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Abstract
Considering the uncertainty of the speed of horizontal transportation equipment, a cooperative scheduling model of multiple equipment 
resources in the automated container terminal was constructed to minimize the completion time, thus improving the loading and unloading 
efficiencies of automated container terminals. The proposed model integrated the two loading and unloading processes of “double-trolley quay 
crane + AGV + ARMG” and “single-trolley quay crane + container truck + ARMG” and then designed the simulated annealing particle swarm 
algorithm to solve the model. By comparing the results of the particle swarm algorithm and genetic algorithm, the algorithm designed in this 
paper could effectively improve the global and local space search capability of finding the optimal solution. Furthermore, the results showed 
that the proposed method of collaborative scheduling of multiple equipment resources in automated terminals considering hybrid processes 
effectively improved the loading and unloading efficiencies of automated container terminals. The findings of this study provide a reference for 
the improvement of loading and unloading processes as well as coordinated scheduling in automated terminals.

Keywords  Automated terminal; Collaborative scheduling; Hybrid process; Simulated annealing particle swarm algorithm; Uncertainty; 
Scheduling Solutions

1  Introduction

With the development of shipping trade, the port container 
throughput has been rising continuously. In fact, China’s 
container throughput had grown from 163.67 million TEU 
in 2011 to 296 million TEU in 2022 according to data from 
the Ministry of Transport. As the load of container terminals 
continues to increase, this leads to greater requirements for 
the efficiency of terminal operations. At the same time, this 
promotes the reform and innovation of container terminal 

facilities and equipment, along with loading and unloading 
processes. Among them, “quay crane(QC) + AGV + auto‐
matic rail-mounted gantries (ARMG)” and “quay crane + 
container truck + ARMG” are the two most typical loading 
and unloading processes in current automated container 
terminals. As such, many scholars have studied the problem 
of collaborative scheduling of equipment resources within 
these two loading and unloading processes.

For example, regarding the joint scheduling study of 
automated container terminals, Meersmans and Wagelmans 
(2001) first proposed the joint loading and unloading opera‐
tion process of AGV, quay crane, and ARMG in the automat‐
ed terminal. Then, they used the directional search and 
branch and bound methods to obtain the minimum com‐
pletion time. Kim and Lee (2010) proposed a schedule im‐
provement algorithm based on a simple neighborhood 
search. They referred to the results of Meersmans and 
Wagelmans (2001) to study all operations of automated stack‐
ing cranes (ASCs), rail-mounted gantry cranes, and automat‐
ed guided vehicles (AGVs) with the goal of improving the 
efficiency of automated container terminals. The method is 
also evaluated using a simulation study. Dkhil et al. (2013) 
similarly optimized the QC-AGV-ASC planning problem 
in automated container terminals by proposing three math‐
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ematical models with the aim of minimizing the loading 
time and the number of vehicles required. The first model 
considers a single QC and a single ASC, the second model 
considers multiple QCs and a single ASC, and the third 
model considers multiple QCs and multiple ASCs. In addi‐
tion, the solution was performed using Cplex. Skinner et al. 
(2013) studied the scheduling of several types of equip‐
ment in a container terminal. A genetic algorithm (GA) -
based optimization method is proposed to reduce the 
overall time cost of container transportation at automated 
container terminals. Homayouni et al. (2012) considered a 
split-platform automatic storage/retrieval system for the in‐
tegrated scheduling problem of loading and unloading 
equipment in automated container terminals. Then, they 
developed a mixed-integer programming model, along 
with a simulated annealing algorithm, to find a near-opti‐
mal solution to the problem in a short time.

