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Abstract
This review article provides a comprehensive analysis of nesting optimization algorithms in the shipbuilding industry, emphasizing their role in 
improving material utilization, minimizing waste, and enhancing production efficiency. The shipbuilding process involves the complex cutting 
and arrangement of steel plates, making the optimization of these operations vital for cost-effectiveness and sustainability. Nesting algorithms 
are broadly classified into four categories: exact, heuristic, metaheuristic, and hybrid. Exact algorithms ensure optimal solutions but are 
computationally demanding. In contrast, heuristic algorithms deliver quicker results using practical rules, although they may not consistently 
achieve optimal outcomes. Metaheuristic algorithms combine multiple heuristics to effectively explore solution spaces, striking a balance 
between solution quality and computational efficiency. Hybrid algorithms integrate the strengths of different approaches to further enhance 
performance. This review systematically assesses these algorithms using criteria such as material dimensions, part geometry, component layout, 
and computational efficiency. The findings highlight the significant potential of advanced nesting techniques to improve material utilization, 
reduce production costs, and promote sustainable practices in shipbuilding. By adopting suitable nesting solutions, shipbuilders can achieve 
greater efficiency, optimized resource management, and superior overall performance. Future research directions should focus on integrating 
machine learning and real-time adaptability to further enhance nesting algorithms, paving the way for smarter, more sustainable manufacturing 
practices in the shipbuilding industry.
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1  Introduction

The shipbuilding industry is widely regarded as a highly 
promising sector owing to its significant contributions to 
the global economy (Kamola-Cieslik, 2021). The industry 
supports numerous other industries by providing essential 
maritime transportation while driving economic growth to 
meet the rising demand for new ship constructions. This 
demand is propelled by global trade expansion, advance‐

ments in shipping technology, and the pursuit of more effi‐
cient and environmentally friendly vessels (Smith et al., 
2022). Notably, leading shipbuilding nations such as China, 
South Korea, and Japan depend heavily on this industry 
for economic stability and growth. China, for example, has 
expanded its shipbuilding capacity to become the world’s 
largest shipbuilder, a growth fueled by government poli‐
cies and significant investments in shipyard infrastructure 
(Ko and Shinoda, 2021). South Korea, renowned for its 
advanced shipbuilding technology, maintains a competitive 
edge by specializing in high-value vessels such as LNG 
carriers and offshore platforms (Hong et al., 2024). Japan, 
with its rich maritime history, continues to lead in eco-
friendly ship designs and the automation of ship produc‐
tion processes (Japan Ship Technology Research Associa‐
tion, 2020; Ko and Shinoda, 2021). Given the critical role 
of ships as the primary mode of transportation across water‐
ways, their significance cannot be overstated. Ships are 
essential for transporting goods and people worldwide, sup‐
porting international trade and significantly influencing the 
global economy (Nor and Nazery, 2008). Consequently, the 
production of these vessels requires careful attention to 
ensure they meet stringent standards of efficiency, safety, 
and environmental sustainability. This entails the adoption 
of advanced technologies, the implementation of rigorous 
safety protocols, and strict compliance with international 
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environmental regulations (Alblas and Pruijn, 2024). The 
importance of the shipbuilding industry is further high‐
lighted by its substantial impact on global trade and eco‐
nomic development (Baso et al., 2020; Sutrisno et al., 2024). 
The industry supports an extensive network of ancillary 
sectors, creates employment opportunities, and fosters 
innovation in maritime transportation. Its ability to adapt 
to changing market demands and technological advance‐
ments is crucial for maintaining and enhancing the effi‐
ciency and sustainability of global maritime operations.

In ship production, key activities related to plate cutting 
include preparation procedures and the steel plate cutting 
process, collectively referred to as the fabrication process 
(Mustafa et al., 2022). These tasks involve a series of pre‐
cise steps and the use of advanced cutting technologies, 
such as oxy-fuel and plasma cutting, which demand high 
accuracy (Saiyara, 2024). Oxy-fuel cutting, preferred for 
its ability to handle thick steel plates, employs the combus‐
tion of oxygen and fuel gases to cut through steel. In con‐
trast, plasma cutting uses an accelerated jet of hot plasma 
to slice through metal, providing greater precision and 
speed, particularly for thinner plates. The importance of 
these cutting processes cannot be overstated, as they are fun‐
damental to preparing and arranging plate parts for smooth 
assembly while preserving the ship’s structural integrity. 
Errors during this stage can lead to significant issues dur‐
ing assembly, potentially compromising the vessel’s quality 
and safety (Okubo and Mitsuyuki, 2022). Given the criti‐
cal role of plate cutting, selecting the appropriate technolo‐
gies and processes is essential for optimizing steel plate 
utilization and reducing waste. This optimization process, 
known as nesting, involves strategically arranging cutting 
patterns on steel sheets to maximize material use and mini‐
mize waste. It requires careful consideration of factors such 
as part shapes, sheet dimensions, and design specifications. 
Advanced nesting software and algorithms are instrumen‐
tal in generating optimal cutting patterns, enabling effective 
and efficient operations (Son et al., 2020). As the shipbuild‐
ing industry evolves, ongoing advancements and refine‐
ments in nesting techniques continue to improve the preci‐
sion and efficiency of plate cutting, highlighting their criti‐
cal role in enhancing the quality, efficiency, and sustain‐
ability of modern shipbuilding practices. The fabrication 
process and plate cutting optimization rely on specific 
design variables, which guide the selection of appropriate 
nesting methods. Nesting algorithms are broadly catego‐
rized into exact, heuristic, metaheuristic, and hybrid types, 
each providing effective solutions for optimizing nesting in 
shipbuilding. A thorough understanding of the characteris‐
tics and applications of each algorithm is crucial to achiev‐
ing the best possible outcomes in nesting optimization.

Although nesting is critical in the shipbuilding industry, 
there is a notable lack of comprehensive studies that sys‐
tematically evaluate and compare the various algorithms 

used for nesting optimization. Existing literature often 
emphasizes individual algorithms without offering a holis‐
tic perspective on their comparative effectiveness across 
diverse shipbuilding contexts. This research addresses this 
gap by conducting a systematic review of prominent nest‐
ing algorithms, focusing on their application within the 
shipbuilding industry. The primary objective is to thor‐
oughly evaluate these algorithms to identify the most effec‐
tive methods for optimizing material utilization and mini‐
mizing waste in ship production. This study is particularly 
timely, given the growing pressures on the shipbuilding 
industry to improve efficiency, reduce costs, and adhere to 
increasingly stringent environmental regulations. This 
research aims to investigate the current state of nesting 
algorithms to identify the most efficient solutions available 
today. Additionally, it seeks to compare these algorithms 
based on material utilization, computational efficiency, 
and their applicability to various shipbuilding contexts. 
Understanding these factors is essential for shipbuilders, 
as it will enable them to select the most suitable algorithms 
for their specific operational needs, ensuring more sustain‐
able and cost-effective production processes. Furthermore, 
the research explores the criteria for evaluating each algo‐
rithm’s suitability, focusing on key factors that influence 
the performance of these algorithms. By examining these 
factors, the study aims to identify areas where existing algo‐
rithms can be improved to meet the evolving demands of 
the shipbuilding industry. This exploration is crucial not 
only for advancing current nesting technologies but also for 
guiding future research and development efforts in this field. 
Ultimately, this paper seeks to provide valuable insights 
that will help shipbuilders achieve greater efficiency and 
sustainability in their production processes, thereby strength‐
ening the industry’s ability to adapt to global market 
demands and technological advancements.

2  Fabrication process and plate cutting 
optimization

The fabrication process is a crucial phase in shipbuild‐
ing. It follows the design stage and includes the basic 
design, technical project, and detailed project of the intended 
product (ILO, 2023). This phase is critical as it transitions 
into the shipbuilding stage, where the actual construction 
of the ship’s structure occurs. The shipbuilding phase is 
notably complex, involving several intricate processes, 
such as cutting steel plates and profiles, constructing pan‐
els, assembling modular cross-sectional blocks, building 
superblocks, and, ultimately, assembling the ship hull (Oku‐
moto et al., 2009; Mustafa et al., 2022). Each of these steps 
requires precise coordination and meticulous execution to 
ensure the integrity and performance of the final vessel. 
The success of the shipbuilding phase heavily depends on 
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the efficiency and accuracy of the plate cutting process, 
which begins with cutting steel according to the design 
specifications (Basuki et al., 2012; Firmansyah et al., 2021). 
The cutting process is conducted using advanced machin‐
ery, such as cutting machines, lasers, or plasma cutters, 
which shape the steel plates to the required dimensions 
and forms for the ship’s construction. The precision of these 
cuts is critical, as any inaccuracies can result in significant 
issues during subsequent stages of assembly. Additionally, 
the plate cutting process plays a key role in the overall effi‐
ciency of shipbuilding and material utilization (Rigo and 
Caprace, 2011; Perez-Martinez and Fernandez, 2023). 
Effective plate cutting minimizes waste and optimizes 
material use, making it both cost-effective and environ‐
mentally friendly. The quality of the cut plates directly 
influences the ease of assembly and the structural integrity 
of the ship. As a result, continuous advancements and inno‐
vations in cutting technologies and techniques are pursued 
to improve accuracy, reduce waste, and enhance overall effi‐
ciency in shipbuilding.

