Evgeny I. Veremey
Journal of Marine Science and Application,2014(No. 2):
127-133
+Show Abstract -Hide Abstract
The objective of this work is the analytical synthesis problem for marine vehicles autopilots design. Despite numerous known methods for a solution, the mentioned problem is very complicated due to the presence of an extensive population of certain dynamical conditions, requirements and restrictions, which must be satisfied by the appropriate choice of a steering control law. The aim of this paper is to simplify the procedure of the synthesis, providing accurate steering with desirable dynamics of the control system. The approach proposed here is based on the usage of a special unified multipurpose control law structure that allows decoupling a synthesis into simpler particular optimization problems. In particular, this structure includes a dynamical corrector to support the desirable features for the vehicle’s motion under the action of sea wave disturbances. As a result, a specialized new method for the corrector design is proposed to provide an accurate steering or a trade-off between accurate steering and economical steering of the ship. This method guaranties a certain flexibility of the control law with respect to an actual environment of the sailing; its corresponding turning can be realized in real time onboard.
|
Gérard C. Nihous
Journal of Marine Science and Application,2014(No. 2):
134-142
+Show Abstract -Hide Abstract
A simple approach is described to estimate the wave power absorption potential of submerged devices known to cause wave focusing and flow enhancement. In particular, the presence of a flow-through power take-off (PTO) system, such as low-head turbines, can be accounted for. The wave radiation characteristics of an appropriately selected Lagrangian element (LE) in the fluid domain are first determined. In the limit of a vanishing mass, the LE reduces to a patch of distributed normal dipoles. The hydrodynamic coefficients of this virtual object are then input in a standard equation of motion where the effect of the PTO can be represented, for example, as a dashpot damping term. The process is illustrated for a class of devices recently proposed by Carter and Ertekin (2011), although in a simplified form. Favorable wave power absorption is shown for large ratios of the LE wave radiation coefficient over the LE added mass coefficient. Under optimal conditions, the relative flow reduction from the PTO theoretically lies between 0.50 and ≈ 0.71, with lower values corresponding to better configurations. Wave power capture widths, the sensitivity of results to PTO damping and sample spectral calculations at a typical site in Hawaiian waters are proposed to further illustrate the versatility of the method.
|
Samir K. Das, Masoud Baghfalaki
Journal of Marine Science and Application,2014(No. 2):
143-157
+Show Abstract -Hide Abstract
This paper investigates mathematical modelling of response amplitude operator (RAO) or transfer function using the frequency-based analysis for uncoupled roll motion of a floating body under the influence of small amplitude regular waves. The hydrodynamic coefficients are computed using strip theory formulation by integrating over the length of the floating body. Considering sinusoidal wave with frequency ( ) varying between 0.3 rad/s and 1.2 rad/s acts on beam to the floating body for zero forward speed, analytical expressions of RAO in frequency domain is obtained. Using the normalization procedure and frequency based analysis, group based classifications are obtained and accordingly governing equations are formulated for each case. After applying the fourth order Runge-Kutta method numerical solutions are obtained and relative importance of the hydrodynamic coefficients is analyzed. To illustrate the roll amplitude effects numerical experiments have been carried out for a Panamax container ship under the action of sinusoidal wave with a fixed wave height. The effect of viscous damping on RAO is evaluated and the model is validated using convergence, consistency and stability analysis. This modelling approach could be useful to model floating body dynamics for higher degrees of freedom and to validate the result.
|
Ruosi Zha, Haixuan Ye, Zhirong Shen and Decheng Wan
Journal of Marine Science and Application,2014(No. 2):
158-166
+Show Abstract -Hide Abstract
The prediction of a ship’s resistance especially the viscous wave-making resistance is an important issue in CFD applications. In this paper, the resistances of six ships from hull 1 to hull 6 with different hull forms advancing in still water are numerically studied using the solver naoe-FOAM-SJTU, which was developed based on the open source code package OpenFOAM. Different components of the resistances are computed and compared while considering two speed conditions (12 kn and 16 kn). The resistance of hull 3 is the smallest while that of hull 5 is the largest at the same speed. The results show hull 3 is a good reference for the design of similar ships, which can provide some valuable guidelines for hull form optimization.
