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Abstract
The traditional A* algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles (USVs). In addition, the path planned 
presents numerous redundant inflection waypoints, and the security is low, which is not conducive to the control of USV and also affects 
navigation safety. In this paper, these problems were addressed through the following improvements. First, the path search angle and security 
were comprehensively considered, and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed. The A* algorithm 
search neighborhood was expanded from 3×3 to 5×5, and safe nodes were screened out for extension via the node security expansion strategy. 
This algorithm can also optimize path search angles while improving path security. Second, the distance from the current node to the target node 
was introduced into the heuristic function. The efficiency of the A* algorithm was improved, and the path was smoothed using the Floyd 
algorithm. For the dynamic adjustment of the weight to improve the efficiency of DWA, the distance from the USV to the target point was 
introduced into the evaluation function of the dynamic-window approach (DWA) algorithm. Finally, combined with the local target point 
selection strategy, the optimized DWA algorithm was performed for local path planning. The experimental results show the smooth and safe 
path planned by the fusion algorithm, which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs.
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1  Introduction

With the continuous development of the marine economy 
and maritime transportation, unmanned surface vehicles 
(USVs) are becoming more important. Autonomous surface 
vehicles rely on multiple sensors to interact with the envi‐
ronment to complete various tasks without human inter‐
vention. These vehicles have been widely used in hydro‐
logical surveying and mapping, river cleaning, and other 
fields. USVs also have broad application prospects (Long 
et al., 2023; Öztürk et al., 2022). Intelligent path planning, 
which can be divided into global and local path planning, 
is one of the key technologies that enable USVs to navi‐
gate safely and autonomously (Zhong et al., 2020; Wang 
et al., 2020; Chen et al., 2020).

Global path planning is based on a global static environ‐
ment. The classic algorithms include the Dijkstra algorithm, 
A* algorithm, fast-expanding random-tree method, ant col‐
ony algorithm, and particle swarm optimization algorithm 
(Zhou et al., 2020). The A* algorithm is widely used in the 
global path planning task for robots in static environments. 
However, in the application of USV path planning, the path 
planned by the A* algorithm lies close to obstacles and has 
many redundant turning points. In addition, the path deviates 
from the USV kinematic constraints, which affects the safety 
of USV navigation (Song et al., 2019; Qin et al., 2023). 

Article Highlights

•  Improved heuristic function of A* algorithm. The distance between 
the current node and the target node was introduced into the 
weight coefficient of the heuristic function in an exponentially 
weighted manner. And the search efficiency of the A* algorithm 
was improved.

•   A node security expansion strategy based on the expanded 5×5 
search neighborhood was proposed. This strategy optimized A* 
algorithm search angles and improved path security.

•   Floyd algorithm was used to further eliminate redundant nodes and 
smooth the path. The smoothness of path was improved by remov‐
ing unnecessary turning points.

•  Improved evaluation function of the DWA algorithm. The distance 
from the end of the predicted trajectory to the target point was 
introduced into the evaluation function. And the planning efficiency 
of the DWA algorithm was improved.

•   Optimized fusion strategy. A local target point selection strategy 
was proposed to avoid unnecessary turns. This strategy had the 
ability to determine if there was any obstacles between the USV 
and the next local target point. Local target points can be selected 
instead of only being updated sequentially.
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Most scholars use the A* algorithm to complete and improve 
global planning. Guan and Wang (2023) set up dangerous 
areas around waypoints to ensure the safety of the path 
planned by the A* algorithm and smooth it to ensure its 
suitability for USV navigation. Yin et al. (2023) optimized 
the node search angle, improved the heuristic function of 
the A* algorithm and used B-splines for path smoothing. 
Hu et al. (2023) introduced a risk function D(n) into the 
cost function of the A* algorithm to ensure security 
through the Voronoi field algorithm (Hu et al., 2023). 
Many other algorithms are also used for global path plan‐
ning. Mao et al. proposed a state-prediction fast explora‐
tion random-tree (spRRT) method (Mao et al., 2023). This 
process adds state information on USV movement to the 
RRT path search rule to predict whether a USV can reach 
the status point. The search efficiency of this algorithm is 
improved through the elliptic sampling domain (spRRT-
Informed). However, as the RRT algorithm is based on the 
principle of random sampling, the path planned is not opti‐
mal. The algorithm is highly random and exhibits poor sta‐
bility (Chiang and Tapia, 2018). Yang et al. (2023) proposed 
an improved particle swarm optimization algorithm, which 
enhances the algorithm’s exploration capability and search 
accuracy through the improvement of the speed update 
method and inertia weight. They also adopted a particle 
initialization strategy to increase population diversity and 
address the local optimum to overcome local optima. How‐
ever, the parameter selection of the intelligent optimization 
algorithm greatly influenced the optimal solution. The search 
efficiency was low, and the intelligent optimization algo‐
rithm easily fell into local optima (Bai et al., 2023). Bai et al. 
(2023) proposed the plant grow route (PGR) algorithm, 
which guides USVs in avoiding obstacles and enables 
them to reach the target point in accordance with the pho‐
totropism principle of plant growth. Their experiment proved 
the feasibility and effectiveness of the algorithm.