Plate cutting with nesting is a technique used to arrange 
and sequence cutting patterns from larger to smaller shapes 
or vice versa, with the goal of minimizing waste and opti‐
mizing material utilization, fabrication, and production 
(Oliveira and Gordo, 2018). This method strategically places 
smaller shapes within a larger material sheet to minimize 
unused material, thereby enhancing efficiency and reduc‐
ing costs. The nesting process is often optimized using var‐
ious approaches or algorithms, where the algorithm’s flow 
is determined by design variables, constraints, and an objec‐
tive function. These algorithms can range from simple heu‐
ristic methods to more complex metaheuristic techniques, 
such as genetic algorithms (GAs), simulated annealing (SA), 
or particle swarm optimization (PSO). The effectiveness 
of the nesting process largely depends on the algorithm’s 
ability to manage the complexities of the material layout, 
taking into account factors such as the geometric shapes of 
the parts, material properties, and cutting constraints. Addi‐
tionally, the objective function in these algorithms typically 
aims to maximize material utilization or the material utili‐
zation ratio while adhering to specific fabrication require‐
ments and ensuring the quality of the cut parts. The material 
utilization rate, a key performance metric in this context 
(Xu and Yang, 2022), is defined by Equation (1).

Material Utilization Ratio =
Afp + Arm∑A

(1)

where Afp is the area of finished products, Arm is the area of 
residual material, and ∑A is the total area of raw material 
used. This equation measures material usage efficiency, 
indicating the proportion of raw material effectively used 
for the finished products and residual materials. A higher 
material utilization ratio signifies better optimization and 
less waste. This comprehensive approach to nesting improves 

material efficiency and supports sustainable manufacturing 
practices by minimizing waste and reducing energy con‐
sumption during the cutting process. Similarly, the design 
variables for optimizing nesting in plate cutting include 
parameters with predefined constraints, such as plate dimen‐
sions and cutting patterns. The goal is to maximize nesting 
efficiency, which is quantified by the total yield rate, as 
shown in Equation (2), as proposed by Hamada et al. (2019).

Total yield rate (%) =
∑
x = 1

N

APx

∑
y = 1

M

AMy

× 100 (2)

Here, APx represents the total area of the parts (Px), 
while AMy denotes the area of the base material (My). N 
refers to the number of ship parts, and M indicates the 
number of base materials used. The yield rate measures 
nesting efficiency by minimizing the area of base material 
used during the fabrication process.

Nesting optimization design variables are closely related 
to the packing problem, which can be classified into two 
types: strip packing and bin packing. Strip packing involves 
arranging various strip patterns or shapes of different lengths 
onto a plane or base material with a fixed width (Martello 
et al., 2003), as illustrated in Figure 1. The objective of 
this process is to maximize area utilization by minimizing 
unused space. The patterns or shapes are strategically posi‐
tioned to reduce the number of strips required and improve 
material efficiency (Liao et al., 2016). This is particularly 
important in the manufacturing industry, where raw materi‐
als are often costly, and efficient material usage can result 
in significant cost savings. Additionally, this method helps 
reduce material waste, supporting sustainability and eco-
friendly practices.

Figure 1　Strip packing
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Conversely, the bin packing problem in nesting optimi‐
zation focuses on fitting parts of varying sizes and space 
requirements into a limited number of available base mate‐
rials or bins (Han et al., 2007), as illustrated in Figure 2. 
The goal is to minimize the area of base material used and 
maximize space efficiency (Hartono et al., 2022; González-
San-Martín et al., 2023). In this context, parts must be 
arranged in a way that optimizes base material usage, mini‐
mizes wasted space, and maximizes the capacity of the 
available bins. This approach is essential in logistics and 
storage, where efficient space utilization can lower opera‐
tional costs and improve productivity. Overall, both strip 
packing and bin packing play crucial roles in nesting opti‐
mization, helping industries enhance material and space 
efficiency, reduce costs, and promote more sustainable man‐
ufacturing practices.

3  Classification of nesting algorithms

Nesting algorithms are a crucial component of nesting 
software, particularly for strip packing and bin packing 
design variables. They play a pivotal role in optimizing 
the arrangement of parts within a specified area, such as a 
sheet of metal or other base material designated for cut‐
ting. The primary goal of nesting algorithms is to minimize 
waste, maximize space utilization, and reduce production 
time and costs (Goodman et al., 1994). Implementing these 

algorithms offers several advantages, including improved 
part placement, reduced waste through efficient compo‐
nent measurement, better material utilization, and mini‐
mized scrap (Lodi, 1999; Lodi et al., 2002; Martinez-Sykora 
et al., 2017).

Canellidis et al. (2013) demonstrated that strategically 
placing parts to maximize space utilization can significantly 
improve productivity and cost-effectiveness. Efficient 
arrangements show that nesting optimization can reduce 
material usage, lower production expenses, and enhance 
overall efficiency in the production process (Timmerman, 
2013). Additionally, nesting algorithms streamline the com‐
ponent layout, saving time and effort by automating the 
optimal placement process, which further enhances effi‐
ciency. Properly organizing components contributes to 
higher productivity by enabling faster cutting and produc‐
tion processes.

Nesting algorithms also offer customization and flexibil‐
ity to meet specific needs, accommodating different types 
of parts and constraints while adapting to various manufac‐
turing scenarios. Overall, these algorithms help maximize 
material utilization, reduce waste, and enhance the overall 
yield from the base material. As illustrated in Figure 3, 
these algorithms are categorized into several types, each 
providing distinct approaches to achieve efficiency and 
effectiveness in the manufacturing process.

Figure 3 illustrates the classification of nesting algorithms 
into four main categories: exact algorithms, heuristic algo‐
rithms, metaheuristic algorithms, and hybrid algorithms. 
Exact algorithms, including linear programming (LP) and 
branch and bound, use mathematical approaches to find 
optimal solutions. Heuristic algorithms, such as first-fit, 
best-fit, and next-fit, apply practical approaches to achieve 
good results. Metaheuristic algorithms, such as GAs, SA, 
and PSO, are inspired by natural or social processes to 
identify optimal solutions. Hybrid algorithms combine var‐
ious methods, such as GA+SA, GA+PSO, and ant colony 
optimization (ACO) +GA, to enhance algorithm perfor‐
mance. Further explanations of each category and algo‐
rithm are provided in the following subsections.

3.1  Exact algorithm

Exact algorithms guarantee the identification of the opti‐
mal solution by exploring all possible solutions (Jones, 
2014). While these algorithms provide optimal solutions, 
they typically have high computational costs, particularly 
for large-scale problems. Two examples of exact algorithms 
are LP and branch and bound. LP involves the formulation 
of a problem as a set of linear equations and inequalities 
(Vielma et al., 2008; Huang et al., 2021). The objective is 
to optimize a linear function while satisfying the given lin‐
ear constraints. LP models generally consist of decision 
variables, an objective function, and constraints. Common 
techniques for solving LP problems include the Simplex 

Figure 2　Bin packing

155



Journal of Marine Science and Application 

method and Interior-Point methods. For example, in tack‐
ling the irregular strip packing problem, Cherri et al. (2016) 
developed mixed-integer linear programming models to han‐
dle piece non-overlapping constraints. They achieved this 
by either applying direct trigonometry to formulate the con‐
straints or decomposing pieces into convex parts to simplify 
the geometric handling of non-overlapping constraints.

Branch and bound is a method used to find optimal solu‐
tions for combinatorial problems by breaking them into 
smaller subproblems and systematically evaluating poten‐
tial solutions, as illustrated in Figure 4. The algorithm 
involves two key steps: “branching”, where the problem is 
divided into subproblems, and “bounding”, where upper 
and lower bounds are calculated for these subproblems. If 
the bound of a sub-problem indicates that it cannot yield a 
better solution than the best one found so far, it is discarded 
(Alvarez-Valdes et al., 2013). In their study, Alvarez-Valdes 
et al. developed a branch-and-bound algorithm for the irreg‐
ular strip packing problem. This approach involved creating 
more efficient formulations and exploring various branching 
strategies, lower bounds, and variable-fixing procedures to 
improve computational performance.

