Journal of Marine Science and Application 2008 No. 1
NIE Wu ZHOU Su-lian PENG Hui
Journal of Marine Science and Application,2008(No. 1): 0
+Show Abstract -Hide Abstract

In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of the harmonic semi-analytic methods. Theoretically, strong stiffened structure can be analyzed economically and accurately. SPSM is based on the analytical solution of the governing differential equations for orthotropic cylindrical shells. In these differential equations, the torsional stiffness, bending stiffness and the exact position of each stiffener are taken into account with the Heaviside singular function. An algorithm is introduced, in which the actions of stiffeners on shells are replaced by external loads at each stiffener position. Stiffened shells can be computed as non-stiffened shells. Eventually, the displacement solution of the equations is acquired by the introduction of Green function. The stresses in a corrugated transverse bulkhead without pier base of an oil tanker are computed by using SPSM.

FU Shi-qiang FANG Shao-jun
Journal of Marine Science and Application,2008(No. 1): 0
+Show Abstract -Hide Abstract

A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15riB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.

BIAN Xin-qian QIN Zheng YAN Zhe-ping
Journal of Marine Science and Application,2008(No. 1): 0
+Show Abstract -Hide Abstract

This paper researches on a kind of control architecture for autonomous underwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. The architecture is organized in three layers: mission layer, task layer and execution layer. State supervisor and task coordinator are two key modules handling discrete events, so we describe these two modules in detail. Finally, we carried out a series of tests to verify this architecture. The test results show that the AUV can perform autonomous missions effectively and safely. We can conclude the control architecture is valid and practical.

SHI Jie LIU Bo-sheng SONG Hai-yan
Journal of Marine Science and Application,2008(No. 1): 0
+Show Abstract -Hide Abstract

Short baseline system (SBL), which is a kind of underwater acoustic locating technology, has widely applicable value. In order to examine the capability of ship model design, the ship model experimentation should have high accuracy. This paper focuses on the key techniques of high accuracy locating system, including high accuracy sub-array position emendation, divisional locating, anti multi-path interference measure, etc. Experiments show that the SBL locating systems has received the satisfying effect owing to these key techniques proposed in this paper.

SUN Liang TAN De-rong
Journal of Marine Science and Application,2008(No. 1): 0
+Show Abstract -Hide Abstract

In order to more accurately examine developing trends in gross cargo throughput, we have modeled the probability distribution of cargo throughput. Gross cargo throughput is determined by the time spent by cargo ships in the port and the operating efficiency of handling equipment. Gross cargo throughput is the sum of all compound variables determining each aspect of cargo throughput for every cargo ship arriving at the port. Probability distribution was determined using the Wald equation. The results show that the variability of gross cargo throughput primarily depends on the different times required by different cargo ships arriving at the port. This model overcomes the shortcoming of previous models: inability to accurately determine the probability of a specific value of future gross cargo throughput. Our proposed model of cargo throughput depends on the relationship between time required by a cargo ship arriving at the port and the operational capacity of handling equipment at the port. At the same time, key factors affecting gross cargo throughput are analyzed. In order to test the efficiency of the model, the cargo volume of a port in Shandong Province was used as an example. In the case study the actual results matched our theoretical analysis.

ZHANG A-man YAO Xiong-liang LI Jia
Journal of Marine Science and Application,2008(No. 1): 69
+Show Abstract -Hide Abstract

A numerical model of a coupled bubble jet and wall was built on the assumption of potential flow and calculated by the boundary integral method. A three-dimensional computing program was then developed. Starting with the basic phenomenon of the interaction between a bubble and a wall, the dynamics of bubbles near rigid walls were studied systematically with the program. Calculated results agreed well with experimental results. The relationship between the Bjerknes effect of a wall and characteristic parameters was then studied and the calculated results of various cases were compared and discussed with the Blake criterion based on the Kelvin-impulse theory. Our analyses show that the angle of the jet’s direction and the pressure on the rigid wall have a close relationship with collapse force and the bubble’s characteristic parameters. From this, the application range of Blake criterion can be determined. This paper aims to provide a basis for future research on the dynamics of bubbles near a wall.