Yang et al. (2018) investigated the integrated scheduling 
of QC, AGVs, and ARMGs, along with the path planning 
problem of AGVs, to reduce the conflict and congestion 
problems of AGVs as a way to improve operational efficiency. 
In their paper, a two-level programming model is proposed, 
and a congestion prevention two-level GA (CPR-BGA) 
is designed to solve the model. Zheng et al. (2010) pro‐
posed an integrated equipment scheduling model for an au‐
tomated container terminal using twin 40' cranes. The pro‐
posed model generates equipment scheduling plans as well 
as yard storage plans and vessel allocation plans guided by 
the goal of reducing the turnaround time of each container 
vessel that stays at the berth. An efficient heuristic is also 
designed to solve the integrated scheduling problem. Nu‐
merical experiments show efficient performance and satis‐
factory results. Tang et al. (2014), Wu (2018), and Kavesh‐
gar et al. (2015) developed mixed-integer programming 
models for the joint scheduling of quay cranes and contain‐
er trucks as well as designed improved PSA, GA and GA 
combined with a greedy algorithm to solve the problem of 
loading and unloading operations. Cao et al. (2010a, 2010b) 
proposed a mixed-integer programming model for the co‐
ordinated scheduling of a single quay crane and multiple 
container trucks. They also proposed an integrated sched‐
uling model for container trucks and ARMGs. The former 
used GAs and improved Johnson’s rule heuristics algo‐
rithm to improve the efficiency of the solution, while the 
latter solved the problem of the Benders mutation.

Han and Mou (2014) established a cooperative sched‐
uling model for quay cranes and container trucks consider‐
ing the uncertainty of container truck arrival time. Their 
objective was to minimize the completion time of container 
trucks and solve the problem using an improved GA. 
Meanwhile, Lu and Le (2014) developed a model to mini‐
mize the total working time of the quay crane, the container 
truck, and the ARMG, considering several factors, including 
the uncertainty in the travel speed of the internal contain‐

er truck, the horizontal running speed of the ARMG and 
the loading and unloading speed. They were able to solve 
this using a particle swarm algorithm (PSA). Lau and Zhao 
(2008) proposed a mixed-integer programming model for 
the integrated scheduling of QC, AGVs, and automated 
yard cranes (AYCs). Their proposed model refines the inter-
equipment constraints and considers the loading and unload‐
ing bidirectional flow problem with the aim of minimizing 
the operational delays of QCs and the total travel time of 
AGVs and AYCs. They also proposed a heuristic called mul‐
tilayer GA (MLGA) for obtaining near-optimal solutions to 
the integrated scheduling problem and an improved heuris‐
tic called GA plus maximum matching (GAPM) to reduce 
the computational complexity of the MLGA method. The 
performance of GAPM is also compared with that of the 
MLGA method. Tian et al. (2018) took time minimization 
as the goal and considered the mode of loading and unload‐
ing operations to establish a mixed-integer programming 
model. They then adopted the multilayer GA and the coop‐
erative scheduling method, combining GA and heuristic 
strategy to solve the problem.

Heuristic algorithms, such as PSA and simulated annealing 
(SA) algorithm, have been widely used in solving the coop‐
erative scheduling optimization problem of automated con‐
tainer terminal equipment. For example, Liu and Liu (2016) 
proposed a cooperative scheduling model for quay cranes 
and container trucks. The proposed PSO-AFSA, which com‐
bines the global optimal search capability of the particle 
swarm optimization (PSO) algorithm and the powerful lo‐
cal search capability of the artificial fish swarm algorithm 
(AFSA), aims to solve the problem by generating multiple 
primitive paths for selecting the set of nodes for the optimi‐
zation problem, thus avoiding the prematureness of PSO. 
Hsu and Wang (2020) studied the berth allocation and 
shore bridge scheduling problem and attempted to use var‐
ious heuristic/metaheuristic methods, including first-come, 
first-served (FCFS), PSO, modified PSO (PSO2), and 
multi-PSO (mPSO), to determine a better approach. Subse‐
quently, Hsu et al. (2021) investigated the scheduling export 
container problem using both yard cranes and yard trucks in 
the container terminal yard side area. They assembled load 
balancing heuristics, GA, and PSO to develop an ensemble 
SGPSO algorithm for solving the problem. Simulation 
results indicated that the SGPSO outperformed the single 
algorithm. Jonker et al. (2021) used a hybrid flow shop 
format to construct a bidirectional flow operation scheduling 
model for automated container terminals. The coordination 
model is solved by a tailored SA algorithm. Nourmoham‐
madzadeh and Voss (2022) proposed an integrated multi‐
objective mathematical model that considers the uncertainty 
of the arrival time of vessels and the failure time of quay 
cranes, which may vary depending on certain scenarios. The 
exact solutions to small-scale problems were obtained using 
Gurobi software. Meanwhile, for large-scale complex prob‐
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lems, two SA-based meta-heuristics were used for the solu‐
tion: multiobjective SA (MOSA) and Pareto-simulated 
annealing methods with a new solution encoding scheme. 
The PA has the advantages of fast convergence and simple 
structure, but its search accuracy is low, and it tends to fall 
into local convergence during the solution process. In com‐
parison, the SA algorithm can accept solutions worse than 
the current one with a certain probability. In this way, it is 
possible to exceed the local optimal solution and reach the 
global optimal solution.