3.2  Heuristic algorithm

Heuristic algorithms use practical rules or “heuristics” 

to find reasonably good solutions more quickly than exact 

Figure 3　Nesting algorithm

Figure 4　Branch-and-bound algorithm
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algorithms (Muriyatmoko et al., 2024). While these algo‐
rithms do not guarantee optimal solutions, they often pro‐
vide satisfactory results within a reasonable time frame. 
Examples of heuristic algorithms include the first-fit, best-
fit, and next-fit algorithms. The first-fit algorithm assigns 
an item to the first available bin that can accommodate it. 
As described by Yue (1991), the first-fit decreasing (FFD) 
algorithm first sorts items in descending order of size and 
then places each item into the first bin with sufficient 
remaining space. Although this method is simple and fast, 
it does not always yield the optimal solution. The effective‐
ness of the FFD algorithm has been extensively studied, 
with proven bounds on its performance in relation to the 
optimal number of bins required.

Pospelov et al. (2023) applied the best-fit algorithm for 
optimizing resource allocation, which begins with a sorted 
list of resources or bins and items to allocate. Each item is 
placed into the bin that will have the least leftover capacity 
after the placement, ensuring it fits. If no existing bin can 
accommodate the item, a new bin is created. While this 
approach is more computationally demanding than the first-
fit algorithm, it generally leads to better resource utiliza‐
tion by minimizing gaps, making future item placements 
more efficient.

The next-fit algorithm, used in bin packing problems, 
starts with an empty bin and a counter for the number of 
bins, initially set to 1 (Wang et al., 2023). The algorithm 
iterates through the list of items, placing each item in the 
current bin if it fits. If an item does not fit into the current 
bin, that bin is closed, a new bin is initiated, and the item 
is placed in it. This process continues until all items are 
packed, with the final bin count illustrated in Figure 5. For 
example, with items sized [4, 8, 1, 4, 2] and bins with a 
capacity of 10, start with Bin 1 and place Item 4 into Bin 
1, making it [4]. Item 8 does not fit, so start Bin 2 and 
place Item 8, making it [8]. Add Item 1 to Bin 2, making it 
[8, 1]. Item 4 does not fit, so start Bin 3 and place Item 4, 
making it [4]. Add Item 2 to Bin 3, making it [4, 2]. Finally, 
add Item 1 to Bin 3, making it [4, 2, 1]. The result is three 
bins: Bin 1 = [4], Bin 2 = [8, 1], Bin 3 = [4, 2, 1].

3.3  Metaheuristic algorithm

Metaheuristic algorithms are advanced optimization tech‐
niques designed to find near-optimal solutions for a broad 
range of problems. These algorithms generally combine mul‐
tiple heuristics and incorporate randomization to explore 
the solution space. Examples of metaheuristic algorithms 
include GAs, SA, and PSO.

GAs are based on the principles of biological evolution, 
utilizing processes such as selection, crossover, and muta‐
tion to evolve solutions over multiple generations. Accord‐
ing to Lourenço et al. (2001), GAs begin with an initial 
population of potential solutions represented by chromo‐
somes. These chromosomes are selected based on their fit‐

ness, undergo crossover to combine parts of two solutions, 
and are subject to mutation to introduce variability. This 
process continues until a stopping criterion is met, such as 
reaching a maximum number of generations or achieving 
an acceptable fitness level (Selow et al., 2007).

SA is an optimization method inspired by the cooling 
process in metallurgy, where solutions are explored ran‐
domly with a decreasing probability of accepting worse so‐
lutions over time. As explained by Ingber (1993), the SA 
algorithm starts with an initial solution and temperature. 
At each iteration, a new solution is generated by making a 
small random change to the current solution. If the new 
solution is better, it is accepted; if it is worse, it may still 
be accepted with a probability that decreases as the temper‐
ature lowers. The temperature gradually decreases accord‐
ing to a cooling schedule until it reaches a predefined mini‐
mum, at which point the algorithm stops (Gomes and 
Oliveira, 2006).

PSO mimics the social behavior of bird flocks or fish 
schools, where each “particle” in the swarm adjusts its 
position based on both individual and collective experiences. 
According to Kennedy and Eberhart (1995), PSO begins 
with a swarm of randomly initialized particles, each repre‐
senting a potential solution. Each particle updates its posi‐
tion by considering its own previous best position and the 
best positions found by its neighbors, with the aim of con‐
verging toward the optimal solution identified by the swarm 
(Kareem et al., 2022). This iterative process continues until 
a stopping criterion, such as a maximum number of itera‐
tions or convergence to a stable solution, is reached.

3.4  Hybrid algorithm

Hybrid algorithms combine two or more algorithms from 

Figure 5　Next-fit algorithm
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different categories to leverage their respective strengths, 
aiming to improve solution quality and computational effi‐
ciency (Ting et al., 2015; Azevedo et al., 2024). These algo‐
rithms are particularly useful in various applications, as they 
can address the limitations of one algorithm by utilizing 
the strengths of another. Examples of hybrid algorithms 
include combinations such as GA with SA, GA with PSO, 
and ACO with GA, among others. The GA and SA combi‐
nation capitalizes on GA’s ability to explore global solu‐
tions and SA’s strength in local solution exploitation 
(Elhaddad, 2012; Bettemir and Sonmez, 2015). Similarly, 
the GA+PSO hybrid enhances solution search by combin‐
ing GA global exploration capabilities with PSO’s ability 
to intensify the search in promising areas (Ru and Jianhua, 
2008). ACO+GA combines ACO (Lee et al., 2008; Ashari 
et al., 2016) with GA, where ACO uses pheromone trails 
to guide the search, while GA generates solution variations, 
improving efficiency in complex optimization problems. 
Each of the aforementioned categories and algorithms has 
unique characteristics and applications. The selection of 
the most suitable algorithm depends on the specific nature 
and requirements of the problem at hand.

4  Development of nesting algorithms in 
shipbuilding

Nesting algorithms play a crucial role in shipbuilding by 
optimizing plate cutting, reducing waste, and improving 
material utilization. They efficiently arrange cutting pat‐
terns, enhancing the cutting process by strategically orga‐
nizing patterns from large to small. These algorithms also 
enable the accurate determination of material needs, sup‐
port supply management, and align with production sched‐
ules (Xie et al., 2007; Xu, 2016).

Various algorithms, including exact, heuristic, metaheuris‐
tic, and hybrid methods outlined in the previous section, 
have been developed to enhance nesting efficiency. These 
advanced techniques help reduce computation time and 
material waste while improving material utilization. Assess‐
ing their performance under different conditions is crucial 
to ensure smooth integration into production processes. By 
choosing the most effective nesting solutions, shipbuilders 
can optimize material usage, cut costs, and streamline pro‐
duction timelines, thereby promoting sustainability and min‐
imizing waste through optimal nesting strategies.

Nesting optimization in shipbuilding is a critical process 
that greatly influences material utilization, production effi‐
ciency, and overall cost-effectiveness (Egeblad et al., 2007). 
A comprehensive and precise consideration of nesting 
solutions ensures the optimal use of materials, reducing 
waste and minimizing production costs. In shipbuilding, 
where materials such as steel plates are extensively used 
(Suzuki et al., 2004; Yu-ichi, 2007; Uemori et al., 2012), 

efficient nesting results in significant savings and improved 
production efficiency. Additionally, it plays a crucial role 
in achieving accurate cuts and fits, which are essential for 
the structural integrity and performance of the ship.

Nesting algorithms have been classified into four cate‐
gories in the previous section: exact algorithms, heuristic 
algorithms, metaheuristic algorithms, and hybrid algorithms. 
Each of these approaches has its strengths and weaknesses, 
and understanding them is essential for selecting the most 
suitable method for a specific application. Exact algorithms 
provide precise solutions by exploring all possible configu‐
rations, though they are often computationally intensive 
and may not be practical for large-scale problems due to 
lengthy processing times (Hifi, 2001). Heuristic algorithms 
offer approximate solutions by employing rules of thumb 
or strategies that reduce the search space. While faster 
than exact algorithms, they may not always find the best 
possible solution (Hu et al., 2015). Metaheuristic algo‐
rithms are advanced techniques that enhance the effective‐
ness of heuristic algorithms in exploring the solution space 
(Lee et al., 2023). These include methods such as GAs, 
SA, PSO, and others. Metaheuristic algorithms balance 
solution quality and computation time, making them well-
suited for complex nesting problems. Hybrid algorithms 
integrate elements from various algorithmic approaches to 
leverage the strengths of each method while minimizing 
their weaknesses (Fujita et al., 1993; Wu et al., 2003; Xu 
et al., 2017). For example, a hybrid algorithm might use a 
heuristic method to quickly find a good solution and then 
refine it using an exact algorithm.

To aid in the categorization of various identification cri‐
teria for optimizing nesting algorithms in shipbuilding, 
Sari et al. (2024) identified 10 essential criteria for evaluat‐
ing these algorithms. Each criterion plays a crucial role 
in determining the effectiveness and practicality of the 
nesting solution, as illustrated in Figure 6 and detailed in 
Table 1 below.