Local path planning involves path planning in an unknown 
environment based on the environmental information sensed 
by shipborne sensors in real time. The commonly used algo‐
rithms include the artificial potential field method, velocity 
obstacle, and DWA (Fox et al., 1997). In local path plan‐
ning, the DWA algorithm is a widely used path planning 
method; it has short-range reactive dynamic obstacle-avoid‐
ance capabilities and plans a path that conforms to the kine‐
matic constraints of robots. Guan and Wang (2023) proposed 
an improved DWA (IDWA) that filters a part of the predicted 
trajectories of DWA algorithms based on International Regu‐
lations for Preventing Collisions at Sea (COLREGs) and uses 
the Deep Q-network (DQN) method to train the weight 
coefficients of the IDWA evaluation function. The results 
show that IDWA can work effectively to avoid obstacles 
safely and allow USVs to reach their destination quickly 
(Guan and Wang, 2023). Zhang et al. (2021) proposed an 
improved dual-window dynamic-window method obstacle-

avoidance algorithm based on fuzzy reasoning to solve 
the autonomous obstacle-avoidance problem of USVs in 
dense obstacle waters. Zhang et al. (2022) improved the 
DWA algorithm by replacing the direction angle difference 
with target distance and introducing the fuzzy logic control 
algorithm for the dynamic adjustment of the weight value of 
the trajectory evaluation function. Liang et al. (2021) used 
the DQN method to train the weight coefficient of the IDWA 
objective function and filter velocity space by combining 
it with the COLREGs. The experiment proved the effec‐
tiveness of the method. However, neural networks require 
the setting of a number of parameters and a large amount 
of diverse data. In addition, learning about these neural 
networks, which are difficult to converge, takes a long time 
to learn. Li et al. (2021) improved the DWA algorithm by 
considering the influence of external environmental factors 
and increasing the influence weight of external factors in 
the evaluation function. Ma et al. (2021) added pure pur‐
suit guidance law and constant azimuth guidance law to the 
DWA algorithm. Guidance laws can be adaptively selected 
based on the state of the target in the obstacle environ‐
ment. Simulation experiments proved the effectiveness of 
the method. However, only the DWA algorithm is prone to 
falling into local optima. Moreover, this algorithm cannot 
reach its target occasionally (Alireza et al., 2021; Tan et al., 
2022).

The global and local path planning algorithms suffer from 
specific limitations (Niu et al., 2022). The general global 
path planning algorithm plans a path that contains many 
redundant nodes, which results in an uneven path. The path 
not only does not conform to the USV kinematic constraints 
but also cannot avoid dynamic obstacles (Lyridis, 2021). 
The local path planning algorithm easily falls into the local 
optimum and may fail in path planning, failing to meet the 
needs of USV path planning in complex dynamic water 
environments (Vagale et al., 2021). Therefore, this paper 
proposes a path planning algorithm that combines the im‐
proved A* algorithm and the optimized DWA to realize the 
path planning of USVs in complex dynamic water environ‐
ments. Based on existing works, we offer the following 
contributions:

1) Improved heuristic function of A* algorithm. The dis‐
tance from the current node to the target node was introduced 
into the weight coefficient of the heuristic function in an 
exponentially weighted manner to improve the search effi‐
ciency of the algorithm.

2) A node security expansion strategy based on the 
expanded 5×5 search neighborhood. This strategy reduces 
the redundant nodes and improves path security. Floyd 
algorithm was used to further eliminate redundant nodes 
and smooth the path.

