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The authors (Cai et al., 2022) claim that their proposed 
machine learning (ML) models, which are based on three 
typical ML algorithms and are trained to predict the burst 
capacity of pitting corroded pipelines, perform better 
than the existing semi-empirical formulas recommended 
by the international engineering code developers, DNV 
and ASME. The authors’assessments of the semi-empiri‐
cal burst capacity formulas in Figure 10(a) and Table 8 
(Cai et al., 2022) incorrectly indicate that DNVGL-RP-
F101, ASME B31G, and modified ASME B31G are dan‐
gerously unsafe due to significantly overestimating burst 
pressures in several cases. In contrast to the results and 
conclusions in Cai et al. (2022), these semi-empirical for‐
mulas have been consistently found to be conservative 
(Benjamin et al., 2000; Benjamin et al., 2002; Chena et al., 
2015; Cronin and Pick, 2000; Kiefner and Vieth, 1989;
Mokhtari and Melchers, 2016; 2018; 2019; Netto et al., 
2005; Teixeira et al., 2008; Yeom et al., 2015; Zhou and 
Huang, 2012), and have been safely implemented in the 
oil/gas industry for many years. The main cause of the con‐
tradiction between the authors’ claims and well-established 
practical applications and results lies in the data upon 
which the study (Cai et al., 2022) is based, along with the 
authors’ misinterpretation of the semi-empirical formulas. 
These points are elaborated below.

To train their ML models, the authors (Cai et al., 2022) 
collected pipe and burst pressure data from a series of 
experimental studies reported in the literature, the same 
data that were used to assess the performance of the semi-

empirical burst capacity formulas recommended by the 
DNV and ASME codes. However, some of the collected 
data presented in Cai et al. (2022) do not appear to match 
those in the reference/source studies. Other data appear to 
be misinterpreted. Two examples that caused the signifi‐
cantly unsafe predictions (i.e. overestimations) by the semi-
empirical burst capacity formulas are given below.

Table 8 (Cai et al., 2022) shows that DNVGL-RP-F101 
overestimates the burst pressure by 26.31% for S. N. 61. 
This drastic overestimation is because the authors incor‐
rectly substituted the ‘true’ ultimate tensile strength (UTS) 
instead of the ‘engineering’ UTS for σu in Eq. (13) (Cai 
et al., 2022). In DNVGL (2017a), σu is the ‘engineering’ 
UTS, which is often replaced by the specified minimum 
tensile strength (SMTS) because, in practice, only the 
material grade is available which provides SMTS and not 
the UTS (Abdelghani et al., 2018; Callister, 1997; DNVGL, 
2017a; DNVGL, 2017b; Gao et al., 2019; Mondal and 
Dhar, 2019; Mustaffa and van Gelder, 2010). The ‘engi‐
neering’ UTS for S.N. 61 is about 570 MPa in the refer‐
ence study by Choi et al. (2003), while the 675 MPa listed 
in Table 1 (Cai et al., 2022) for S.N. 61 is the ‘true’ UTS 
of the pipe material. Note that the authors (Cai et al., 2022) 
have given the wrong reference, Freire et al. (2006), for 
S.N. 61, which was actually taken from (Choi et al., 2003).

S.N. 33 is another case for which all the semi-empirical 
burst capacity models, DNVGL-RP-F101, ASME B31G, 
and modified ASME B31G, are shown in the author’s 
Table 8 (Cai et al., 2022) to markedly overestimate the 
burst pressure. These overestimations are the direct result 
of the authors using an incorrect defect length in the semi-
empirical formulas. The circumferential defects in Mok 
et al. (1991), from which the S. N. 33 data in Cai et al. 
(2022) were taken, are ring grooves and run around the 
entire circumference of the pipe. In Mok et al. (1991), the 
extent of metal loss along the axial direction of the pipe 
caused by the ring grooves is 100.235 mm for two of the 
four burst tests with circumferential defects and 203.2 mm 
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for the other two. However, the authors (Cai et al., 2022) 
have substituted a very short length of 10 mm for these cir‐
cumferential defects (e. g., S.N. 33 in Table 1 (Cai et al., 
2022)). This error has caused the DNVGL-RP-F101, ASME 
B31G, and modified ASME B31G equations to overesti‐
mate the burst pressure of S.N. 33 by 35%, 21%, and 21%, 
respectively. Much larger false overestimations (e.g., around 
70% for DNVGL-RP-F101) can be observed for S.N. 34 
in Figure 10 of Cai et al. (2022) due to substituting 10 mm 
for the defect length that is actually 203.2 mm.