By integrating the criteria in Table 1 into the evaluation of 
nesting algorithms, shipbuilders can ensure that the selected 
solution meets both technical requirements and the practi‐
cal constraints of the shipbuilding industry. This compre‐
hensive approach fosters more efficient production pro‐
cesses, better resource management, and ultimately, higher-
quality, cost-effective shipbuilding operations. Additionally, 
a further review is conducted using a systematic review 
method, as illustrated in Figure 7. The systematic review 
method provides advantages such as comprehensive cover‐
age of existing literature, rigorous evaluation of research 
quality, and structured synthesis of findings (Gray, 2019; 
Williams et al., 2021), offering a robust foundation for 
making informed decisions about nesting algorithms.

The research methodology for this study began with the 
formulation of a clear research plan that outlined the objec‐
tives and scope of the literature review and analysis. The 
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literature search was conducted using several academic 
databases, including IEEE Xplore, ScienceDirect, Springer‐
Link, and Google Scholar, with a focus on publications from 
2018 to 2024 to ensure the inclusion of the most recent 
advancements in nesting algorithms. Relevant search terms 
were defined using Boolean operators (“and/or”) to com‐
bine keywords such as “nesting algorithms”, “shipbuilding”, 
“plate cutting optimization”, and “material utilization”. This 
comprehensive search strategy played a crucial role in 
identifying all potentially relevant studies. The selection 
process involved both automated and manual filtering 
stages. First, duplicate records were removed, followed by 

the exclusion of articles that did not meet the predefined 
inclusion criteria. Studies were excluded if they did not 
focus on nesting algorithms relevant to shipbuilding, were 
published before 2018, or were not written in English. 
These criteria were strictly applied to ensure that only stud‐
ies directly related to the research objectives were included 
in the final review. The parameters for data collection were 
defined, encompassing the types of algorithms reviewed, 
the context of their usage, key performance indicators eval‐
uated, and specific criteria for assessing nesting algorithms. 
The quality of the collected data was carefully assessed to 
ensure its validity and reliability. The gathered information 

Figure 6　Criteria for optimal nesting solutions in shipbuilding

Table 1　Explanation of criteria for optimal nesting solutions

No.

1

2

3

4

5

6

7

8

9

10

Consideration criteria

Material dimensions

Part geometry

Component layout

Material waste

Overlap and collision 
detection

Optimal solutions

Discrete solutions

Real-world applicability

Computation time

Material and cost 
efficiency

Explanation

The cutting pattern is heavily influenced by material dimensions, such as length, width, and thickness, to 
minimize waste.

Considering part shapes is crucial after determining the base material size, particularly for components 
with irregular or complex geometries.

Efficiently arranging parts within a material sheet to minimize gaps and maximize material utilization.

Optimizing part placement to minimize material waste during the cutting process.

The ability to detect overlaps and collisions to prevent material waste and machine damage.

Using integer programming techniques to generate optimal and practical nesting solutions for 
shipbuilding processes.

Ensuring that the solution is feasible and can be directly implemented in manufacturing or shipbuilding 
production.

The algorithm should be practical and applicable to real-world scenarios, taking into account ease of 
implementation and compatibility with existing manufacturing processes.

The algorithm should deliver results within a reasonable time frame, accounting for the tight schedules in 
shipbuilding projects.

The algorithm should optimize material utilization and minimize production costs while maintaining 
quality, thereby enhancing cost-effectiveness in production.
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was then analyzed to identify trends and patterns, followed 
by the interpretation of the results to extract meaningful 
insights into the researched topic.

The study followed a structured and transparent review 
process in accordance with PRISMA guidelines (Page et al., 
2020; 2021), with a flow diagram provided to overview the 
systematic review, as illustrated in Figure 8. The diagram 
details the stages of identification, screening, and inclu‐
sion, starting with 320, 261 records identified from the 
search and concluding with 35 studies included in the final 
review. This structured approach ensured that the research 
was based on a robust foundation, offering reliable and rel‐
evant insights into the effectiveness of various nesting algo‐
rithms in shipbuilding. Through a systematic review of the 
literature, the study identified the most effective algorithms 
for this context, evaluated their performance based on estab‐
lished criteria, and ensured that the solutions derived are 
applicable in real-world shipbuilding scenarios. To assess 
the effectiveness of various nesting methods, the study eval‐

uated their alignment with 10 optimality criteria: material 
dimensions, part geometry, component layout, material 
waste reduction, overlap and collision detection capabili‐
ties, achievement of optimal solutions, real-world applica‐
bility, computation time efficiency, and cost-effective ma‐
terial usage. The results presented in Table 2 compare the 
different methods, providing valuable insights into their 
ability to enhance efficiency, minimize waste, and facili‐
tate practical implementation within shipbuilding processes.

The analysis of Table 2 reveals various nesting methods 
employed in shipbuilding, focusing on their alignment with 
10 optimality criteria. The method by Hamada et al. (2019), 
which is based on branch and bound, achieves 100% align‐
ment, demonstrating strong efficiency in both strip and bin 
arrangements. Meanwhile, the approach by Calabrese et al. 
(2022), employing custom genetic nesting, achieves 90% 
alignment by combining elements of strip and bin packing. 
In contrast, the methods by Rakotonirainy and Vuuren 
(2020) and Liu and Chang (2023), which focus more on 

Figure 7　Methodology of the review
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Figure 8　Flow diagram of the research study filtering process

Table 2　Comparison criteria of various nesting methods in shipbuilding

No.

1

2

3

4

5

6

7

8

9

10

Author

Mundim et al. 
(2018)

Wang et al. (2018)

Cherri et al. (2018)

Gomez and 
Terashima (2018)

Grange et al. 
(2018)

Hamada et al. 
(2019)

Djilali et al. (2019)

Kierkosz and 
Łuczak (2019)

Zhang et al. (2019)

Fekete et al. (2019)

Optimization method

Heuristic (H4NP)

Customized branch-and-
bound

Mixed-integer quadratically 
constrained programming

Hyper-heuristic

Mixed-integer linear 
programming

Branch and bound

Jostle heuristic

One-pass heuristic

Tabu search

Split packing

Design variable

Strip 
packing 
problem

√

-

-

-

-

√
-

-

√
-

Bin 
packing 
problem

-

√

√

√

√

√
√
√
-

√

Criteria for optimal nesting solution

1

√

√

-

√

√

√
√
√
√
√

2

√

√

√

√

√

√
√
√
√
-

3

-

√

√

√

√

√
√
√
-

-

4

-

√

√

√

√

√
√
√
√
-

5

√

√

√

√

√

√
√
√
√
√

6

√

√

√

√

√

√
√
√
√
√

7

√

√

√

√

-

√
-

√
-

-

8

√

√

√

√

√

√
√
√
√
√

9

√

√

-

√

√

√
-

√
√
√

10

√

√

√

√

√

√
√
√
√
-
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Table 2　Comparison criteria of various nesting methods in shipbuilding (continuous)

No.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Author

Arnaout et al. 
(2020)

Guo et al. (2020)

Rakotonirainy and 
Vuuren (2020)

Martinez-Sykora 
et al. (2021)

Li et al. (2021)

Fang et al. (2021)

Umetani and 
Murakami (2022)

Xu and Yang 
(2022)

Gunbeyaz et al. 
(2022)

Calabrese et al. 
(2022)

Gardeyn and 
Wauters (2022)

Fernandez et al. 
(2022)

Zhang et al. (2022)

Fang et al. (2023b)

Liu and Chang 
(2023)

Ko and Hsieh 
(2023)

Fang et al. (2023a)

Na and Yang 
(2023)

Abdou et al. (2023)

Liu et al. (2023)

Zhang et al. (2023)

Wang et al. (2024)

Lallier et al. (2024)

Optimization method

Ant colony optimization 
(ACO)

Geometric similarity future 
searching & fuzzy matching

Hybrid simulated annealing

Greedy and genetic

Hybrid adaptive genetic 
algorithm (HAGA)

Sequence transfer-based 
particle swarm 

optimization (ST-PSO)

Coordinate Descent 
Heuristics

Improved genetic

Discrete event simulation 
(DES)

Custom genetic nesting

Heuristic of combined ruin 
and recreate

Voxel-based metaheuristic

Iteratively doubling local 
search

Deep reinforcement 
learning

Hybrid BonSA

Three heuristic

Hybrid reinforcement 
learning

Deep neural network-based 
classification and clustering

Reinforcement learning and 
GNNs

Segmented genetic and RL

Recursive dynamic 
programming

Maximum residual 
rectangle genetic (MRGG)

Convolutional neural 
network (CNN) and graph 

neural network (GNN)

