Journal of Marine Science and Application 2018 1
Stefano Gaggero, Diego Villa
Journal of Marine Science and Application,2018(1): 1-20
+Show Abstract -Hide Abstract

In this paper, we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case (PPTC) in oblique flow. For our calculations, we used the Reynolds-averaged Navier-Stokes equation (RANSE) solver from the open-source OpenFOAM libraries. We selected the homogeneous mixture approach to solve for multiphase flow with phase change, using the volume of fluid (VoF) approach to solve the multiphase flow and modeling the mass transfer between vapor and water with the Schnerr-Sauer model. Comparing the model results with the experimental measurements collected during the Second Workshop on Cavitation and Propeller Performance-SMP’15 enabled our assessment of the reliability of the open-source calculations. Comparisons with the numerical data collected during the workshop enabled further analysis of the reliability of different flow solvers from which we produced an overview of recommended guidelines (mesh arrangements and solver setups) for accurate numerical prediction even in off-design conditions. Lastly, we propose a number of calculations using the boundary element method developed at the University of Genoa for assessing the reliability of this dated but still widely adopted approach for design and optimization in the preliminary stages of very demanding test cases.

A. D. Wnek, Serge Sutulo, C. Guedes Soares
Journal of Marine Science and Application,2018(1): 21-37
+Show Abstract -Hide Abstract

A numerical study of ship-to-ship interaction forces is performed using a commercial CFD code, and the results are compared with experimental data and with the results of a panel method analysis. Two ship models have been used in the interaction forces analysis:a tug and a tanker, advancing parallel to each other with different lateral distances and two different values of the fluid depth. Computations are carried out with four different flow models:inviscid and viscous flow with the free surface modeled as a rigid wall and inviscid and viscous flow with the deformable free surface. A fair agreement was obtained with available experimental data and results obtained by panel method. The influence of viscosity in the computations is found to be comparatively weak, while the wavemaking effects may be important, at small magnitude of the horizontal clearance.

Mahamadou Adama Maiga1, Olivier Coutier-Delgosha1,2, Gérard Bois1
Journal of Marine Science and Application,2018(1): 38-44
+Show Abstract -Hide Abstract

Contrary to natural cavitation, ventilated cavitation is controllable and is not harmful. It is particularly used to reduce the drag of the hydraulic vehicles. The ventilated cavitation is characterized by various gas regimes. The mechanisms of ventilated cavitation are investigated in the present work with CFD based on a 2D solver. The attention is especially focused on the transition between the reentrant jet and twin vortex regimes. The results confirm that the product of ventilated cavitation number and Froude number is lower than 1 (σcFr < 1) in the twin vortex regime, while it is higher than 1 (σcFr > 1) in the reentrant jet regime, as reported in the literature. Further analysis shows that ventilated cavitation is significantly influenced by the natural cavitation number.

Sunanda Saha1, Swaroop Nandan Bora2
Journal of Marine Science and Application,2018(1): 45-56
+Show Abstract -Hide Abstract

In this work, trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densities. The impermeable cylinder is fully immersed in either the bottom layer or the upper layer. The effect of surface tension at the surface of separation is neglected. In this set-up, there exist three wave numbers:the lowest one on the free surface and the other two on the internal interfaces. For each wave number, there exist two modes for which trapped waves exist. The existence of these trapped modes is shown by numerical evidence. We investigate the variation of these trapped modes subject to change in the depth of the middle layer as well as the submergence depth. We show numerically that two-layer and single-layer results cannot be recovered in the double and single limiting cases of the density ratios tending to unity. The existence of trapped modes shows that in general, a radiation condition for the waves at infinity is insufficient for the uniqueness of the solution of the scattering problem.

Bai-Qiao Chen, C. Guedes Soares
Journal of Marine Science and Application,2018(1): 57-67
+Show Abstract -Hide Abstract

The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.

J. H. Seo1, D. K. Kim1,2,3, H. S. Choi1, S. Y. Yu2, K. S. Park4
Journal of Marine Science and Application,2018(1): 68-78
+Show Abstract -Hide Abstract

In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs, which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio (SDR) versus virtual anchor length (LA) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline, offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.

Yuesheng Ma1, Lihao Yuan1, Yingfei Zan1, Fuxiang Huang2
Journal of Marine Science and Application,2018(1): 79-86
+Show Abstract -Hide Abstract

In this paper, a numerical investigation of a float-over installation for an offshore platform is presented to verify the feasibility of the actual installation. The hydrodynamic performance of a T-barge is investigated in the frequency domain, and the coupled motions are analyzed in the time domain. We then compare with those of the model test and determine that the response amplitude operator and the time series agree quite well. The barge exhibits favorable hydrodynamic behavior in the considered sea state, and the equipment loads are allowable. The mooring system and sway fender forces are within the permissible range. Based on these results, we can verify that the actual installation of the offshore platform is feasible. We accurately simulated many important factors and effectively reduced the risk associated with the offshore installation, which is of great importance. As such, we demonstrate that the numerical simulation of the float-over installation for offshore platforms has practical engineering significance.