To conclude, the DNV and ASME burst capacity mod‐
els are misjudged in Cai et al. (2022) due to using poor 
quality data, as showcased by the examples given above. In 
turn, this invalidates the ML models since they have been 
trained with erroneous data. While there are many accurate 
semi-empirical models in the engineering standards and lit‐
erature (e.g. PCORRC (Leis and Stephens, 1997; Stephens 
and Leis, 1997; Stephens et al., 2000) and CSA model 
(CSA, 2007)), the authors (Cai et al., 2022) chose instead to 
employ an outdated model, ASME B31G (ASME, 1984; 
1991). The B31G model (ASME, 1984; 1991) has long 
been known to produce excessively conservative results and 
consequently, it was modified to a less conservative model, 
the modified B31G (Kiefner and Vieth, 1989; 1990), more 
than three decades ago. It is therefore difficult to understand 
why the authors chose to use the overly conservative B31G 
model in their comparative study instead of other more ac‐
curate models. This comparative study, which includes only 
three semi-empirical models from two engineering stan‐
dards (i.e. ASME B31G and DNVGL-RP-F101), cannot jus‐
tify their universal conclusion that their proposed data-driv‐
en models perform better than the semi-empirical models in 
the existing engineering standards.

Regardless of the errors in the study (Cai et al., 2022), 
the concept of estimating the burst pressure of pitting cor‐
roded pipelines using ML models is not meaningful in the 
light of recently developed and powerful automated finite 
element analysis (FEA) tools, employed in finite element 
based digital twins. Further, despite the authors’ statement 
that FEA is too time-consuming (Cai et al., 2022), the recent 
automation of FEA tools has led to the rapid, accurate 
physics-based prediction of burst pressures (see Cabral 
et al. (2007), Motta et al. (2010), Silva et al. (2008)) for 
initial versions of such tools with rectangular defects and 
Pimentel et al. (2020) for a more recent academic version 
with complex-shaped defects). In the latest versions of fully 
automated FEA tools with cloud computing options, devel‐
oped and implemented in consulting firms, there is almost 
no human intervention in the pre- and post-processing as 
the input data are automatically read from a text file and 
the required results are produced in a report file. The input 
data and the finite element models are automatically updated 
based on the field data collected by sensors. Then, the mod‐
els are solved automatically with negligible computational 

cost due to the combination of cloud computing and effi‐
cient finite element models. Finally, the computed results/
data such as the burst pressure are fed back to the operator 
to close the loop. These tools do not have the ML models’ 
generalization issue as they can automatically develop mul‐
tiple internal and/or external defects with different shapes 
(not only rectangular) and can account for the operational/
environmental loads, effects of temperature on material 
properties, different boundary conditions, etc. In contrast 
to these modern powerful tools, the ML models in Cai et al. 
(2022) are trained only for pipes subject to a single, external 
rectangular pit (not common in practice) and internal pres‐
sure. Even for such a simple case, the authors encountered 
a data shortage in the literature during data collection 
and trained their models with a small dataset. In addition, 
they made (human) errors in interpreting and applying the 
available data.

If the data used to train an ML model is significantly 
erroneous such as that in Cai et al. (2022), there is always 
the possibility of producing highly inaccurate predictions. 
However, this is not an issue in the automated FEA tools 
because the finite element models are physics-based and 
validated against many experimental tests during their 
development phase. Even one overprediction of the burst 
pressure could be catastrophic given that steel pipelines 
transfer hazardous and flammable fluids under high pres‐
sure. Ultimately, it seems entirely unreasonable to undergo 
the immensely labour-intensive, time-consuming and ex‐
pensive process of data collection/preparation to develop an 
ML model free of human errors that could account for vari‐
ous corrosion defect types/shapes/numbers and operational 
and boundary conditions when, at best, such an effort can 
only reach the same capability as that already available in 
the rapidly improving FEA tools used in digital twins.

It should be noted that the above argument refers to ML 
model development efforts that focus on the specific topic 
studied in Cai et al. (2022), which is “time-independent 
burst capacity prediction of corroded pipelines based on 
experimental data”. Otherwise, there are many challenges 
in the pipeline industry that could benefit from ML meth‐
ods (e.g., see Chen et al. (2022)) and more practical ways 
to obtain sample data. For example, sample data could be 
efficiently generated by validated and automated finite el‐
ement models with negligible errors to save a tremendous 
amount of time and effort, avoid misinterpretation of data, 
and eliminate the generalization issue of the ML models.
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