Design variable

Strip 
packing 
problem

-

-

√

-

-

-

√

√

√

√

-

√

-

-

√

-

-

√

-

-

-

-

√

Bin 
packing 
problem

√

√

-

√

√

√

-

-

-

√

√

-

√

√

√

√

-

√
√
√

√

-

Criteria for optimal nesting solution

1

-

√

√

√

√

√

√

-

√

√

√

√

√

-

-

-

√

√

√
√
√

√

√

2

-

√

-

√

√

√

-

-

-

√

√

√

√

-

√

√

√

√
√
-

-

√

3

√

√

√

√

√

√

√

√

√

√

√

√

√

√

-

-

√

-

√
√
√

√

√

4

√

√

√

√

√

√

√

√

√

√

√

√

√

√

-

-

√

-

√
√
-

√

√

5

√

√

√

√

√

√

√

√

√

√

√

√

√

√

-

-

√

-

√
√
√

√

√

6

√

√

√

√

√

√

√

√

√

√

√

√

√

√

-

√

√

√

√
√
√

√

√

7

√

-

-

-

-

√

√

√

-

√

√

√

-

-

-

√

-

-

-

-

√

-

√

8

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√
√
√

√

√

9

√

√

√

√

√

√

√

√

-

√

√

√

-

√

√

-

√

√
√
√

√

√

10

-

√

√

√

√

√

√

√

√

-

√

√

√

√

√

√

√

√

√
√
√

√

√
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strip packing with hybrid SA and hybrid BonSA, respec‐
tively, achieve 70% and 60% alignment. Bin packing 
methods generally show higher alignment (80%–100%), 
while hybrid methods, such as those used by Hamada and 
Calabrese, demonstrate potential by combining the strengths 
of both approaches. This analysis offers a thorough evalua‐
tion of nesting methods, highlighting their effectiveness in 

reducing waste and improving efficiency in shipbuilding 
processes. A deeper examination of each research algo‐
rithm was then conducted, focusing on its efficiency, itera‐
tion rate, and final nesting optimization results, as detailed 
in Table 3.

Table 3 presents the efficiency of various nesting meth‐
ods employed in the shipbuilding industry. It covers key 

Table 3　Efficiency of various nesting methods in shipbuilding

Number 
of Ref.

1

2

3

4

5

6

7

8

9

10

11

12

13

Explanation of method

Iterative algorithm with different 
placement rules for 2D nesting within 
limited-size containers.

Handles irregular shape nesting using 
reverse convex quadratic constraints.

Addresses the irregular strip packing 
problem by permitting continuous 
rotations.

Integrates NSGA-II, SPEA2, and 
GDE3 to address bi-objective 2D bin 
packing problems.

Examines algorithms for bin packing 
with overlapping items, including the 
best fusion and grouping genetic 
algorithm.

Integrates bin-packing and strip-
packing problems using a branch-and-
bound approach to achieve optimal 
nesting solutions.

Subdivides irregular shapes into 
regular sub-shapes and then applies a 
heuristic for optimal placement.

Solves nesting problems using the no-
fit polygon concept combined with 
various fitting functions.

Optimizes the cutting sequence as 
both an open and constrained 
traveling salesman problem.

Recursively splits a set of circles to 
achieve optimal worst-case packing 
density.

Solves multi-level warehouse layout 
problems using the ACO algorithm.

Utilizes Freeman chain code for 2D 
free-form shape layout, incorporating 
fuzzy matching.

Integrates simulated annealing with a 
heuristic construction algorithm for 
strip packing.

Iteration time and rate

1 000 iterations for maximization 
problems and 10 iterations for 
minimization problems.

Approximately 287 seconds for four-
polygon instances and 17058 seconds 
for five-polygon instances.

Some instances reach the time limit, 
such as the “Blaze2” instance, which 
took 15 120 seconds.

An iteration rate of 1 000 iterations 
per trial.

Execution times: greedy < 0.1 
seconds, overload-and-remove: 1 
second, standard GA: 7 seconds.

GA: 23 hours, rule-based: 11 min, 
manual: 2 hours

50 iterations.

Iteration rate of up to 48 iterations in 
14.48 seconds.

Maximum iterations: 100.

Total worst-case runtime: O(n2).

Number of iterations: 9580.

Computation time overhead: 102.84 
seconds.

Limited to 60 seconds for large 
instances and 5000 iterations for 
smaller ones.

Optimization results

Best solutions for limited and unconstrained 
placement problems with an iteration rate of 1 000 
(for some instances).

Solved nesting problems with up to five polygons, 
reducing gaps to 0.2%.

An improvement was observed in the “Shapes4” 
instance, with the length reduced from 23.02 to 
19.92.

Improved the utilization ratio by 12% and reduced 
the number of bins used by 15%.

The best fusion and grouping GA provides optimal 
or near-optimal solutions with an accuracy of 85%.

The system improved yield rates by up to 5% 
compared with manual methods and saved time 
(GA: 64.67%, rule-based: 66.78%, manual: 
65.91%), particularly for complex parts.

Increased material utilization by 25% and reduced 
production costs by 10%.

Achieved a filling rate of up to 94% in single 
knapsack problems, highlighting its efficiency in 
material utilization.

Efficiency increased by 21.62%, while cutter 
lifting times were reduced to 26.

Visual examples of packing results in various 
container shapes, achieving a utilization rate of 
53.90%.

ACO outperforms genetic algorithms and exact 
methods in large-size problem instances.

Optimized layout with a utilization rate of 70.86%.

Reduced packing height by an average of 1% 
compared with the original IA algorithm.
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Table 3　Efficiency of various nesting methods in shipbuilding (continuous)

Number 
of Ref.

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Explanation of method

The greedy method generates a 
placement sequence, while the genetic 
algorithm optimizes the sequence.

Solves two-dimensional rectangular 
packing problems.

Uses piece-matching and sequencing 
strategies for irregular packing.

Uses corner detection to reduce search 
space in raster models.

Applies real number encoding for 
steel plate cutting optimization.

Models the secondary cutting zone of 
a ship recycling yard and compares 
various cutting technologies.

Estimates the number of printable 
components on a given printer plan 
without iterative processes.

Integrates ruin and recreate with a 
goal-driven method for 2D variable-
sized bin packing with guillotine 
constraints.

Uses voxel-based representation with 
ILP formulation and metaheuristics 
for 3D irregular packing.

Uses a waste least first decreasing 
strategy, bottom-left method, and 
random local search for irregular bin 
packing.

Employs pointer networks and model-
free reinforcement learning for 1D 
cutting stock problems.

Combines genetic algorithm and 
linear programming for 2D irregular 
packing.

Proposes three heuristic algorithms 
for stacking irregularly shaped stone 
pieces.

Integrates Monte Carlo learning, Q-
learning, and Sarsa-learning with the 
Bottom-Left positioning strategy.

Uses deep neural networks for 
classification and pairwise clustering 
to optimize the nesting of ship parts.

Iteration time and rate

Various computation times range from 
0.343 to 4.303 seconds across 
different case studies, with 30 
generations per iteration.

The average calculation time for the 
J2 instance was 23.3 seconds.

The algorithm runs 20 times per case.

Approximately 1.26×105 iterations on 
average for high-resolution instances.

Convergence occurs after ~100 
generations, with further improvement 
after ~20 000 generations.

Multiple simulation runs for 10 
repetitions.

Non-iterative algorithm.

Computation time is 600 seconds, 
using 8 threads for the experiments.

Execution time ranges from 2 to 3 
hours.

The iteratively doubling strategy 
avoids excessive time on a single bin 
placement (1000/n).

Computation time is less than 1 
second.

A maximum of 30 generations is used.

Cycle times: Algorithm 1: 478.52 
seconds, Algorithm 2: 488.12 seconds, 
Algorithm 3: 483.12 seconds.

Total number of episodes: 300.

Pairing times:
Sheet 1: 0.40 seconds,
Sheet 2: 0.51 seconds,
Sheet 3: 0.82 seconds,
Sheet 4: 0.63 seconds,
Sheet 5: 2.59 seconds.

Optimization results

Reduced computation time by 30% and improved 
material utilization by 20%.

Achieved full packing layouts with a utilization 
rate of 99.92%.

The algorithm demonstrates higher efficiency in 
both space utilization (80%–83% vs. 74%–78%) 
and computation time (20–25 s vs. 25–35 s) 
compared with the traditional algorithm across 
various samples.

Achieved a 15% reduction in container length, 
maximizing layout density while maintaining 
reasonable computation time.

Detailed nesting results show a utilization rate of 
92.73%.

Increased productivity by 60% and reduced 
operational costs by 40%.

Achieved a 30% increase in machine volume 
utilization, with cost and time savings of 25% and 
20%, respectively.

In benchmark tests, it outperforms state-of-the-art 
algorithms in solution quality by up to 15% 
compared with existing methods.

Achieved up to 90% efficiency in solving three-
dimensional irregular packing problems within 
practical computation times.