3) Improved evaluation function of the DWA algorithm. 
The introduction of distance from the end of the predicted 
trajectory to the target point into the evaluation function 
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improved the planning efficiency of the DWA algorithm.
4) Optimized fusion strategy. A local target point selection 

strategy was proposed to avoid unnecessary turns.
The rest of this paper is organized as follows. Section 2 

introduces grid method modeling and discusses the improve‐
ment of the traditional A* algorithm. Section 3 proposes an 
optimized DWA algorithm. Section 4 presents the optimi‐
zation of the fusion strategy based on the shortcomings of 
the traditional fusion algorithm and proposes a local target 
point selection strategy. Section 5 introduces the algorithm 
for simulation experiments and analysis of experimental 
values. Section 6 introduces the algorithm for the USV 
experiment and analysis of experimental values. Section 7 
concludes our work and discusses future research issues.

2  Improved A* algorithm

2.1  Environment modeling and obstacle 
expansion treatment

Path planning necessitates the establishment of a map to 
describe environmental information on USV navigation 
water areas. This process includes important information on 
the size and location of obstacles. In this paper, the grid 
method was used to simplify the navigation environment 
into a two-dimensional grid map. Black and white grids on 
the map represent unnavigable and navigable water areas, 
respectively. To ensure the safety of USV navigation, we 
expanded irregular obstacles and rasterized the map. The 
process is shown in Figure 1.

2.2  Improved evaluation function

The A* algorithm is widely used in the path planning of 
robots. This heuristic search algorithm can effectively solve 
the global optimal path in a static environment, and its cost 
function is as follows:

F (n ) = G (n ) + H (n ) (1)

Aiming at the low search efficiency of the traditional 
A* algorithm, the evaluation function of the improved A* 
algorithm was modified as follows:

F (n ) = G (n ) + (eH (n ) /L − 1) × H (n ) (2)

where L represents the distance from the starting point to 
the target point. From Eq. (2), given a length distance be‐
tween the search node and the target point, the heuristic 
function exhibits a relatively large weight, which improves 
the efficiency of path planning. When the distance between 
the current search node and the target point is relatively 
short, the weight of the heuristic function decreases, which 
increases the search space and prevents the algorithm 
from falling into the local optimum. Changing the weight 
of the heuristic function adaptively improves the planning 
efficiency of the A* algorithm. In this paper, the distance 
between two points is Euclidean distance. Eq. (3) calcu‐
lates the Euclidean distance, where (x1, y1) and (x2, y2) are 
the coordinates of two points.

H (n ) = ( )x2 − x1

2
+ ( )y2 − y1

2
(3)

2.3  Node security expansion strategy based on 
5×5 neighborhood

The traditional A* algorithm has a 3×3 search neigh‐
borhood and a search angle limited to 45°. This condition 
results in many redundant nodes in the path, which is not 
conducive to the motion control of the USV. However, exces‐
sive expansion of the search neighborhood will increase 
the running memory of the algorithm and decrease its effi‐
ciency. In addition, the path planned by the traditional A* 
algorithm comes into contact with obstacles and passes 
through them directly, which seriously affects the safety of 
USV navigation. Therefore, this paper proposes a node secu‐
rity expansion strategy based on a 5×5 search neighborhood.

First, the neighborhood was appropriately expanded to a 
5×5 search neighborhood (Figure 2(b)). The number of path 
nodes was reduced, and the search angle was optimized, 
which resulted in a smoother path. Second, nodes become 
unsafe with the expansion of the traditional A* algorithm. 
Moreover, the planned path made contact with obstacles, Figure 1　Environmental grid map
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and the security was low. Figure 3 shows the unsafe node 
expansion in the traditional A* algorithm. This paper pro‐
poses a node security expansion strategy as follows. When 
the traditional A* algorithm explores the 3×3 search space, 
it initially determines whether the subnodes are obstacles 
and then identifies those that can be extended. The proposed 
node security expansion strategy directly filters out all 
insecure nodes in the 5×5 search space when the traditional 
A* algorithm explores the 3×3 neighborhood. As a result, 
the number of nodes that need to be explored in the 5×5 
neighborhood is reduced, which improves the efficiency of 
the algorithm and avoids traversal of the subnodes of the 
3×3 neighborhood again during the exploration of the sub‐
nodes of the 5×5 neighborhood. When the traditional A* 
algorithm explores node 2, it determines first whether node 
2 is an obstacle. If neighbor node 2 is an obstacle, then 
nodes 1, 3, 10, and 11 are unsafe nodes and are not consid‐
ered in the next expanded nodes (Figure 4). After the tradi‐
tional A* algorithm completes the exploration of all sub‐
nodes in the 3×3 search space, all unsafe subnodes in the 
5×5 search space are filtered, and the node cost value is 
calculated for comparison to determine the next parent 
node.