Srinivasan Chandrasekaran, Thailammai Chithambaram
Journal of Marine Science and Application,2018(1): 87-100
+Show Abstract -Hide Abstract

Offshore platforms are of high strategic importance, whose preventive maintenance is on top priority. Buoyant Leg Storage and Regasification Platforms (BLSRP) are special of its kind as they handle LNG storage and processing, which are highly hazardous. Implementation of structural health monitoring (SHM) to offshore platforms ensures safe operability and structural integrity. Prospective damages on the offshore platforms under rare events can be readily identified by deploying dense array of sensors. A novel scheme of deploying wireless sensor network is experimentally investigated on an offshore BLSRP, including postulated failure modes that arise from tether failure. Response of the scaled model under wave loads is acquired by both wired and wireless sensors to validate the proposed scheme. Proposed wireless sensor network is used to trigger alert monitoring to communicate the unwarranted response of the deck and buoyant legs under the postulated failure modes. SHM triggers the alert mechanisms on exceedance of the measured data with that of the preset threshold values; alert mechanisms used in the present study include email alert and message pop-up to the validated user accounts. Presented study is a prima facie of SHM application to offshore platforms, successfully demonstrated in lab scale.

K. B. Artana1, T. Pitana1, D. P. Dinariyana1, M. Ariana1, D. Kristianto2, E. Pratiwi1
Journal of Marine Science and Application,2018(1): 101-111
+Show Abstract -Hide Abstract

The aim of this research is to develop an algorithm and application that can perform real-time monitoring of the safety operation of offshore platforms and subsea gas pipelines as well as determine the need for ship inspection using data obtained from automatic identification system (AIS). The research also focuses on the integration of shipping database, AIS data, and others to develop a prototype for designing a real-time monitoring system of offshore platforms and pipelines. A simple concept is used in the development of this prototype, which is achieved by using an overlaying map that outlines the coordinates of the offshore platform and subsea gas pipeline with the ship’s coordinates (longitude/latitude) as detected by AIS. Using such information, we can then build an early warning system (EWS) relayed through short message service (SMS), email, or other means when the ship enters the restricted and exclusion zone of platforms and pipelines. The ship inspection system is developed by combining several attributes. Then, decision analysis software is employed to prioritize the vessel’s four attributes, including ship age, ship type, classification, and flag state. Results show that the EWS can increase the safety level of offshore platforms and pipelines, as well as the efficient use of patrol boats in monitoring the safety of the facilities. Meanwhile, ship inspection enables the port to prioritize the ship to be inspected in accordance with the priority ranking inspection score.

C. L. Kelly, E. Blanco-Davis, C. Michailides, P. A. Davies, J. Wang
Journal of Marine Science and Application,2018(1): 112-121
+Show Abstract -Hide Abstract

This paper used a specialist software package to produce a detailed model of the River Mersey estuary, which can be subjected to a range of simulated tidal conditions. The aim of this research was to use the validated model to identify the optimal location for the positioning of a tidal turbine. Progress was made identifying a new optimal site for power generation using velocity data produced from simulations conducted using the MIKE 3 software. This process resulted in the identification of site 8, which sits mid-river between the Morpeth Dock and the Albert Dock, being identified as the favoured location for tidal power generation in the River Mersey. Further analysis of the site found that a 17.2-m diameter single rota multidirectional turbine with a 428-kW rated capacity could produce 1.12 GWh annually.

Oleksandr Cherednichenko, Serhiy Serbin
Journal of Marine Science and Application,2018(1): 122-130
+Show Abstract -Hide Abstract

One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4%-5%.

Kunpeng Chen, Yuling Gao, Zhenping Huang, Guoxiang Dong
Journal of Marine Science and Application,2018(1): 131-139
+Show Abstract -Hide Abstract

A reduction of fuel consumption and an increase in efficiency are currently required for river-sea bulk carriers. Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels. Based on the hydrodynamic characteristics of the 20,000DWT river-sea bulk carrier, in this study, we proposed, designed, and tested a series of pre-swirl energy-saving devices (ESDs). The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power. The results confirm the success of our ESD for the 20,000DWT river-sea bulk carrier. We validated the role of Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) in the twin-skeg river-sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.

Seyed Masoud Mahmoudof1, Peyman Badiei2, Seyed Mostafa Siadatmousavi3, Vahid Chegini1
Journal of Marine Science and Application,2018(1): 140-151
+Show Abstract -Hide Abstract

This study evaluates the capability of the Simulating WAves Nearshore (SWAN) wave model (version 41.01) in predicting significant wave height and spectral peak energy content for swell waves in very shallow water of surf zone during depth-induced wave breaking and dissipation. The model results were compared with field measurements at five nearshore stations. The results demonstrated that some breaker index formulations were successful for significant wave height prediction in surf zones. However, an incorrect shape of the energy spectrum and overestimated near spectral peak energy content at shallow water stations were obtained using all of the embedded depth-induced wave breaking formulations in SWAN. The dependent breaker index on relative depth (Kpd) formulation, which was successful in predicting near spectral peak energy content, resulted in an average error of 30%. Finally, this formulation was modified to enhance the model performance in reproducing the spectral peak energy content.