Achieved a 20% reduction in bin usage and a 15% 
improvement in bin utilization efficiency.

Detailed cutting stock schemes with a utilization 
rate of 94.56% (Instance S1).

Increased utilization rates by up to 5.89%.

Detailed nesting results with utilization rate up to 
41.28%.

Achieved the best utilization rates on various 
benchmarks, e.g., Dighe1 (87.31%).

Reduced scrap rate by 11.0%, pairing time by 
44.1%, and arrangement time by 47.5%.
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aspects such as iteration time, iteration rate, and optimiza‐
tion results achieved by each method. The columns in the 
table include the reference number of the method, a brief 
description of the nesting approach, the iteration time and 
rate used, and the optimization outcomes, such as improve‐
ments in efficiency, material utilization rates, and reduc‐
tions in cost or time. The methods listed differ in their 
approaches to solving nesting problems, including the use 
of iterative algorithms, reverse convex quadratic constraints, 
and the integration of multiple evolutionary algorithms. 
Each method is evaluated based on its effectiveness in 
enhancing material utilization and reducing production 
time and costs. This analysis builds upon the 10 evaluation 
criteria discussed in Table 2, with methods selected based 
on the highest compatibility with each design variable.

To identify the two best algorithms in each packing cate‐
gory (strip packing, bin packing, and hybrid packing), the 
data presented in Table 3 were analyzed. This analysis 
highlights that the research by Xu and Yang (2022) and 
Wang et al. (2024) are the top choices for strip packing. 
Xu and Yang (2022) utilize an improved GA with real 
number encoding, achieving an impressive material utiliza‐
tion rate of approximately 92.73%, as illustrated in Figure 9. 
Convergence occurs after around 100 generations, with fur‐

ther improvements in the solution observed after approxi‐
mately 20000 generations. Wang et al. (2024) use the max‐
imum residual rectangle genetic (MRRG) algorithm, which 
reaches a material utilization rate of 97.5%, showing a 4%–
5% improvement over the previous maximum residual 
rectangle (MRR) algorithm, as illustrated in Figures 10 
and 11. This indicates a significant increase in material uti‐
lization efficiency.

In the bin packing category, the papers by Li et al. 
(2021) and (Hamada et al., 2019) stand out as the best. Li 
et al. (2021) introduce the hybrid adaptive genetic algorithm 
(HAGA), which demonstrates a high material utilization 
rate, reaching 100% in some instances, as shown in Table 4 
and Figure 12. This algorithm performs 150 continuous 
iterations without significant changes, emphasizing its effec‐
tiveness in maximizing material usage. Hamada et al. (2019) 
utilize a branch-and-bound method with a rule-based 
approach that requires only 11 minutes of computation 
time. This method achieves a good optimization result 
compared with manual methods, with a utilization rate of 
66.78%, as illustrated in Figure 13.

For hybrid packing, the top choices are Wang et al. 
(2024) and Hamada et al. (2019). Wang et al. (2024) with 
the MRRG algorithm, achieves an impressive material uti‐

Figure 9　Nesting result based on rectangular packing method (Xu and Yang, 2022)

Table 3　Efficiency of various nesting methods in shipbuilding (continuous)

Number 
of Ref.

29

30

31

32

33

Explanation of method

Applies GNNs to estimate 
geometrical compatibility indices for 
2D and 3D nesting problems.

Optimizes CNC nesting laser cutting 
paths for ship hull components.

Addresses the constrained 2D 
guillotine cutting problem with 
defects using normal and raster points.

Combines heuristic and intelligent 
optimization techniques for ship 
nesting.

Combines CNNs and GNNs to 
estimate 2D nesting efficiency.

Iteration time and rate

Time reduction ranges from 30% to 
48% compared with traditional 
methods.

Maximum iterations: 1000, run 
independently 30 times per test.

Performance is evaluated with a time 
limit of 150 seconds per instance.

Generates up to a maximum of 200 
iterations.

Consistent 5-minute processing time 
for all tasks in the dataset.

Optimization results

Improved material utilization by up to 18%.

Improved material utilization rates by up to 
5.89%, averaging 4.02% better than previous 
methods.

Achieved a 95% increase in cutting efficiency 
compared with previous methods.

Improved material utilization in ship nesting from 
91.5% to 97.5% .

Achieved with a standard deviation of 10.9% and 
a utilization rate of 79.20%.
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lization rate of 97.5%. This algorithm combines the maxi‐
mum residual strategy with GAs, leading to significant 
improvements in material efficiency. Hamada et al. (2019) 

employ a brand-and-bound algorithm, with Figure 14 illus‐
trating the nesting system applied to a ship’s engine room. 
The system-generated plan achieved a 5% higher yield rate 
than the manually arranged plan, owing to more efficient 
part combinations using the same base material. This dem‐
onstrates the system’s potential to improve efficiency and 
outcomes, particularly for complex shapes. Moreover, the 
system is significantly time-efficient, generating plans in 
40 minutes compared with 2 hours by an expert engineer, 
demonstrating its superiority over manual arrangements.

In conclusion, for strip packing, the studies by Xu and 
Yang (2022) and Wang et al. (2024) are the top perform‐
ers, offering exceptional material utilization rates and effi‐
cient algorithms. For bin packing, the works by Li et al. 
(2021) and Hamada et al. (2019) provide efficient and rapid 
solutions. In hybrid packing, the combined methods of 
Wang et al. (2024) and Hamada et al. (2019) deliver excel‐
lent results in optimizing material utilization and opera‐
tional efficiency in shipbuilding. This analysis emphasizes 
the importance of selecting the appropriate algorithm based 
on the packing type and specific industry requirements to 
achieve optimal material and operational efficiency.

5  Discussion

The analysis conducted using the systematic review meth‐
odology in the previous section identifies several algo‐
rithms highly suitable for nesting optimization criteria. 
However, based on these results, a continuous review can be 
performed to address deficiencies, potential future devel‐

Table 4　Comparison of Efficiency and Speed: Filling Rate vs. Calculation Time for J Instances (Li et al., 2021)

Instances

J1

J2

Average

N

25

50

Sheet

40×15

40×15

SGA

F (%)

100

99.65

99.825

Time (s)

10.71

27.18

19.95

AGA

F (%)

100

99.875

99.94

Time (s)

8.37

24.53

16.45

AGA

F (%)

100

99.90

99.95

Time (s)

7.69

25.11

16.4

HAGA

F (%)

100

99.917

99.96

Time (s)

5.59

23.3

14.45

Figure 10　Nesting results (Wang et al., 2024)

Figure 11　 Material utilization comparison between MRR and 
MRRG algorithms (Wang et al., 2024)

Figure 12　Nesting layout of instances (Li et al., 2021)
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opments, and suggestions for improvement for each algo‐
rithm presented in the papers. A comparison of the disad‐

vantages, potential developments, and future improvement 
suggestions for each paper is presented in Table 5.

Figure 14　Comparison of nesting layout: manual arrangement by 
expert engineer versus nesting system (Hamada et al., 2019)

Figure 13　 Effectiveness rate of branch-and-bound algorithm 
(Hamada et al., 2019)

Table 5　Comparison of disadvantages, potential developments, and suggestions for optimization methods

Number 
of Ref.

1

2

3

4

5

6

7

8

Disadvantages of algorithm

Limited capability to handle 
heterogeneous pieces, requiring a high 
number of iterations to achieve better 
solutions, resulting in significant 
computational expense.

High iteration count with potential for 
uncovered polygon parts to penetrate 
boundaries.

Computationally intensive with imprecise 
piece representation, leading to 
inefficiencies.

Complex algorithms with scalability 
issues, high computational costs, and 
challenges in generalization to diverse 
scenarios.

Unbounded approximation factor with 
high complexity, resulting in poor 
performance in worst-case scenarios for 
certain algorithms.

GA-based approaches exhibit inefficiency; 
single-point search methods are 
suboptimal, and the BL method offers 
limited placement options.

Addressing the complexity of irregular 
shapes, ensuring non-overlapping 
constraints, precise confinement, and 
efficient pivoting strategies.

One-pass placement finalizes results but 
faces significant computation time 
challenges for very large instances.

Potential developments

Develop automatic placement rule 
selection using hyper-heuristics and apply 
it to open-dimension problems with 
innovative placement strategies.

Create tighter approximations using 
smaller circle libraries and implement a 
customized BB-based solver.

Enhance piece representation, reduce 
computational time, and develop efficient 
algorithms tailored for non-convex pieces.

Incorporate additional objectives, explore 
diverse features, and investigate 
alternative mechanisms for action 
determination.

Conduct worst-case analysis, establish 
robust lower bounds, develop efficient 
cutting techniques, and design specialized 
heuristics.

Address combinatorial explosion 
challenges, improve packing 
methodologies, and maintain multiple 
intermediate proposals for better 
optimization.

