie X, Hanbing S, Zhen R (2017) Study on the influence of hub shape on propeller performance considering fluid-solid coupling. Ship 28(1):21-28. https://doi.org/10.19423/j.cnki.31-1561/u.2017.01.021