The improved A* algorithm combines the node security 
expansion strategy on the basis of neighborhood expansion. 

It prevents the planned path from coming into contact with 
the edge of obstacles or passing through obstacles to ensure 
the safety of USV navigation. The enhanced A* algorithm 
not only optimizes the search angle but also improves the 
smoothness and safety of the path.

2.4  Path smoothing optimization

The high number of redundant inflection points in the 
path planned by the A* algorithm increases the difficulty 
of USV path tracking control. Therefore, a smooth path 
must be obtained. The Floyd algorithm was used to further 
smooth the path. Figure 5 shows the concept of the Floyd 
path smoothing algorithm. A, B, C, and D refer to path 
nodes, and the original path is A→B→C→D. AB, AC, and 
AD connect in turn. Obstacles are lacking in AC but are 
present in AD. Thus, point B is a redundant node. Point B 

Figure 2　Comparison of search neighborhood between traditional 
and improved A* algorithm

Figure 3　Three scenarios of unsafe extension

Figure 4　Node security extension (red crosses indicate that the node 
cannot be extended)
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was removed from the original path point. As a result, the 
smoothed path from A to point D is A→C→D. The specific 
implementation steps are as follows:

Step 1: Record the set of all nodes in the path planned 
by the A* algorithm as P={ }( x1, y1 ), ( x2, y2 ), …, ( xn, yn ) . 

(x1, y1) is the starting point; (xn, yn) is the target point.
Step 2: Connect (x1, y1) and (x2, y2), (x2, y2), and (x3, y3) 

and assess the collinearity of the two lines. If the two lines 
are collinear, remove node (x2, y2) in the P set. Otherwise, 
determine whether the connecting lines between (x2, y2) 
and (x3, y3) and between (x3, y3) and (x4, y4) are collinear. 
After traversing all path nodes, the remaining nodes in the 
P set are no longer collinear, and the remaining nodes are 
renumbered in sequence.

Step 3: Take (x1, y1) as the starting point, connect (x2, 
y2), (x3, y3), … in turn, and determine whether each con‐
necting line passes through obstacles. If the connecting line 
between (x1, y1) and (xi, yi) is in contact with obstacles, then 
(x2, y2), …, ( xi − 2, yi − 2 ) are redundant nodes. The redundant 
nodes are removed from the P set, and ( xi − 1, yi − 1 ) is retained 
in the P set. In addition, set (xi, yi) as the starting point, and 
connect (xi+1, yi+1), (xi+2, yi+2), ... Perform continuous itera‐
tion until no more obstacles exist between the starting and 
end points. At this stage, the remaining nodes of the P set 
are key nodes.

Step 4: Connect the remaining nodes in the P set with a 
straight line and obtain the smoothed path.

After the path was smoothed (Figure 6), the path length 
was reduced from 38 to 30.332 5 (20.18%) and the number 
of turning nodes from 24 to 5. However, the smoothness 
of the path remained insufficient. In addition, the improved 
A* algorithm neither considers the kinematic constraints of 
the USV nor avoids dynamic obstacles, and thus, it cannot 
meet the requirements of USV path planning.

3  Improved DWA algorithm

3.1  USV kinematics model and trajectory 
deduction

In this paper, in consideration of the underactuated and 
high inertial motion characteristics of USVs and given that 
USVs can only move forward or rotate, we adopted a non‐
holonomic motion model to describe the motion character‐
istics and control limitations of USVs (Zhang et al., 2021; 
Xu et al., 2024). The path planned by the algorithm is con‐
sistent with the actual navigation path and conducive to 
USV motion control. Figure 7 shows the established nonholo‐
nomic model.

G-XY in the figure refers to the geodetic coordinate. xt, 
yt, and θt represent the X-axis coordinate, Y-axis coordi‐
nate, and heading angle of the USV at time t, respectively. 
υt and ωt represent the linear velocity and rotational angular 
velocity of the USV at time t, respectively. Fl and Fr, respec‐
tively, denote the thrust of the left and right sides of the 
hull. As the interval time Δt is extremely short, the trajectory 

Figure 6　Comparison of paths before and after smoothing

Figure 5　Schematic of floyd principle Figure 7　USV kinematics model
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of the USV from time t to time t+Δt is approximated as a 
straight line. The USV trajectory derivation formula can be 
obtained as follows:

ì

í

î

ïïïï

ï
ïï
ï

xt + Δt = xt + υ tΔt cos (θt )

yt + Δt = yt + υ tΔt sin (θt )

θt + Δt = θt + ωtΔt

(4)

3.2  DWA algorithm

DWA is a classic local path planning algorithm, and it is 
mainly divided into two processes:

1) First, calculate the dynamic velocity window based on 
the local environmental information on the navigation water 
area and kinematic constraints of the USV. In the dynamic 
velocity window, use a certain linear velocity and angular 
velocity resolution to sample multiple sets of linear velocity 
υ and angular velocity ω based on and then simulate the 
trajectory of the USV with multiple sets of the sampled 
velocity in period T.

2) Use the trajectory evaluation function to evaluate 
the simulated multiple trajectories. Next, select the speed 

(υbest, ωbest) corresponding to the optimal trajectory, with 
the highest score considered the best sailing speed for the 
USV.

Velocity sampling and trajectory prediction: Velocity can 
be limited within a certain range based on a USV’s kine‐
matic constraints and local environmental constraints. Veloc‐
ity sampling was performed within the velocity window 
range, and trajectory prediction was performed based on 
the sampling speed (Figure 8). In consideration of a USV’s 
kinematic constraints and navigation safety, velocity con‐
straints can be abstracted as Eq. 5:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

υm = { }υ ∈ [ ]υmin, υmax , ω ∈ [ ]υmin, υmax

υd =
ì
í
î

ïï

ïïïï

ü
ý
þ

ïïïï

ïïïï
( )υ, ω

|

|

|
|
||
|
| υ ∈ [ ]υc − υ̇bΔt,υc + υ̇aΔt

ω ∈ [ ]ωc − ω̇bΔt,ωc + ω̇aΔt

υa = { }( )υ, ω |
| υ ≤ 2dist (υ, ω ) υ̇b ∧ ω ≤ 2dist (υ, ω )ω̇b

(5)

where υm refers to the maximum and minimum velocity 
limit window of USV navigation. Given the limitations of 
acceleration and deceleration performance of USV, υd indi‐
cates the velocity window that USV can actually achieve 
during a simulation period T. υa corresponds to the allowable 
velocity window, that is, the set of speeds at which the USV 
can safely stop sailing upon the detection of an obstacle. 
υmax, υmin, ωmax, and ωmin represent the maximum and mini‐
mum values of USV linear velocity and angular velocity, 
respectively. υc, ωc, υb, ωb, υa, and ωa stand for the current 
linear velocity, current angular velocity, maximum deceler‐
ation of linear velocity, maximum deceleration of angular 
velocity, maximum acceleration of linear velocity, and 
maximum acceleration of angular velocity, respectively. Δt 
is the interval.

After calculation of the velocity limits υm, υd, and υa, the 
intersection of the three velocity ranges, which is the desir‐
able velocity window range, was denoted as υr and com‐
puted as follows:

υr = υm ∩ υd ∩ υa (6)

Evaluation of simulated trajectory: The optimal path 
was selected based on the evaluation function in simulated 
trajectories. The evaluation function is designed to ensure 
that the USV selects the optimal path, sails to the target point 
without collision, and allows the trajectory to conform to 
the USV’s kinematic characteristics. The evaluation function 
is determined as follows:

G (υ, ω ) =

σ (α ⋅ yaw (υ, ω) + β ⋅ dist (υ, ω) + γ ⋅ velocity (υ, ω) )
(7)

where yaw(υ, ω) refers to the azimuth evaluation function, 
which represents the deviation angle between the current 
pose of the USV and the target point, velocity (υ, ω) indi‐
cates the speed evaluation function, dist (υ, ω) represents 
the closest distance to the obstacle. σ denotes a smooth 
function used for normalized processing; α, β, and γ are the 
azimuth and closest distance to the obstacle and the weight‐
ing coefficient of velocity, respectively.