Some scholars have successfully combined the two algo‐
rithms and applied them to the solution of various optimi‐
zation problems. For example, Abbaszadeh et al. (2021) 
developed a mixed-integer linear programming model to 
minimize the maximum completion time in flexible flow 
shop scheduling problems. They then proposed two meta‐
heuristic algorithms (PSO and hybrid SA-PSO) to solve 
the model. The numerical experiments show excellent 
results. Furthermore, Abbaszadeh et al. (2021) reported 
that the SA-PSO algorithm can be extended to other sched‐
uling problems involving renewable resources and multiple 
objectives. Other scholars have applied the SA-PSO algo‐
rithm to parameter optimization problems. For example, 
Liu et al.(2022) introduced the SA algorithm into the tradi‐
tional PSO algorithm to form an adaptive SA-PSO algo‐
rithm. This algorithm enters the SA algorithm as an input 
quantity to calculate the probability of the particle becom‐
ing the global optimal solution and the optimal missile for‐
mation parameters after the PSO determines the individu‐
al best position and the global optimal position of a parti‐
cle. Although the SA-PSO algorithm has been applied to var‐
ious optimization problems, the use of such a solution to ad‐
dress the automated container terminal scheduling prob‐
lem has not yet been realized.

Thus far, research on the collaborative scheduling of 
automated container terminals mostly focused on the collab‐
orative scheduling between equipment under the two loading 
and unloading processes of “quay crane + AGV + ARMG” 
and “quay crane + container truck + ARMG.” In compari‐
son, less consideration has been given to the uncertain 
factors in the loading and unloading process. In actual auto‐
mated terminal operations, it is becoming increasingly dif‐
ficult for a single loading and unloading process to meet the 
increasing loading and unloading demands. At the same 
time, this also causes a waste of terminal equipment resources. 
Given that these uncertain factors also have a great influence 
on the loading and unloading efficiency, it is therefore nec‐
essary to establish a multi-equipment resource joint schedul‐
ing scheme based on a hybrid process. This proposed solu‐
tion considers the uncertainties in the loading and unloading 
process, along with the terminal operation process and the 
characteristics of automated terminal equipment resources.

2  Mixing process problem description

The hybrid loading and unloading process proposed in 
this paper consists of two components: “double-trolley quay 
crane + AGV + ARMG” and “single-trolley quay crane + 
container truck + ARMG.” The quay crane and the con‐
tainer truck were used together and served one ship simul‐
taneously. As shown in Figure 1, there are double-trolley 
and single-trolley quay cranes on the shore. The goods 
unloaded by the single-trolley quay crane are transported 
by the inner container truck, while those unloaded by the 
double-trolley quay crane are transported by AGV. A fixed 
driving route was set. Next, we set up a horizontal trans‐
portation equipment exchange area in the yard to facilitate 
the interaction between AGV and ARMG as well as reduce 
equipment waiting time.