|
Smrutiranjan Mohapatra
Journal of Marine Science and Application,2014(No. 2):
167-172
+Show Abstract -Hide Abstract
Scattering of surface waves by the edge of a small undulation on a porous bed in an ocean of finite depth, where the free surface has an ice-cover being modelled as an elastic plate of very small thickness, is investigated within the framework of linearized water wave theory. The effect of surface tension at the surface below the ice-cover is neglected. There exists only one wave number propagating at just below the ice-cover. A perturbation analysis is employed to solve the boundary value problem governed by Laplace’s equation by a method based on Green’s integral theorem with the introduction of appropriate Green’s function and thereby evaluating the reflection and transmission coefficients approximately up to first order. A patch of sinusoidal ripples is considered as an example and the related coefficients are determined.
|
Qingtong Chen, Baoyu Ni, Shuping Chen and Jiangguang Tang
Journal of Marine Science and Application,2014(No. 2):
173-177
+Show Abstract -Hide Abstract
To solve the problems concerning water entry of a structure, the RANS equations and volume of fluid (VOF) method are used. Combining the user-defined function (UDF) procedure with dynamic grids, the water impact on a structure in free fall is simulated, and the velocity, displacement and the pressure distribution on the structure are investigated. The results of the numerical simulation were compared with the experimental data, and solidly consistent results have been achieved, which validates the numerical model. Therefore, this method can be used to study the water impact problems of a structure.
|
Qingyong Niu, Tianyun Li, Xiang Zhu and Lu Wang
Journal of Marine Science and Application,2014(No. 2):
178-184
+Show Abstract -Hide Abstract
A pneumatic launcher is theoretically investigated to study its natural transverse vibration in water. Considering the mass effect of the sealing cover, the launcher is simplified as a uniform cantilever beam with a top point mass. By introducing the boundary and continuity conditions into the motion equation, the natural frequency equation and the mode shape function are derived. An iterative calculation method for added mass is also presented using the velocity potential function to account for the mass effect of the fluid on the launcher. The first 2 order natural frequencies and mode shapes are discussed in external flow fields and both external and internal flow fields. The results show good agreement with both natural frequencies and mode shapes between the theoretical analysis and the FEM studies. Also, the added mass is found to decrease with the increase of the mode shape orders of the launcher. And because of the larger added mass in both the external and internal flow fields than that in only the external flow field, the corresponding natural frequencies of the former are relatively smaller.
|
Vineet K. Srivastava
Journal of Marine Science and Application,2014(No. 2):
185-192
+Show Abstract -Hide Abstract
This article discusses the dynamic state analysis of underwater towed-cable when tow-ship changes its speed in a direction making parabolic profile path. A three-dimensional model of underwater towed system is studied. The established governing equations for the system have been solved using the central implicit finite-difference method. The obtained difference non-linear coupled equations are solved by Newton’s method and satisfactory results were achieved. The solution of this problem has practical importance in the estimation of dynamic loading and motion, and hence it is directly applicable to the enhancement of safety and the effectiveness of the offshore activities.
|
Yan Liu, Liping Sun, Chunlin Wu and Guo Wei
Journal of Marine Science and Application,2014(No. 2):
193-199
+Show Abstract -Hide Abstract
In order to assess the possible collision effect, a numerical simulation for the upper module and spar platform docking at the speed of 0.2 m/s was conducted by using the software ANSYS/LS-DYNA, and the time history of the collision force, energy absorption and structural deformation during the collision was described. The purpose was to ensure that the platform was safely put into operation. Furthermore, this paper analyzes different initial velocities and angles on the Von Mises stress and collision resultant force during the docking collision. The results of this paper showed that the docking could be conducted with higher security. The data in this paper can provide useful references for the determination of the upper module’s offshore hoisting scheme and practical construction by contrasting the numerical simulation results of the parameters on the docking collision.
|
Kandouci Chahr-Eddine and Adjal Yassine
Journal of Marine Science and Application,2014(No. 2):
200-205
+Show Abstract -Hide Abstract
This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the propeller and intermediate shafts, under the influence of propeller-induced static and variable hydrodynamic excitations are also studied. The transfer matrix method related to the constant coefficients of differential equation solutions is used. The advantage of the latter as compared with a well-known method of transfer matrix associated with state vector is the possibility of reducing the number of multiplied matrices when adjacent shaft segments have the same material properties and diameters. The results show that there is no risk of buckling and confirm that the strength of the shaft line depends on the value of the static tangential stresses which is the most important component of the stress tensor.
|
Selma Ergin and Erinç Dobrucal?