Figure 8　Schematic of dynamic-window trajectory prediction
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3.3 Optimization of evaluation function

When the path planned by the traditional DWA algorithm 
is near the target point, the heading angle accounts for too 
much in the evaluation function, and the velocity decreases, 
which affects the efficiency of the algorithm. To improve 
the navigation efficiency of the DWA algorithm, improved 
the evaluation function by considering adaptive weights 

rather than fixed ones. We also introduced the distance 
length between the end of the simulated trajectory and 
the local target point. When the path was near the local 
target point, the scoring weight of the heading angle was 
reduced appropriately, and the velocity weight was in‐
creased. This condition improved the efficiency of path 
planning. The improved evaluation function is calculated 
as follows:

G (υ, ω) = σ (α ⋅ yaw (υ, ω) ⋅ ( length ( )υ, ω
2R ) 3

+ β ⋅ dist (υ, ω) + γ ⋅ velocity (υ, ω) ⋅ (2 − ( length ( )υ, ω
2R ) 3 ) ) (8)

where length (υ, ω) represents the distance between the end 
of the simulated trajectory and the target point, and R denotes 
the radius of the obstacle. In calculations, the maximum 
values of dist (υ, ω) and length (υ, ω) were set. If the maxi‐
mum value of dist (υ, ω) is not limited, the simulated tra‐
jectory without obstacles attains an extremely high score and 
ignores the heading angle and velocity. If the maximum 
value of length (υ, ω) is not set, when the USV is distant 
from the target point, the speed is extremely low. Therefore, 
dist (υ, ω)∈(0, 2R) and length (υ, ω)∈(0, 2R).

Figures 9(a) and 9(b) show the paths of the traditional 
DWA and IDWA, respectively. The comparison of experi‐
mental data in Table 1 reveals that the path lengths were the 
same. However, the planning time was reduced by approxi‐
mately 17.19%, which proves that the improved evaluation 
function effectively reduced the planning time of the tradi‐
tional DWA algorithm and thus increased its efficiency.

4  Fusion algorithm

First, the reference point of the traditional DWA algo‐
rithm is the only final target point. Therefore, the algorithm 
is prone to fall into a local optimum, which results in an 
unreachable target point and failure of the algorithm to 
plan the path. Second, the path planned by the improved A* 
algorithm is still not smooth enough near the key inflection 
point, and the kinematic constraints of the USV are disre‐
garded, all of which result in a large difference between the 
planned path and the actual navigation path of the USV. 
Such a condition is not conducive to the path tracking 
control of the USV, which affects the safety of navigation. 
Aiming at the disadvantages of the above two algorithms, 
we proposed a local target point selection strategy to fuse the 
improved A* algorithm and DWA algorithm. Figure 10 dis‐
plays the flow chart. First, the key inflection points obtained 
using the improved A* algorithm were extracted as local 
target points of the IDWA algorithm. Then, the IDWA algo‐
rithm was used for path planning. However, unlike tradi‐
tional fusion algorithms, the fusion algorithm proposed in 
this paper simultaneously calculates and determines the 

presence of an obstacle between the USV and the next local 
target point. If no obstacle is present, the current local target 

Figure 9　Path comparison of traditional DWA algorithm and IDWA 
algorithm

Table 1　Comparison of algorithms

Algorithm

Traditional DWA

Improved DWA

Cost time (s)

15.499 047

12.833 989

Path length (m)

11.727

11.726
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point is switched to the next one directly. The path planned 
by the fusion algorithm can not only ensure the global opti‐
mum but also avoid dynamic obstacles. In addition, the path 
avoids unnecessary bending and attains a desirable smooth‐
ness, which is beneficial to the follow-up path tracking 
control.

Figure 11(a) shows the path of local target points updated 
in sequence, and Figure 11(b) displays the path of local 
target points updated in accordance with the selection strat‐
egy. The comparison revealed that the path that combines 
the local target point selection strategy is better than that 
updated in sequence.

5  Simulation experiment and analysis

Experiments were carried out to verify the effectiveness 
and feasibility of the optimization algorithm in this paper. 
The running environment comprised the following: MAT‐

LAB R2021a, Windows 11 64-bit, AMD Ryzen 75 800 H 
processor, and 16 GB memory. A grid map was used to sim‐
ulate the USV navigation environment information. The 
black and white parts in the map represent the obstacle 
and non-obstacle areas, respectively. The red * denotes the 
starting point, and its coordinates were (1.5, 1.5). The blue * 
corresponds to the final goal, and its coordinates were 
(20.5, 20.5). The weights of evaluation functions α, β, and 
γ were 0.05, 0.2, and 0.1, respectively. The velocity resolu‐
tion was 0.01 m/s, the angular velocity resolution was 1°, 
and the simulation time period T was 3 s. The kinematic 
parameters of the USV were set, as shown in Table 2.

