Journal of Marine Science and Application [Marine Energy]
Lakshitha T. Premathilake, Poojitha D. Yapa, Indrajith D. Nissanka, Pubudu Kumarage
Journal of Marine Science and Application,2016(No. 4): 433-441
+Show Abstract -Hide Abstract

Recent progress in calculating gas bubble sizes in a plume, based on phenomenological approaches using the release conditions is a significant improvement to make the gas plume models self-reliant. Such calculations require details of conditions Near the Source of Plume (NSP); (i.e. the plume/jet velocity and radius near the source), which inspired the present work. Determining NSP conditions for gas plumes are far more complex than that for oil plumes due to the substantial density difference between gas and water. To calculate NSP conditions, modeling the early stage of the plume is important. A novel method of modeling the early stage of an underwater gas release is presented here. Major impact of the present work is to define the correct NSP conditions for underwater gas releases, which is not possible with available methods as those techniques are not based on the physics of flow region near the source of the plume/jet. We introduce super Gaussian profiles to model the density and velocity variations of the early stages of plume, coupled with the laws of fluid mechanics to define profile parameters. This new approach, models the velocity profile variation from near uniform, across the section at the release point to Gaussian some distance away. The comparisons show that experimental data agrees well with the computations.

Boumedienne M. Beladjine1, Ahmed Ouadha1, Yacine Addad1,2
Journal of Marine Science and Application,2016(No. 3): 321-330
+Show Abstract -Hide Abstract

The present study aims to make a thermodynamic analysis of an ethylene cascade re-liquefaction systemthat consists of the following two subsystems: a liquefaction cycle using ethylene as the working fluid and a refrigeration cycle operating with a hydrocarbon refrigerant. The hydrocarbon refrigerants considered are propane (R290), butane (R600), isobutane (R600a), and propylene (R1270). A computer program written in FORTRAN is developed to compute parameters for characteristic points of the cycles and the system’s performance, which is determined and analyzed using numerical solutions for the refrigerant condensation temperature, temperature in tank, and temperature difference in the cascade condenser. Results show that R600a gives the best performance, followed by (in order) R600, R290, and R1270. Furthermore, it is found that an increase in tank temperature improves system performance but that an increase in refrigerant condensation temperature causes deterioration.In addition, it is found that running the system at a low temperature difference in the cascade condenser is advantageous.

Yifeng Guan, Jie Zhao, Tengfei Shi, Peipei Zhu
Journal of Marine Science and Application,2016(No. 3): 331-335
+Show Abstract -Hide Abstract

In recent years, China’s increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considersboth fires and explosionsina dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis.The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events.According to these results, corresponding measures are proposedto ensure and improve the safety and reliability of Chinese inland dual fuel ships.

Atena Amiri, Roozbeh Panahi, Soheil Radfar
Journal of Marine Science and Application,2016(No. 1): 41-49
+Show Abstract -Hide Abstract

In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water.Analyses are performed in both the frequency and time domains.The converter is a two-body floating-point absorber(FPA) with one degree of freedom in the heave direction.Its two parts are connected by a linear mass-spring-damper system.The commercial ANSYS-AQWA software used in this study performs well in considering validations.The velocity potential is obtained by assuming incompressible and irrotational flow.As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient.To validate the model, we compared our numerical results with those from similar experiments.Our study results can clearly help to maximize the converter’s efficiency when considering specific conditions.

Ahmadreza Vasel-Be-Hagh, Rupp Carriveau and David S-K Ting
Journal of Marine Science and Application,2014(No. 4): 467-476
+Show Abstract -Hide Abstract

An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.

Changzhong Man, Chong Wang and Jinyu Yao
Journal of Marine Science and Application,2014(No. 4): 477-483
+Show Abstract -Hide Abstract

Heat transfer enhancement is used in many applications including heat exchangers, air conditioning, and refrigeration systems; hence many researchers have conducted experimental and numerical researches on heat transfer enhancement and have developed various techniques and methods. As a passive heat transfer technique, twisted tapes are widely used in various industries for their cost savings, lower maintenance requirements and the fact that they are easily set up. This paper introduces the principle of heat transfer enhancement of twisted tapes and reviews some of the experimental works done by researchers on this technique in recent years. The variously modified twisted tape inserts are widely researched and used to enhance heat transfer efficiency for heat exchangers. Twisted tapes perform better in low Re conditions and in square tubes. However, they could also cause higher pressure drops. Twisted tapes have great potential and profound implications if they can be used in traditional heat exchangers. Besides this, some correlations between the Nusselt number and friction factors are presented in this paper.

