|Table of Contents|

Citation:
 Ziqi Song,Hongyu Bian,Adam Zielinski.Underwater Terrain-Aided Navigation Based on Multibeam Bathymetric Sonar Images[J].Journal of Marine Science and Application,2015,(4):425-433.[doi:10.1007/s11804-015-1334-6]
Click and Copy

Underwater Terrain-Aided Navigation Based on Multibeam Bathymetric Sonar Images

Info

Title:
Underwater Terrain-Aided Navigation Based on Multibeam Bathymetric Sonar Images
Author(s):
Ziqi Song123 Hongyu Bian12 Adam Zielinski3
Affilations:
Author(s):
Ziqi Song123 Hongyu Bian12 Adam Zielinski3
1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China ;
2. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China;
3. Department of Electrical and Computer Engineering, University of Victoria, Victoria V8W 2Y2, Canada
Keywords:
underwater acousticsterrain-aided navigationsonar imageshistogramautonomous underwater vehiclemultibeam bathymetric sonar
分类号:
-
DOI:
10.1007/s11804-015-1334-6
Abstract:
Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map. This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge corner pixels are then defined and used to construct an edge corner histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.

References:

Anonsen KB, Hagen OK (2009). Terrain aided underwater navigation using pockmarks. IEEE OCEANS 2009, Biloxi, USA, 1-6.
Anonsen KB, Hallingstad O (2006). Terrain aided underwater navigation using point mass and particle filters. Proc. IEEE Position, Location and Navigation Symposium, San Diego, USA, 1027-1035. DOI: 10.1109/PLANS.2006.1650705
Baird CA, Snyder FB, Beierle M (1990). Terrain-aided altitude computations on the AFTI/F-16. Proc. IEEE Position Location and Navigation Symposium, Las Vegas, USA, 474-481. DOI: 10.1109/PLANS.1990.66217
Chen Xiaolong, Pang Yongjie, Li Ye, Chen Pengyun (2012). Underwater terrain matching positioning method based on MLE for AUV. Robots, 34(5), 559-565. (in Chinese) DOI: 10.3724/SP.J.1218.2012.00559
Dalal N, Triggs B (2005). Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 886-893. DOI: 10.1109/CVPR.2005.177
Department of the Navy, USA (2004). The navy unmanned undersea vehicle (UUV) master plan. Available from http://www.pdfdrive.net/the-navy-unmanned-undersea-vehicle-uuv-master-plan-e85437.html [Accessed on May. 23, 2015].
Eroglu O, Yilmaz G (2014). A terrain referenced UAV localization algorithm using binary search method. Journal of Intelligent & Robotic Systems, 73(4), 309-323. DOI: 10.1007/s10846-013-9922-7
Golden JP (1980). Terrain contour matching (TERCOM): A cruise missile guidance aid. Image Processing for Missile Guidance, San Diego, USA, 10-18. DOI: 10.1117/12.959127
Guo Youguang, Zhong Bin, Bian Shaofeng (2003). The determination of earth gravity field and the matched navigation in gravity field. Hydrographic Surveying and Charting, 23(5), 61-64. (in Chinese) DOI: 1671-3044(2003)05-0061-04
Harvard University Library (2002). Citing electronic sources of information. University of Harvard. Available from http://People.seas.harvard.edu/~leslie/ASCOT02.doc [Accessed on May. 23, 2015].
Hao YL, Zhao YF, Hu JF (2008). Preliminary analysis on the application of geomagnetic field matching in underwater vehicle navigation. Progress in Geophysics, 23(2), 594-598.
Hollowell J (1990). Heli/SITAN: A terrain referenced navigation algorithm for helicopters. Proc. IEEE Position Location and Navigation Symposium, Las Vegas, USA, 616-625. DOI: 10.1109/PLANS.1990.66236
Jalving B, Mandt M, Hagen OK, Pøhner F (2004). Terrain referenced navigation of AUVs and submarines using multibeam echo sounders. Available from http://www.navlab.net/Publications/Terrain_Referenced_Navigation_of_AUVs_and_Submarines_Using_Multibeam_Echo_Sounders.pdf [Accessed on May. 23, 2015].
Jiang X, Feng X, Wang L (2000). Underwater robots. Liaoning Press of Science and Technology, Liaoyang, China, 293-297. (in Chinese)
Levi K, Weiss Y (2004). Learning object detection from a small number of examples: the importance of good features. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 53-60. DOI: 10.1109/CVPR.2004.1315144
Marthiniussen R, Vestgard K, Klepaker RA, Storkersen N (2004). HUGIN-AUV concept and operational experiences to date. OCEANS’04, Kobe, Japan, 846-850. DOI: 10.1109/OCEANS.2004.1405571
Nygren I (2005). Terrain navigation for underwater vehicles. Stockholm: KTH, Trita-S3-SB-0571.
Paull L, Saeedi S, Seto M (2014). AUV navigation and localization: A review. IEEE Journal of Oceanic Engineering, 39(4), 131-149. DOI: 10.1109/JOE.2013.2278891
RESON Inc. (2006). Seabat 7125 operator’s manual. RESON Inc., Goleta, USA.
Sandwell DT (1987). Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophysical research letters, 14(2), 139-142. DOI: 10.1029/GL014i002p00139
Somajyoti M (2001). Sensor fusion and feature based navigation for subsea robots. Ph.D. thesis, The University of Sydney, Sydney, Australia, 1-17.
Wang Kedong, Yan Lei, Deng Wei, Zhang Junhong (2006). Research on iterative closest contour point for underwater terrain-aided navigation. International Workshop on Structural, Syntactic and Statistical Pattern Recognition, Hong Kong, China, 252-260. DOI: 10.1007/11815921_27
Xu Daxin (2005). Using gravity anomaly matching techniques to implement submarine navigation. Chinese Journal of Geophysics, 45(4), 812-816. (in Chinese) DOI: 0001-5733(2005)04-0812-05
Yuan Shuming, Sun Feng, Liu Guangjun, Chen Jing (2004). Application of gravity map matching technology in underwater navigation. Journal of Chinese Inertial Technology, 12(2), 13-17. (in Chinese) DOI: 10.3969/j.issn.1005-6734.2004.02.004
Yun Sg, Lee W, Park CG (2014). Covariance calculation for batch processing terrain referenced navigation. IEEE Position Location and Navigation Symposium, Monterey, USA, 701-706. DOI: 10.1109/PLANS.2014.6851435
Zhang Kai, Li Yong, Zhao Jianhu, Rizos C (2014). A study of underwater terrain navigation based on the robust matching method. Journal of Navigation, 67(4), 569-578. DOI: 10.1017/S0373463314000071
Zhao Long, Gao Nan, Huang Baoqi, Wang Qianyun (2014). A novel terrain aided navigation algorithm combined with the TERCOM algorithm and particle filter. IEEE Sensors Journal, 15(2), 1124-1131. DOI: 10.1109/JSEN.2014.2360916
Zhou Jun, Ge Zhilei, Shi Guiguo, Liu Yuxia (2008). Key technique and development for geomagnetic navigation. Journal of Astronautics, 29(5), 1467-1472. (in Chinese)DOI: 10.3873/j.issn.1000-1328.2008.05.001

Memo

Memo:
收稿日期:2015-7-10;改回日期:2015-10-3。
基金项目:Supported by the National Natural Nature Science Foundation of China (Grant No. 41376102), Fundamental Research Funds for the Central Universities (Gant No. HEUCF150514) and Chinese Scholarship Council (Grant No. 201406680029).
通讯作者:Hongyu Bian, E-mail:bianhongyu@hrbeu.edu.cn
Last Update: 2015-11-07