Develop nesting software incorporating 
the algorithm to cater to diverse industrial 
applications.

Investigate alternative element sequences, 
design new fitting functions, and adapt the 
approach for non-rectangular shapes and 
one-dimensional fixed problems.

Suggestions for improving

Implement automatic selection using 
hyper-heuristics, develop new placement 
rules, and enhance overall algorithm 
efficiency.

Expand the circle library and introduce 
more circles to improve overlap 
approximation and improve accuracy and 
performance.

Apply symmetry-breaking constraints, 
develop stronger lower bounds, and 
implement tighter constraints to enhance 
computational efficiency.

Experiment with various MOEAs, explore 
innovative population creation methods, 
and research learning metrics to improve 
decision-making processes.

Integrate decantation post-treatment, 
develop specialized algorithms, and 
combine heuristics with genetic 
algorithms to achieve superior 
performance.

Expand the search area, incorporate 
branch-and-bound methods, and improve 
one-point search strategies to retain 
multiple optimal plans.

Apply placement optimization rules, 
evaluate established placement strategies, 
and develop models to effectively 
subdivide irregular shapes.

Incorporate parallel computation 
techniques, explore novel fitting 
functions, and design methods tailored for 
non-rectangular shapes.
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Table 5　Comparison of disadvantages, potential developments, and suggestions for optimization methods (continuous)

Number 
of Ref.

9

10

11

12

13

14

15

16

17

18

19

20

Disadvantages of algorithm

Limited integration of process constraints, 
with traditional algorithms proving 
ineffective in certain scenarios.

Ineffective handling of acute triangles, 
challenges with specific container shapes, 
and potential failure of split packing for 
certain instances.

B&B approaches are time-intensive for 
large problems, often unable to solve all 
instances within acceptable timeframes, 
requiring the incorporation of heuristics.

Lacks sequential optimization; not suited 
for other 2D layout problems; increases 
computation time without enhancing 
layout results.

Performance depends on benchmark 
instances; prolonged execution due to 
greedy selection and local improvement 
strategies.

Prioritizes speed over accuracy, leading to 
suboptimal placements and high 
computation times in certain cases.

Requires managing multiple parameters, 
with potential for early evolution 
stagnation.

Dependent on high-quality case samples; 
limited rotation angle flexibility; features 
a complex, time-intensive positioning 
algorithm.

High computational cost for raster 
representations; line search becomes time-
consuming with high-resolution rasters.

Reduced global search capability, making 
it less effective for small-scale problems.

Lack of transparency, flexibility, and 
coverage in ship recycling tools.

Limited to the XY plane, not integrated 
into commercial systems, and does not 
account for qualitative aspects.

Potential developments

Fully integrate process constraints, 
including geometric and cutting condition 
considerations, for enhanced applicability.

Extend the split packing approach to three-
dimensional problems, create online 
implementations, and apply the method to 
various shapes to improve worst-case 
performance scenarios.

Compare the algorithm performance with 
advanced methods such as particle swarm 
optimization and whale optimization 
algorithms.

Expand the method to address a broader 
range of 2D layout problems; improve the 
longest common subsequence approach; 
enhance the handling of highly complex 
shapes.

Improve search efficiency by integrating 
heuristic and metaheuristic techniques; 
optimize parameters and leverage machine 
learning to adapt to varying problem 
characteristics.

Achieve a balance between accuracy and 
computation time by refining semi-
discrete representations.

Investigate optimal parameter settings and 
mitigate sudden probability drops during 
evolutionary processes.

Gather additional case studies and 
samples; incorporate deep learning and 
global transfer learning to enhance 
adaptability.

Lower computational costs by refining 
corner detection methods and narrowing 
the search space.

Improve generalizability by applying the 
method to diverse cutting processes and 
accommodating different raw material 
dimensions.

Support decision-making, optimize 
productivity, consider CAPEX and OPEX, 
and conduct case studies for new 
technologies, such as plasma cutters.

Integrate the Z-axis for 3D nesting, handle 
qualitative aspects, and improve 
integration with commercial 3D printing 
systems.

Suggestions for improving

Ensure efficient cutting sequences, 
enhance heuristic approaches, and 
investigate diverse search pathways for 
better outcomes.

Develop strategies to handle acute 
triangles, refine greedy splitting 
techniques, introduce weighted 
generalization, and expand algorithms to 
accommodate new shape categories.

Extend research using advanced 
algorithms and enhance performance by 
integrating sophisticated heuristics and 
optimization techniques.

Minimize time overhead by optimizing 
shape placement sequences and 
developing methods for handling complex 
geometries.

Replace randomized improvement with 
simulated annealing; omit the local 
improvement stage in favor of a multi-
start strategy; adjust heuristic construction 
for denser packing.

Integrate anti-aliasing effects, introduce 
minimum gap constraints, and refine semi-
discrete representations for improved 
accuracy.

Standardize parameter settings, develop 
continuous evolution strategies, and 
balance the consideration of individual 
fitness and population dynamics.

Leverage insights from prior tasks, 
incorporate both local and global 
information, and optimize positioning 
strategies based on evaluation metrics.

Implement fast local search techniques, 
guided local search with adaptive penalty 
weights, and double scanline 
representations for efficient solutions.

Explore underutilized solution regions, 
enhance global search capabilities, and 
optimize strategies for cutting standard 
rectangular parts.

Increase productivity through 
optimization, utilize discrete event 
simulation, cover all activities, and 
provide flexibility for process 
modifications.

Introduce technological parameters, 
incorporate iterative processes, and 
develop flexible integration for various 
software environments.
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Table 5　Comparison of disadvantages, potential developments, and suggestions for optimization methods (continuous)

Number 
of Ref.

21

22

23

24

25

26

27

28

29

30

31

32

33

Disadvantages of algorithm

Local optima stagnation, with the radical 
ruin procedure sometimes being 
counterproductive, leads to diminishing 
returns with additional threads.

High computational effort is required, 
with solving the ILP model feasible only 
for small instances.

Overlap minimization is time-consuming; 
initial position generation may be 
inefficient, and the warm-start strategy is 
not always effective.

Poor universality, susceptibility to local 
optima traps, and high computational 
costs.

Serial cutting constraints limit the optimal 
solution, and TSP conversion affects 
cutting path optimization.

Inefficiency in handling dynamic and 
varied stone shapes, requiring continuous 
real-time decision-making.

Low efficiency and scalability, with a high 
skill requirement and inconsistent solution 
quality.

High complexity, long computational 
time, manual adjustments, and ineffective 
clustering.

The framework did not use nesting 
environments during training, resulting in 
inefficiencies in time and material waste 
reduction for irregular parts.

Insufficient resources, long solution times 
for large problems, heuristics trapped in 
local optima, and machine learning 
techniques dependent on the quality of the 
training set.

Inefficiency in reducing points and 
increased time required to find optimal 
solutions with defects.

The use of a single heuristic strategy lacks 
universality, limiting the ability to find 
optimal solutions.

Insufficient task information extraction 
and a low number of edges affect 
performance, with dependency on the time 
parameter.

Potential developments

Explore the 2BP variant without the 
guillotine constraint, address real-world 
limitations, and apply a goal-driven 
approach to other problem types.

Investigate metaheuristic approaches and 
develop comprehensive benchmark 
datasets and instance generators.

Enhance overlap minimization, improve 
initial positioning, create adaptive warm-
start strategies, and refine iterative 
strategies using ML or adaptive 
algorithms.

Develop machine learning and deep 
learning algorithms, utilizing 
reinforcement learning for sequential 
optimization.

Allow free laser head movement and use 
an RL-based Segmented Genetic 
Algorithm (RLSGA).

Improve stability and utilization by 
developing advanced heuristic algorithms, 
enhancing real-time decision-making, and 
integrating sophisticated vision systems 
and feedback mechanisms.

Develop efficient network solutions, 
optimize parameters and training sets, 
explore transfer mechanisms, and apply 
them to 2D nesting problems.

Reduce computational time, handle 
diverse shapes, and incorporate 
sophisticated deep learning models with 
dynamic arrangement orders.

Design realistic nesting environments for 
training and develop smart nesting 
algorithms for layout problems.

Integrate advanced optimization 
techniques such as metaheuristics, 
reinforcement learning, and deep learning, 
and explore applications of genetic 
algorithm-linear programming (GA-LP).

Incorporate recent discrete methods, such 
as “meet in the middle”, to enhance upper 
bound values and improve efficiency.

Convert irregular shapes into rectangles or 
triangles to optimize material utilization.

Utilize edge embedding, integrate 
structural encoding innovations, and 
consider the use of a master node.

Suggestions for improving

Implement sophisticated diversification, 
fine-tune parameters, and refine 
multithreaded implementations.