Journal of Marine Science and Application,2014(No. 2):
206-211
+Show Abstract -Hide Abstract
The exhaust smoke dispersion for a generic frigate is investigated numerically through the numerical solution of the governing fluid flow, energy, species and turbulence equations. The main objective of this work is to obtain the effects of the yaw angle, velocity ratio and buoyancy on the dispersion of the exhaust smoke. The numerical method is based on the fully conserved control-volume representation of the fully elliptic Navier-Stokes equations. Turbulence is modeled using a two-equation (k-ε) model. The flow visualization tests using a 1/100 scale model of the frigate in the wind tunnel were also carried out to determine the exhaust plume path and to validate the computational results. The results show that down wash phenomena occurs for the yaw angles between ψ =10° and 20°. The results with different exhaust gas temperatures show that the buoyancy effect increases with the increasing of the exhaust gas temperature. However, its effect on the plume rise is less significant in comparison with its momentum. A good agreement between the predictions and experiment results is obtained.
|
M. Morsy El Gohary, Yousri M. A. Welaya and Amr Abdelwahab Saad
Journal of Marine Science and Application,2014(No. 2):
212-217
+Show Abstract -Hide Abstract
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.
|
Xiukun Li, Xiangxia Meng, Hang Liu and Mingye Liu
Journal of Marine Science and Application,2014(No. 2):
218-224
+Show Abstract -Hide Abstract
In underwater target detection, the bottom reverberation has some of the same properties as the target echo, which has a great impact on the performance. It is essential to study the difference between target echo and reverberation. In this paper, based on the unique advantage of human listening ability on objects distinction, the Gammatone filter is taken as the auditory model. In addition, time-frequency perception features and auditory spectral features are extracted for active sonar target echo and bottom reverberation separation. The features of the experimental data have good concentration characteristics in the same class and have a large amount of differences between different classes, which shows that this method can effectively distinguish between the target echo and reverberation.
|
Yan Lin and Bo Liu
Journal of Marine Science and Application,2014(No. 2):
225-229
+Show Abstract -Hide Abstract
For the purpose of identifying the stern of the SWATH (Small Waterplane Area Twin Hull) availably and perfecting the detection technique of the SWATH ship’s performance, this paper presents a novel bidirectional image registration strategy and mosaicing technique based on the scale invariant feature transform (SIFT) algorithm. The proposed method can help us observe the stern with a great visual angle for analyzing the performance of the control fins of the SWATH. SIFT is one of the most effective local features of the scale, rotation and illumination invariant. However, there are a few false match rates in this algorithm. In terms of underwater machine vision, only by acquiring an accurate match rate can we find an underwater robot rapidly and identify the location of the object. Therefore, firstly, the selection of the match ratio principle is put forward in this paper; secondly, some advantages of the bidirectional registration algorithm are concluded by analyzing the characteristics of the unidirectional matching method. Finally, an automatic underwater image splicing method is proposed on the basis of fixed dimension, and then the edge of the image’s overlapping section is merged by the principal components analysis algorithm. The experimental results achieve a better registration and smooth mosaicing effect, demonstrating that the proposed method is effective.
|
G. Subramanian, S. Palraj and S. Palanichamy
Journal of Marine Science and Application,2014(No. 2):
230-236
+Show Abstract -Hide Abstract
The galvanic corrosion behaviour of aluminium 3004 and copper with different area ratios were studied in the tropical marine atmosphere at Tuticorin harbour over a period of 426 days. The area ratios of AAl : ACu, studied were 1:1, 1:2, 1:4, 1:8, 2:1, 4:1 & 8:1. The galvanic corrosion behaviour of metals was studied in terms of relative increase in the corrosion rate of aluminium due to galvanic coupling with copper, relative decrease in the corrosion rate of copper due to galvanic coupling with aluminium, and the susceptibility of aluminium to pitting owing to galvanic coupling with copper. The galvanic potential and galvanic current of the system were monitored. Pits of different dimensions ranging from mild etchings to perforations were experienced on the borders and the surfaces of the interface of aluminium in contact with copper. The weathering parameters and the environmental pollutants which have a major role in influencing the galvanic corrosion of metals were also monitored. The corrosion products resulting from galvanic corrosion were analysed using XRD and the pitting on aluminium resulting from galvanic corrosion has been highlighted in terms of pit depth, size and density of pit, using a high resolution microscope.
|