To verify the efficiency of the improved A* algorithm, 
we performed simulation experiments 10 times. Table 3 

Figure 10　Flow chart of the fusion algorithm

Figure 11　Path comparison of traditional and improved fusion 
strategies

Table 2　Kinematic parameters of USV

Parameters

Maximum linear velocity (m/s)

Maximum angular velocity ((°)/s)

Maximum linear acceleration (m/s2)

Maximum angular acceleration ((°)/s2)

Value

1 

20

0.2

50
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contains the average values of the 10 experimental data. 
Figure 12 shows the comparison of the path planning of the 
two algorithms. The experimental results in Table 3 reveal 
that the improved A* algorithm shortened the path length 
by 20.18%, reduced the path planning time by 28.1%, and 
decreased the number of turning nodes from 8 to 5.

Path planning algorithms were generated to verify the effec‐
tiveness of the fusion algorithm in this paper. Figure 13(a) 
shows the path of the traditional DWA algorithm, and 
Figure 13(b) displays the path of the fusion of improved 
A* and traditional DWA algorithms. Figure 13(c) illustrates 
the path of the fusion of improved A* and IDWA algo‐
rithms. The traditional DWA algorithm suffers from having 
an unreachable target point and an unplanned path to the 
final target point. Although the fusion algorithm of improved 
A* and traditional DWA algorithms plans the path success‐
fully, the path contains unnecessary twists and turns. The 
fusion algorithm proposed in this paper avoids such twists 

and turns and offers a better path. Compared with the fusion 
algorithm of improved A* and traditional DWA algorithms, 
our algorithm reduces time by 9.9% and the path length by 
7.54%. The running results are filled in Table 4.

To verify the obstacle-avoidance performance of the 
fusion algorithm introduced in this paper, we added static 
(red) and dynamic obstacles (pink) to the environment 
(Figure 14(a)). The USV avoided the obstacles, as shown 
in Figure 14(b) ‒ 14(c). Figures 15(a) ‒ 15(c) display the 
changes in the USV linear velocity, angular velocity, and 
heading angle during the process, respectively. After the 
addition of dynamic and static obstacles to the preplanned 

Figure 13　Path and velocity comparison of traditional and our fusion algorithms

Table 3　 Data comparison between traditional and improved A* 
algorithms

Algorithm

Traditional A*

Improved A*

Cost time (s)

0.118 029

0.079 533

Path length (m)

38

30.332 5

Number of turning nodes

8

5 Figure 12　Path comparison between traditional and improved A* 
algorithms
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path of the improved A* algorithm, the fusion algorithm 
still successfully planned the path from the starting 
point to the final target point, and the path avoided all 
obstacles successfully.

6  Real ship experiment

This study used a self-developed double-body differen‐
tial propulsion unmanned boat with dimensions of 500 cm×
400 cm×200 cm (length×width×height) as the experimental 
platform (Figure 16). The unmanned boat uses the GNSS 
RTK module (TAU1308) and IMU (HWT901B-485) for 
location and posture measurement, respectively. The lidar 
(WLR-716) and ultrasonic sensors detect obstacles. The 
boat covers the longest detection distance of 25 m and has 
a detection angle of 270°. The camera functions in collect‐
ing images of the water area in front of the boat and moni‐
tors sailing conditions of the unmanned boat. The control 
box calculates and processes the sensor data. Then, the boat 
returns the processed data to the shore-based system through 
its 5G routing module.

To verify the feasibility and effectiveness of the algorithm 
introduced in this paper, we loaded the algorithm into an 
unmanned boat. An obstacle-avoidance path planning experi‐
ment was performed in the lake area of Luxun’s Park in 
Shanghai under sunny and light wind weather conditions.

First, to verify whether the unmanned boat can sail in the 
preset path, we conducted an obstacle-free navigation experi‐
ment. Figure 17(a) shows the schematic of the experiment. 
The experimental path contained four key inflection points. 
The navigation direction was Point 1→2→3→4→1. Table 5 
displays the latitude and longitude coordinates of the way‐
points based on WSG-84. The unmanned boat can sail 
based on the set route from the actual navigation track in 
Figure 17(b).

on obstacle avoidance, we conducted the obstacle-avoid‐
ance experiment. Figure 18(a) shows the schematic of the 
experimental scene of obstacle avoidance. Figure 18(b) 
displays the static and dynamic obstacles. We used a small 
stationary cruise boat to add an unknown static obstacle and 
a dynamic obstacle on the preplanned path. Moreover, 
we used another USV as a dynamic obstacle named USV-
obstacle (Figure 18(b)). The distance between two USVs 
was calculated based on the location that they uploaded. 
When the distance is less than 25 m, the lidar can detect 
USV-obstacle. At this point, we ran the control procedures Figure 14　Fusion algorithm for avoiding obstacles

Table 4　Comparison of the performances of different algorithms

Algorithm

Traditional DWA

Traditional fusion algorithm

Our fusion algorithm

Cost time (s)

∞

80.12

72.23

Path length (m)

‒

30.384

28.093
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that would enable the USV obstacle to follow the set path 
at the speed of 0.5 m/s. The initial course of USV-obstacle 
was 164°.