Gérard C. Nihous
Journal of Marine Science and Application,2014(No. 2): 134-142
+Show Abstract -Hide Abstract

A simple approach is described to estimate the wave power absorption potential of submerged devices known to cause wave focusing and flow enhancement. In particular, the presence of a flow-through power take-off (PTO) system, such as low-head turbines, can be accounted for. The wave radiation characteristics of an appropriately selected Lagrangian element (LE) in the fluid domain are first determined. In the limit of a vanishing mass, the LE reduces to a patch of distributed normal dipoles. The hydrodynamic coefficients of this virtual object are then input in a standard equation of motion where the effect of the PTO can be represented, for example, as a dashpot damping term. The process is illustrated for a class of devices recently proposed by Carter and Ertekin (2011), although in a simplified form. Favorable wave power absorption is shown for large ratios of the LE wave radiation coefficient over the LE added mass coefficient. Under optimal conditions, the relative flow reduction from the PTO theoretically lies between 0.50 and ≈ 0.71, with lower values corresponding to better configurations. Wave power capture widths, the sensitivity of results to PTO damping and sample spectral calculations at a typical site in Hawaiian waters are proposed to further illustrate the versatility of the method.

Selma Ergin and Erinç Dobrucal?
Journal of Marine Science and Application,2014(No. 2): 206-211
+Show Abstract -Hide Abstract

The exhaust smoke dispersion for a generic frigate is investigated numerically through the numerical solution of the governing fluid flow, energy, species and turbulence equations. The main objective of this work is to obtain the effects of the yaw angle, velocity ratio and buoyancy on the dispersion of the exhaust smoke. The numerical method is based on the fully conserved control-volume representation of the fully elliptic Navier-Stokes equations. Turbulence is modeled using a two-equation (k-ε) model. The flow visualization tests using a 1/100 scale model of the frigate in the wind tunnel were also carried out to determine the exhaust plume path and to validate the computational results. The results show that down wash phenomena occurs for the yaw angles between ψ =10° and 20°. The results with different exhaust gas temperatures show that the buoyancy effect increases with the increasing of the exhaust gas temperature. However, its effect on the plume rise is less significant in comparison with its momentum. A good agreement between the predictions and experiment results is obtained.

M. Morsy El Gohary, Yousri M. A. Welaya and Amr Abdelwahab Saad
Journal of Marine Science and Application,2014(No. 2): 212-217
+Show Abstract -Hide Abstract

Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.

Ibrahim S. Seddiek, Mosaad A. Mosleh3 and Adel A. Banawan
Journal of Marine Science and Application,2013(No. 4): 463-472
+Show Abstract -Hide Abstract

The progress of economic globalization, the rapid growth of international trade, and the maritime transportation has played an increasingly significant role in the international supply chain. As a result, worldwide seaports have suffered from a central problem, which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed. Many ports have taken the necessary precautions to overcome this problem, while others still suffer due to the presence of technical and financial constraints. In this paper, the barriers, interconnection standards, rules, regulations, power sources, and economic and environmental analysis related to ships, shore-side power were studied in efforts to find a solution to overcome his problem. As a case study, this paper investigates the practicability, costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga, Egypt. The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving. Moreover, environmentally, it could achieve an annual reduction in exhaust gas emissions of CO2, CO, NOx, P.M, and SO2 by 276, 2.32, 18.87, 0.825 and 3.84 tons, respectively.

