Bausys R, Wiberg NE (1999). Adaptive finite element strategy for acoustic problems. Journal of Sound and Vibration, 226(5), 905-922. DOI: 10.1006/jsvi.1999.2323
Bell J, Berger M, Saltzman J, Welcome M (1994). Three dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM Journal on Scientific Computing, 15(1) 127-138.DOI: 10.1137/0915008
Berrone S, Marro M (2009). Space-time adaptive simulations for unsteady Navier-Stokes problems. Computers & Fluids, 38(6), 1132-1144.DOI: 10.1016/j.compfluid.2008.11.004
Bouillard Ph, Allard JF, Warzee G (1996). Superconvergent patch recovery technique for the finite element method in acoustics. Communications in Numerical Methods in Engineering, 12(9), 581-594.DOI: 10.1002/(SICI)1099-0887(199609)12:93.3.CO;2-J
Cole RH (1948). Underwater explosions. Princeton University Press, Princeton, USA.
Dapogny C, Dobrzynshi C, Frey P (2014). Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. Journal of Computational Physics, 262(4), 358-378.DOI: 10.1016/j.jcp.2014.01.005
Emamzadeh S. Sh (2008). An adaptive finite element analysis of acoustic waves propagation due to underwater explosion for fluid-structure interaction problems. PhD thesis, Tarbiat Modares University, Tehran, 62-66. (in Persian)
Ghanaat Y, Clough W, Redpath BB (1992). Experimental study of dam-water-foundation interaction. Proceedings of the Tenth World Conference on Earthquake Engineering, Madrid, Spain, 19-24.
Gilardo FX (1995). A space marching adaptive re-meshing technique applied to the 3D Euler equations for supersonic flow. PhD thesis, University of Virginia, Charlottesville, 59-80.
Harari I, Grosh K, Hughes TJR, Malhotra M, Pinnsky PM, Stewart JR, Thompson LL (1996). Recent development in finite element methods for structural acoustics. Archives of Computational Methods in Engineering, 3(2-3), 131-311.DOI: 10.1007/BF03041209
Hua F, Wang P, Chen X, Feng H (2015). An adaptive mesh method for 1D hyperbolic conservation laws. Applied Numerical Mathematic, 91, 11-25.DOI: 10.1016/j.apnum.2014.10.008
Kadioglu SY, Sussman M (2008). Adaptive solution techniques for simulating underwater explosions and implosions. Journal of Computational Physics, 227(3), 2083-2104.DOI: 10.1016/j.jcp.2007.10.019
Kim JH, Shin HC (2008). Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank. Ocean Engineering, 35(8-9), 812-822.DOI: 10.1016/j.oceaneng.2008.01.019
Howell LH, Bell J (1997). An adaptive-mesh projection method for viscous incompressible flow. SIAM Journal on Scientific Computing, 18(4), 996-1013.DOI: 10.1137/S1064827594270555
Mair HU (1999). Review: Hydrocodes for structural response to underwater explosions. Shock and Vibration, 6(2), 81-96.DOI: 10.1155/1999/587105
Pember RB, Howell LH, Bell J, Colella P, Crutchfield WY, Fiveland WA, Jessee JP (1998). An adaptive projection method for unsteady low-Mach number combustion. Combustion Science and Technology, 140(1-6), 123-168.DOI: 10.1080/00102209808915770
Peraire J, Vahdati M, Morgan K, Zienkiewicz OC (1987). Adaptive re-meshing for compressible flow computations. Journal of Computational Physics, 72(2), 449-466.DOI: 10.1016/0021-9991(87)90093-3
Ross MR, Felippa CA, Park KC, Sprague MA (2008). Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers: Formulation. Computer Methods in Applied Mechanics and Engineering, 197(33-40), 3057-3079.DOI: 10.1016/j.cma.2008.02.017
Ross MR, Sprague MA, Felippa CA, Park KC (2009). Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods. Computer Methods in Applied Mechanics and Engineering, 198(9-12), 986-1005.DOI: 10.1016/j.cma.2008.11.006
Shin YS (2004). Ship shock modeling and simulation for far-field underwater explosion. Computers & Fluids, 82(23-26), 2211-2219.DOI: 10.1016/j.compstruc.2004.03.075
Skamarock WC, Klemp JB (1993). Adaptive grid refinement for two-dimensional and three-dimensional non hydrostatic atmospheric flow. Monthly Weather Review, 121(3), 788-804.
Sommerfeld A (1949). Partial differential equations in physics. Academic Press, New York, 188-190.
Sprague MA, Geers TL (2006). A spectral-element/finite-element analysis of a ship-like structure subjected to an underwater explosion. Computer Methods in Applied Mechanics and Engineering, 195(17-18), 2149-2167.DOI: 10.1016/j.cma.2005.03.007
Sprague MA, Geers TL (2008). Legendre spectral finite elements for structural dynamics analysis. Communications in Numerical Methods in Engineering, 24(12), 1953-1965.DOI: 10.1002/cnm.1086
Steinthorsson E, Modiano D, Crutchfield WY, Bell JB, Colella P (1995). An adaptive semi-implicit scheme for simulations of unsteady viscous compressible flow. Proceedings of the 12th AIAA Computational Fluid Dynamics Conference, Orlando, USA, AIAA Paper 95-1727-CP.
Stevens DE, Bretherton CS (1996). A forward-in-time advection scheme and adaptive multilevel flow solver for nearly incompressible atmospheric flow. Journal of Computational Physics, 129(2), 284-295.DOI: 10.1006/jcph.1996.0250
Tetambe RP, Rajakumar C (1996). Estimation of error in finite element acoustic analysis. Computers and Structures, 61(1), 13-19.DOI: 10.1016/0045-7949(96)00036-3
Wardlaw A (1998). Underwater explosion test cases. Office of Naval Research, Virginia, United States, Technical Report IHTR 2069, ADB238684.
Yu Tiantang (2009). Dynamical response simulation of concrete dam subjected to under water contact explosion load. 2009 World Congress on Computer Science and Information Engineering, Los Angeles, USA, 767-774.DOI: 10.1109/CSIE.2009.106
Zienkiewicz OC, Taylor RL, Nithiarasu P (2005). The finite element method for fluid dynamics. Sixth edition, Butterworth-Heinemann, Oxford, United Kingdom, 465-478.