The uncertainty of the speed of the horizontal transport 
equipment (container truck and AGV) can greatly affect 
the connection between the quay crane and the ARMG. 
Thus, the heavy and no-load speeds of the horizontal trans‐
port equipment (container truck and AGV) were consid‐
ered uncertainty factors. Then, a collaborative scheduling 
model of automated terminal equipment resources under 
the hybrid process was constructed to minimize the com‐
pletion time of all tasks.

3  Model building

Considering the uncertainty of the speed of the container 
truck and AGV, an integer programming model was estab‐
lished in this work to describe the mixed process problem. 
The following assumptions were made in this study:

1) The lifting speeds of the quay crane and the ARMG 
are the same when loading and unloading, the acceleration 
and deceleration are not considered when moving, and the 
speed is kept constant.

2) The power of each AGV car is sufficient, and equip‐
ment failure is not considered.

3) Loading and unloading containers are of the same sizes.
The parameters and variables of the hybrid process sched‐

uling model are given in Table 1.
The decision variables for the hybrid process scheduling 

model are defined as follows:

yxl =
ì

í

î

ïïïï

ïïïï

1, When container x is assigned to horizontal 

    equipment l

0, Else

Zxxl =
ì

í

î

ïïïï

ïïïï

1, After the lth horizontal transportation equipment has

    transported x, it will deliver the next container x'

0, Else
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The overall mathematical model of the hybrid process 
scheduling model is described as follows:

Objective function:

T = min max
x ∈ X, a ∈ A

{LT G
xa} (1)

T1 = min
ì
í
î

ïï∑
x = 1

X ∑
l = 1

L

txl yxl +∑
x = 1

X ∑
x' = 1

X ∑
l = 1

L

Zxx'l txx'l

+∑
x = 1

X ∑
q = 1

Q ∑
l = 1

L

wxql +∑
x = 1

X ∑
a = 1

A ∑
l = 1

L

wxal

ü
ý
þ

ïï
(2)

Eq. (1) is the overall objective function and represents 
the final completion time minimization. Eq. (2) is the indi‐
vidual container task completion time minimization, which 

is the subsidiary objective. Here, ∑
x = 1

X ∑
l = 1

L

txl yxl represents the 

heavy-load time of the horizontal transportation equipment 

(AGV, container truck), ∑
x = 1

X ∑
x' = 1

X ∑
l = 1

L

Zxx'l txx'l represents the 

horizontal transportation equipment (AGV, container truck) 

no-load time, and ∑
x = 1

X ∑
q = 1

Q ∑
l = 1

L

wxql represents the time for hori‐

zontal transportation equipment (AGV, container truck) to 
wait for the quay crane (double-trolley and single-trolley 
quay crane).

Restrictions:

∑
l = 1

L

yxl = 1,  ∀x ∈ X, l ∈ L (3)

∑
l = 1

L

Zxx'l = 1, ∀x, x' ∈ X, l ∈ L (4)

T e
xq + β1 + β2 + ≤ T E

xq, ∀x ∈ X, q ∈ S (5)

T e
xq + β3 ≤ T E

xq, ∀x ∈ X, q ∈ D (6)

ET G
xa + β4 ≤ LT G

xa, ∀x ∈ X, a ∈ A (7)

Wxql = max{T E
xq − T l

xq, 0}, ∀x ∈ X, q ∈ Q, l ∈ L (8)

Wxal = max{ET G
xa − T l

xq − txl, 0}, ∀x ∈ X, a ∈ A, q ∈Q, l ∈ L (9)

T D
xq ≤ T d

xq, ∀x ∈ X, q ∈ S (10)

txl =
dxl

η1

, ∀x ∈ X, l ∈ V (11)

txx'l =
dxx'l

η2

, ∀x ∈ X, l ∈ V (12)

txl =
dxl

η3

, ∀x ∈ X, l ∈ J (13)

Figure 1　Schematic Figure of the Automated Terminal Mixing Process
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txx' j =
dxx'l

η4

, ∀x ∈ X, l ∈ J (14)

T e
xq + txl + wxql + txx'l + wx'al = T e

x'q, ∀x, x' ∈ X, l ∈ J, q ∈ D

(15)