Mohammad Hassan and Swaroop Nandan Bora
Journal of Marine Science and Application,2013(No. 3): 315-324
+Show Abstract -Hide Abstract

Two coaxial vertical cylinders one is a riding hollow cylinder and the other a solid cylinder of greater radius at some distance above an impermeable horizontal bottom, were considered. This problem of diffraction by these two cylinders, which were considered as idealization of a buoy and a circular plate, can be considered as a wave energy device. The wave energy that is created and transferred by this device can be appropriately used in many applications in lieu of conventional energy. Method of separation of variables was used to obtain the analytical expressions for the diffracted potentials in four clearly identified regions. By applying the appropriate matching conditions along the three virtual boundaries between the regions, a system of linear equations was obtained, which was solved for the unknown coefficients. The potentials allowed us to obtain the exciting forces acting on both cylinders. Sets of exciting forces were obtained for different radii of the cylinders and for different gaps between the cylinders. It was observed that changes in radius and the gap had significant effect on the forces. It was found that mostly the exciting forces were significant only at lower frequencies. The exciting forces almost vanished at higher frequencies. The problem was also investigated for the base case of no plate arrangement, i.e., the case having only the floating cylinder tethered to the sea-bed. Comparison of forces for both arrangements was carried out. In order to take care of the radiation of the cylinders due to surge motion, the corresponding added mass and the damping coefficients for both cylinders were also computed. All the results were depicted graphically and compared with available results.

Zhipeng Xin, Yunbang Tang, Changzhong Man, Yince Zhao and Jianlu Ren
Journal of Marine Science and Application,2013(No. 3): 374-379
+Show Abstract -Hide Abstract

This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9Cu0.1O2 and Ce0.9Zr0.1O2. During the test, Indiset 620 combustion analyzer made by AVL, was used to make a real-time survey on the cylinder pressure, the fuel ignition moment, and establish a relation between the change trend of temperature in cylinder and the crank angle. For the engine burning heavy oil and heavy oil mixed with additives, combustion analysis software Indicom and Concerto were used to analyze its combustion process and emission conditions. Experimental investigation shows that nano-sized complex oxide can improve the performance of diesel engine fueled with heavy oil, and reduce the emission of pollutants like NOx and CO, comparing it with the pure heavy oil. According to the consequences of this experiment, the additives improve the overall performance in the use of heavy oil.

M.Morsy El-Gohary
Journal of Marine Science and Application,2013(No. 2): 219-227
+Show Abstract -Hide Abstract

In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent need for energy sources that provide sustainable, safe and economic supplies for the world is imperative. The current fossil fuel energy system must be improved to ensure a better and cleaner transportation future for the world. Despite the fact that the marine transportation sector consumes only 5% of global petroleum production; it is responsible for 15% of the world NOx and SOx emissions. These figures must be the engine that powers the scientific research worldwide to develop new solutions for a very old energy problem. In this paper, the most effective types of marine power plants were discussed. The history of the development of each type was presented first and the technical aspects were discussed second. Also, the fuel cells as a new type of power plants used in marine sector were briefed to give a complete overview of the past, present and future of the marine power plants development. Based on the increased worldwide concerns regarding harmful emissions, many researchers have introduced solutions to this problem, including the adoption of new cleaner fuels. This paper was guided using the same trend and by implementing the hydrogen as fuel for marine internal combustion engine, gas turbines, and fuel cells.

Salma Sherbaz and Wenyang Duan
Journal of Marine Science and Application,2012(No. 3): 335-340
+Show Abstract -Hide Abstract

Environmental issues and rising fuel prices necessitate better energy-efficiency in all sectors. The shipping industry is one of the major stakeholders, responsible for 3% of global CO2 emissions, 14%–15% of global NOX emissions, and 16% of global SOX emissions. In addition, continuously rising fuel prices are also an incentive to focus on new ways for better energy-effectiveness. The green ship concept requires exploring and implementing technology on ships to increase energy-efficiency and reduce emissions. Ship operation is an important topic with large potential to increase cost-and-energy-effectiveness. This paper provided a comprehensive review of basic concepts, principles, and potential of operational options for green ships. The key challenges pertaining to ship crew i.e. academic qualifications prior to induction, in-service training and motivation were discussed. The author also deliberated on remedies to these challenges.

Yali Yu, Yuanxi Wang, Guosheng Zhang and Feng Sun
Journal of Marine Science and Application,2012(No. 1): 134-142
+Show Abstract -Hide Abstract

A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.

Jawad Faiz and M. Ebrahimi-Salari
Journal of Marine Science and Application,2011(No. 4): 419-428
+Show Abstract -Hide Abstract