Abbaszadeh M, Dehghan M (2019) The interpolating element-free Galerkin method for solving Korteweg-de Vries-Rosenau-regularized long-wave equation with error analysis. Nonlinear Dyn 96(2):1345-1365. https://doi.org/10.1007/S11071-019-04858-1
Brookshaw L (1985) A method of calculating radiative heat diffusion in particle simulations. Publ Astron Soc Aust 6(2):207-210. https://doi.org/10.1017/S1323358000018117
Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46(2):231-252. https://doi.org/10.1002/(SICI)1097-020719990920)46:2<231::AID-NME672>3.0.CO;2-K
Cummins SJ, Rudman M (1999) An SPH projection method. J Comput Phys 152(2):584-607. https://doi.org/10.1006/jcph.1999.6246
Dehghan M, Abbaszadeh M (2018) Variational multiscale element-free Galerkin method combined with the moving Kriging interpolation for solving some partial differential equations with discontinuous solutions. Comput Appl Math 37(3):3869-3905. https://doi.org/10.1007/s40314-017-0546-6
Dehghan M, Abbaszadeh M (2019) Error analysis and numerical simulation of magnetohydrodynamics (MHD) equation based on the interpolating element free Galerkin (IEFG) method. Appl Numer Math 137:252-273. https://doi.org/10.1016/j.apnum.2018.10.004
Fatehi R, Manzari MT (2011) Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Comput Math Appl 61(2):482-498. https://doi.org/10.1016/j.camwa.2010.11.028
Gotoh H, Khayyer A (2016) Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. J Ocean Eng Marine Energy 2(3):251-278. https://doi.org/10.1007/s40722-016-0049-3
Gotoh H, Khayyer A, Ikari H, Arikawa T, Shimosako K (2014) On enhancement of incompressible SPH method for simulation of violent sloshing flows. Appl Ocean Res 46:104-115. https://doi.org/10.1016/j.apor.2014.02.005
Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227(1):264-278. https://doi.org/10.1016/j.jcp.2007.07.013
Ikari H, Khayyer A, Gotoh H (2015) Corrected higher order Laplacian for enhancement of pressure calculation by projection-based particle methods with applications in ocean engineering. J Ocean Eng Marine Energy 1(4):361-376. https://doi.org/10.1007/s40722-015-0026-2
Khayyer A, Gotoh H (2010) A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method. Appl Ocean Res 32(1):124-131. https://doi.org/10.1016/j.apor.2010.01.001
Khayyer A, Gotoh H (2012) A 3D higher order Laplacian model for enhancement and stabilization of pressure calculation in 3D MPS-based simulations. Appl Ocean Res 37:120-126. https://doi.org/10.1016/j.apor.2012.05.003
Khayyer A, Gotoh H, Shao SD (2008) Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coast Eng 55(3):236-250. https://doi.org/10.1016/j.coastaleng.2007.10.001
Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421-434. https://doi.org/10.13182/NSE96-A24205
Lee ES, Moulinec C, Xu R, Violeau D, Laurence D, Stansby PK (2008) Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J Comput Phys 227(18):8417-8436. https://doi.org/10.1016/j.jcp.2008.06.005
Lind SJ, Stansby PK (2016) High-order Eulerian incompressible smoothed particle hydrodynamics with transition to Lagrangian free surface motion. J Comput Phys 326:290-311. https://doi.org/10.1016/j.jcp.2016.08.047
Lind SJ, Xu R, Stansby PK, Rogers BD (2012) Incompressible smoothed particle hydrodynamics for free-surface flows:a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231(4):1499-1523. https://doi.org/10.1016/j.jcp.2011.10.027
Lo EY, Shao S (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl Ocean Res 24(5):275-286. https://doi.org/10.1016/S0141-1187(03)00002-6
Ma QW (2005a) MLPG method based on Rankine source solution for simulating nonlinear water waves. Comput Model Eng Sci 9(2):193-210. https://doi.org/10.3970/cmes.2005.009.193
Ma QW (2005b) Meshless local Petrov-Galerkin method for two-dimensional nonlinear water wave problems. J Comput Phys 205(2):611-625. https://doi.org/10.1016/j.jcp.2004.11.010
Ma QW (2008) A new meshless interpolation scheme for MLPG_R method. Comput Model Eng Sci 23(2):75-90. https://doi.org/10.3970/cmes.2008.023.075
Ma QW, Zhou Y, Yan S (2016) A review on approaches to solving Poisson’s equation in projection-based meshless methods for modelling strongly nonlinear water waves. J Ocean Eng Marine Energy 2(3):279-299. https://doi.org/10.1007/s40722-016-0063-5
Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399-406. https://doi.org/10.1006/jcph.1994.1034
Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method:towards higher order convergence. J Comput Phys 225(2):1472-1492. https://doi.org/10.1016/j.jcp.2007.01.039
Quinlan NJ, Basa M, Lastiwka M (2006) Truncation error in mesh-free particle methods. Int J Numer Methods Eng 66(13):2064-2085. https://doi.org/10.1002/nme.1617
Schwaiger HF (2008) An implicit corrected SPH formulation for thermal diffusion with linear free surface boundary conditions. Int J Numer Methods Eng 75(6):647-671. https://doi.org/10.1002/nme.2266
Shao S, Ji C, Graham DI, Reeve DE, James PW, Chadwick AJ (2006) Simulation of wave overtopping by an incompressible SPH model. Coast Eng 53(9):723-735. https://doi.org/10.1016/j.coastaleng.2006.02.005
Shao S, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with free surface. Adv Water Resour 26(7):787-800. https://doi.org/10.1016/S0309-1708(03)00030-7
Tamai T, Koshizuka S (2014) Least squares moving particle semi-implicit method. Comput Part Mech 1(3):277-305. https://doi.org/10.1007/s40571-014-0029-0
Tamai T, Murotani K, Koshizuka S (2017) On the consistency and convergence of particle-based meshfree discretization schemes for the Laplace operator. Comput Fluids 142:79-85. https://doi.org/10.1016/j.compfluid.2016.02.012
Xu R, Stansby P, Laurence D (2009) Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J Comput Phys 228(18):6703-6025. https://doi.org/10.1016/j.jcp.2009.05.032
Zheng X, Ma QW, Duan WY (2014) Incompressible SPH method based on Rankine source solution for violent water wave simulation. J Comput Phys 276:291-314. https://doi.org/10.1016/j.jcp.2014.07.036
Zheng X, Ma QW, Shao S (2018) Study on SPH Viscosity Term Formulations. Appl Sci 8(2):249. https://doi.org/10.3390/app8020249
Zhou JT, Ma QW (2010) MLPG method based on Rankine source solution for modelling 3D breaking waves. Comput Model Eng Sci 56(2):179. https://doi.org/10.3970/cmes.2010.056.179