Figure 20 shows the paths of the traditional and improved 
A* algorithms. The data in Table 8 reveal that compared 
with the traditional A* algorithm, the improved A* algo‐
rithm reduced the time by approximately 13.1% and the path 
length by 20%, and the number of turning nodes decreased 
from 15 to 4. These findings prove that the improved A* 
algorithm, which produced a shorter and smoother path, is 
more efficient than the traditional one.

The latitude and longitude were recorded during the 
navigation and processed by MATLAB. The USV naviga‐
tion trajectory was drawn on a grid map (Figure 21). The 

Table 5　Waypoint locations

Waypoint 
number

Longitude (°E)

Latitude (°N)

No. 1

121.480 000

31.274 800

No. 2

121.480 300

31.274 690

No. 3

121.480 480

31.275 620

No. 4

121.480 210

31.275 620
Figure 15　Changes of USV motion parameters

Figure 16　Experimental platform for unmanned boats (the dotted 
red box indicates that the installation location is inside the boat)

Figure 17　 Obstacle-free navigation experiment to verify the 
performance of the fusion algorithm
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unmanned boat first followed the path preplanned by the 
improved A*. When it encountered the unknown static 
obstacle at point A, an evident left-turn avoidance action 
was observed. After complete avoidance, the unmanned 
boat returned to the preplanned path with an arc trajectory. 

Table 6　Start and end point locations

Key point

Longitude (°E)

Latitude (°N)

Start

121.479 113

31.273 212

End

121.480 300

31.274 690

Figure 18　Schematic of obstacle avoidance scene and obstacles

Table 7　Setting of obstacles in the scene

Obstacle

Start location (Lon, Lat)

End location (Lon, Lat)

Velocity (m/s)

Initial course

Static obstacle

(121.478 959, 
31.273 465)

‒

0

‒

Dynamic obstacle

(121.479 346, 
31.274 285)

(121.479 259, 
31.274 016)

0.5

164°

Figure 19　Map gridding process

Figure 20　 Comparison of paths obtained using traditional and 
improved A* algorithms

Table 8　 Comparison of the performances of traditional and 
improved A* algorithms

Algorithm

Traditional A*

Improved A*

Cost time (s)

12.160 083

10.566 424

Path length 
(m)

72.828 4

58.258 1

Number of 
turning nodes

15

4

Figure 21　 Path comparison between traditional and our fusion 
algorithm
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The boat avoided the dynamic obstacle successfully by 
turning left at point B and reached the target point safely. 
In the red circle, the fusion algorithm introduced in this 
paper planned a remarkably smooth path, which proves its 
feasibility and effectiveness. Therefore, the introduced 
algorithm can complete the USV path planning task well.

7  Conclusion

A fusion algorithm that combines the improved A* algo‐
rithm and the IDWA algorithm with an improved fusion 
strategy was proposed in this paper. First, in consideration 
of the safety of USV navigation and the smoothness of the 
path, the node expansion strategy was optimized on the 
basis of the enlarged 5×5 searching neighborhood. Second, 
the heuristic function of A* was improved. Next, redun‐
dant nodes of the path were removed, and the evaluation 
function of the DWA algorithm and fusion strategy were 
improved. Experiments have proven that compared with 
the fusion algorithm of improved A* and traditional DWA 
algorithms with a traditional fusion strategy, the fusion 
algorithm proposed in this paper reduced the path length 
by 7.54% and the time by 9.9%, prevented unnecessary 
turns, and obtained a smoother path. In addition, the USV 
can avoid static and dynamic obstacles.

Although the algorithm introduced in this paper performs 
better than the common traditional path planning algorithm, 
certain issues need to be considered in future research.

1) Three-dimensional environmental factors, such as 
wind, waves, and ocean currents, must be considered and 
combined with COLREGs during path planning to improve 
the applicability of USVs in oceans.

2) The obstacle-avoidance problem of multiple USVs 
must be considered in path planning.
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