YU De-hai SONG Bao-wei LI Jia-wang YANG Shi-xing
Journal of Marine Science and Application,2008(No. 1): 91
+Show Abstract -Hide Abstract

An optimized methodology to design a more robust torpedo shell is proposed. The method has taken into account reliability requirements and controllable and uncontrollable factors such as geometry, load, material properties, manufacturing processes, installation, etc. as well as human and environmental factors. The result is a more realistic shell design. Our reliability optimization design model was developed based on sensitivity analysis. Details of the design model are given in this paper. An example of a torpedo shell design based on this model is given and demonstrates that the method produces designs that are more effective and reliable than traditional torpedo shell designs. This method can be used for other torpedo system designs.

CHENG Yuan-sheng WANG Zhen
Journal of Marine Science and Application,2008(No. 1): 92
+Show Abstract -Hide Abstract

A new method that uses time-domain response data under random loading is proposed for detecting damage to the structural elements of offshore platforms. In our study, a time series model with a fitting order was first constructed using the time-domain of noise data. A sensitivity matrix consisting of the first differential of the autoregressive coefficients of the time series models with respect to the stiffness of structural elements was then obtained based on time-domain response data. Locations and severity of damage may then be estimated by solving the damage vector whose components express the degrees of damage to the structural elements. A unique aspect of this detection method is that it requires acceleration history data from only one or a few sensors. This makes it feasible for a limited array of sensors to obtain sufficient data. The efficiency and reliability of the proposed method was demonstrated by applying it to a simplified offshore platform with damage to one element. Numerical simulations show that the use of a few sensors’ acceleration history data, when compared with recorded levels of noise, is capable of detecting damage efficiently. An increase in the number of sensors helps improve the diagnosis success rate.

XING Xiao-liang WANG Min-qing
Journal of Marine Science and Application,2008(No. 1): 98
+Show Abstract -Hide Abstract

Longitudinal and horizontal vibration must both be reduced in an effective vibration isolation system. We present a cylindrical shell vibration isolator as a dynamic system composed of four springs and dampers. Vibration is directly produced by the motion of machinery, and more is subsequently generated by harmonic frequencies within their structure. To test the effectiveness of our isolator, we first determined equations for the transmission of vibration from the machine to its cylindrical shell. Damping effects produced by the vibration parameters of our system are then analyzed.

JI Chun-ning SHI Ying
Journal of Marine Science and Application,2008(No. 1): 102
+Show Abstract -Hide Abstract

To simulate two-dimensional free-surface flows with complex boundaries directly and accurately, a novel VOF (Volume-of-fluid) method based on unstructured quadrilateral mesh is presented. Without introducing any complicated boundary treatment or artificial diffusion, this method treated curved boundaries directly by utilizing the inherent merit of unstructured mesh in fitting curves. The PLIC (Piecewise Linear Interface Calculation) method was adopted to obtain a second-order accurate linearized reconstruction approximation and the MLER (Modified Lagrangian-Eulerian Re-map) method was introduced to advect fluid volumes on unstructured mesh. Moreover, an analytical relation for the interface’s line constant vs. the volume clipped by the interface was developed so as to improve the method’s efficiency. To validate this method, a comprehensive series of large straining advection tests were performed. Numerical results provide convincing evidences for the method’s high volume conservative accuracy and second-order shape error convergence rate. Also, a dramatic improvement on computational accuracy over its unstructured triangular mesh counterpart is checked.

YAO Xiong-liang ZHOU Qi-xin ZHANG A-man FENG Lin-han
Journal of Marine Science and Application,2008(No. 1): 111
+Show Abstract -Hide Abstract

Both sea battles and testing of ship in underwater explosions reveal unacceptably poor anti-shock performance of important shipboard equipment. Anti-shock performance of shipboard equipment is a significant factor determining fighting strength and survivability. The anti-shock performance of a shipboard gear case based on BV043/85 was investigated using numerical simulation. A geometric model of the gear case was built using MDT software and meshed in HyperMesh software, and then the finite element model of the gear case was formed. Using ABAQUS software, the anti-shock performance of the gear case was simulated. First, shock response of typical regions of gear case was determined. Next, some generalizations were made about the anti-shock performance of the gear case by analyzing the Mises stress of typical regions varied with shock inputs. Third, weak regions were determined from simulation results. The threshold values of shock resistance of the gear case at different impulse widths were obtained through interpolating the numerical simulation results selected from the most dangerous spot. This research provides a basis for further optimization of the design of gear cases.