Apply metaheuristic techniques, combine 
constructive algorithms with local search, 
and explore voxel representations for 
different resolutions.

Incorporate advanced heuristics, use 
hybrid approaches, leverage parallel 
processing for larger instances, and 
implement dynamic adjustment 
mechanisms.

Integrate diverse optimization techniques, 
utilize advanced learning models, and 
implement improved exploration 
mechanisms.

Use part-cutting constraints, apply 
RLSGA for global solutions, and enhance 
laser head movement flexibility.

Enhance vision system accuracy, improve 
the real-time feedback loop, develop 
algorithms for handling varied shapes, and 
incorporate machine learning for 
predicting the best stacking order.

Construct efficient network solutions, 
optimize parameters, improve 
generalization, and enhance residual 
material utilization.

Utilize DL-based clustering and geometric 
data models, improve feature alignment, 
and expand the training dataset.

Design a realistic nesting environment and 
replace metaheuristics with a learning-
based approach for the CVRP problem.

Integrate the LP phase within GA 
dynamically, explore advanced 
optimization techniques, and improve 
algorithm performance.

Utilize recent discrete methods, explore 
techniques for refining upper bound 
values, and reduce computational times.

Apply multiple heuristic strategies, 
improve genetic algorithms, and enhance 
solution diversity.

Enhance global performance through node 
and edge embeddings, structural encoding 
innovations, and increased variability in 
dataset generation.
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To simplify the evaluation in Table 5, the majority of 
shortcomings of the proposed algorithm are categorized 
based on design variables: bin packing, strip packing, and 
hybrid packing. This categorization provides a structured 
approach to identifying and addressing common issues fre‐
quently encountered during algorithm development. By 
focusing on these recurring problems, future enhancements 
can avoid similar pitfalls, leading to more robust and effi‐
cient solutions. Additionally, the categorization helps iden‐
tify clear patterns for future development by examining 
papers with well-defined and structured deficiencies. This 
method simplifies the evaluation process and ensures that 
the development is guided by a thorough understanding of 
past shortcomings. By adopting this approach, developers 
can prioritize improvements that address the most critical 
issues, ensuring that future algorithms are both innovative 
and practical. The ultimate goal is to establish a more effi‐
cient development cycle that builds on previous advance‐
ments, leading to increasingly sophisticated and effective 
algorithms.

Gunbeyaz et al. (2022) focused on improving productiv‐
ity in ship recycling through discrete event simulation. 
However, their nesting optimization algorithm has several 
limitations, including a lack of transparency in the current 
tools, inadequate coverage of all activities within ship 
recycling yards, and limited flexibility in process modifica‐
tion. Future developments should aim to support decision-
making for equipment usage, develop user-friendly frame‐
works to optimize yard productivity and consider both 
CAPEX and OPEX for new technologies. Additionally, 
more case studies are needed to identify risks associated 
with technologies such as plasma cutters. Improvements 
should focus on enhancing productivity through compre‐
hensive optimization and flexible process adjustments.

Hamada et al. (2019) presented an automatic nesting 
system that employs the branch-and-bound method. How‐
ever, the GA-based approach in this study suffers from 
inefficiency in computation time, a suboptimal one-point 
search method, and limited arrangement options with the 
BL method. Future improvements should address the combi‐
natorial explosion in methods such as BL and GA, enhance 
the search for arrangement positions, and retain multiple 
intermediate proposals. The algorithm requires a broader 
search area for better arrangement plans and should apply 
the branch-and-bound method to decompose complex 
problems into more manageable subproblems.

Xu and Yang (2022) proposed a steel plate cutting opti‐
mization algorithm based on a genetic algorithm with real 
number coding. The main drawback of this algorithm is its 
reduced global search capability. Future research should 
focus on improving the model’s generalizability and appli‐
cability to various cutting processes, as well as managing 
packing solutions for different raw material sizes. Enhanc‐
ing the algorithm will involve exploring underutilized 

regions of the solution space to improve the global search 
capability.

Fang et al. (2023a) developed a hybrid reinforcement 
learning algorithm to address 2D irregular packing prob‐
lems. However, the algorithm has several shortcomings, 
including poor universality, susceptibility to local optimum 
traps, and high computational costs. Future development 
should focus on leveraging machine learning and deep 
learning algorithms for sequential packing optimization, 
utilizing reinforcement learning to model sequential deci‐
sion problems as Markov decision processes. To enhance 
the algorithm, it is essential to integrate diverse optimiza‐
tion techniques, utilize advanced learning models such as 
deep reinforcement learning, and implement improved 
exploration mechanisms to avoid local optima.

Research by Calabrese et al. (2022) developed a nesting 
algorithm aimed at optimizing part placement in additive 
manufacturing. However, this algorithm operates only in 
the XY plane, limiting its applicability to three-dimensional 
nesting, and does not consider the qualitative aspects of 
printed components. Future development should integrate 
the Z-axis, address qualitative factors such as surface fin‐
ish and structural integrity, and enhance compatibility with 
commercial 3D printing systems for advanced processes 
such as selective laser melting. Additionally, improvements 
should introduce technological parameters specific to addi‐
tive manufacturing, incorporate iterative processes to ensure 
accuracy and develop flexible integration strategies for vari‐
ous software environments.

The optimization algorithms discussed can be catego‐
rized into strip packing, bin packing, and hybrid packing. 
Strip packing, as demonstrated by Hamada et al. (2019), 
aims to minimize material waste by arranging parts in a 
strip shape but faces challenges such as computational 
inefficiency and suboptimal placements. The aim of bin 
packing, explored by Xu and Yang (2022), is to maximize 
space utilization in containers, but the method struggles 
with maintaining the global nature of the search solution 
and managing small-scale problems. Hybrid packing, as 
highlighted by Fang et al. (2023a), combines elements of 
both approaches to address irregular packing problems but 
encounters issues such as local optimum traps and high 
computational costs.

Future development directions for packing algorithms 
should focus on addressing combinatorial explosions in 
strip packing by enhancing search methods and preserving 
intermediate proposals. Additionally, improving the gener‐
alizability of bin packing models for various cutting pro‐
cesses is essential, along with advancing machine learning 
techniques for hybrid packing. Suggested improvements 
include broadening the search area in strip packing, explor‐
ing less characterized solution spaces in bin packing, and 
integrating diverse optimization methods in hybrid packing.

Implementing these algorithms across various software 
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environments can enhance their flexibility and usability, 
making them more accessible to a broader range of users, 
including non-experts. Developing user-friendly interfaces 
and integration tools that allow seamless application in dif‐
ferent industrial settings would significantly increase adop‐
tion. Ensuring that these algorithms are easily modifiable 
and adaptable to specific user needs will further improve 
their practicality and effectiveness. In summary, the primary 
directions for the future development of these packing 
algorithms are to address combinatorial explosions in strip 
packing by refining search methods and preserving inter‐
mediate proposals and to enhance the generalizability of 
bin packing models for various cutting processes. Advanc‐
ing machine learning techniques for hybrid packing is also 
crucial. Expanding the search area in strip packing, explor‐
ing less explored solution spaces in bin packing, and incor‐
porating diverse optimization strategies in hybrid packing 
are key steps forward. Additionally, integrating these algo‐
rithms into various software environments will enhance 
their flexibility and usability, leading to more robust and 
adaptable solutions for a range of packing problems. By 
embracing these advancements, we can achieve more effi‐
cient, reliable, and scalable packing solutions that better 
meet the needs of modern industrial applications.

6  Conclusions

The use of various nesting algorithms in shipbuilding 
has significantly improved material utilization, reduced 
waste, and enhanced overall production efficiency. These 
algorithms can be classified into exact, heuristic, meta‐
heuristic, and hybrid categories, with each offering distinct 
benefits for nesting optimization. Exact algorithms pro‐
vide precise solutions but are often hindered by high com‐
putational times. Heuristic algorithms deliver faster, 
more practical solutions, although they may not always 
achieve the optimal result. Metaheuristic algorithms offer 
a balanced approach, optimizing both solution quality 
and computational efficiency, making them particularly 
suitable for complex nesting challenges. Hybrid algo‐
rithms combine the strengths of different approaches, of‐
fering robust and efficient solutions. A systematic review 
of these algorithms highlights their performance across 
various criteria, emphasizing their practical applicability 
in real-world shipbuilding scenarios. This comprehensive 
evaluation underscores the importance of selecting the 
most effective algorithm to optimize material usage, re‐
duce costs, and improve production timelines, ultimately 
promoting sustainable and efficient shipbuilding practices. 
Moreover, ongoing research suggests potential advance‐
ments, such as integrating AI, machine learning, and real-
time adaptability, to further enhance the efficiency and ef‐
fectiveness of nesting solutions. Overall, nesting algo‐

rithms are essential tools for enhancing productivity and 
sustainability in shipbuilding, with broad applications 
across various manufacturing sectors.
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