T e
xq + txl + wxql + txx'l + wx'al = T e

x'q, ∀x,x' ∈ X, l ∈ V, q ∈ S

(16)

Eq. (3) indicates that a container task is transported by a 
single AGV, while Eq. (4) indicates the continuous opera‐
tion of horizontal transportation equipment. Eqs. (5) – (6) 
express the relationship between the moment of the start 
of operation and the moment of the end of operation of the 

container task x on the shore bridge q, respectively. Eq. (7) 
represents the relationship between the moment of start of 
operation and the moment of end of operation of container 
task x on ARMG a. Eq. (8) represents the waiting time under 
the shore bridge when the horizontal transport equipment 
operates container x, while Eq. (9) represents the waiting 
time under the ARMG when the horizontal transport equip‐
ment operates container x. Eq. (10) ensures that the main 
trolley of the double-trolley quay crane is not delayed, while 
Eqs. (11) and (12) represent the times of AGV heavy-load 
and no-load, respectively. Eqs. (13) and (14) represent the 
time when the container truck is overloaded and unloaded, 
respectively. Eq. (15) represents the time constraint for the 
container truck to start the next delivery after completing 

Table 1　Parameters and variables

Variable

Q

S

J

X

T E
xq

T l
xq

txl

T d
xq

wxal

dxl

η1

η3

β1

β3

ET G
xa

D

L

V

A

T e
xq

T l
xa

T D
xq

txx'l

wxql

dxx'l

η2

η4

β2

β4

LT G
xa

Explanation

Collection of quayside cranes, q ∈ Q = S ∪ D

Collection of double-trolley quay cranes, (1, 2, 3…s) ∈ s

Collection of container trucks, (1, 2, 3…s) ∈ S

Collection of containers, (1, 2, 3…x) ∈ X

The moment when the quay crane q loads the container x to the horizontal transport equipment

The moment when the horizontal transport device l reaches QC q for task x.

Time taken for the lth horizontal transport equipment to transport container x from the quay crane to the ARMG

The planned operation time of the main trolley of the quay crane q for the xth container

The waiting time of the lth horizontal transport equipment that transports container x under the on-site crane a

Distance of container x that is heavily loaded by horizontal transport equipment l

Heavy loaded speed of the AGV trolley v, which is a random variable

Heavy loaded speed of container truck j, which is a random variable

The time required for the main trolley to take/put the container on the double-trolley quay crane S

Time required for taking/putting container x by a single-trolley quay crane d

The moment when the ARMG a starts working on the container

Collection of single-trolley quay cranes, (1, 2, 3…d) ∈ D

Collection of horizontal transport equipment, l ∈ L = J ∪ V

Collection of AGVs, (1, 2, 3…v) ∈ V

Collection of ARMG, (1, 2, 3…a) ∈ A

The moment when quay crane q starts to process container x

The moment when the horizontal transport device l reaches ARMG a for task x

The actual working time of the main trolley of the quay crane q to the xth container

The empty travel time of the horizontal transport equipment l to the location of the next container x' upon the delivery of container x

The waiting time of the first horizontal transport equipment lth that transports containers x under the quay crane q

The empty distance of horizontal transport equipment l from container x to container x'

No-load speed of AGV v, which is a random variable

No-load speed of container truck j, which is a random variable

The average time required for the gantry trolley of the quay crane S to take/put the container

The average time required to complete a taking/putting operation on bridge a

The time when the ARMG a ends the operation of the container
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the container task. Finally, Eq. (16) represents the time 
constraint for starting the next delivery once the AGV 
completes the container task.

4  Algorithm design

The problem studied in this paper is categorized as an NP-
hard problem, which is difficult to solve with an exact algo‐
rithm. Thus, in this work, we considered the use of a heu‐
ristic algorithm to solve it. PSO has the characteristics of fast 
convergence speed and few parameters to be set. Thus, it is 
widely used in solving scheduling problems, even though 
its shortcomings are quite obvious. Furthermore, it can pre‐
maturely fall into the local optimum. In comparison, the 
SA algorithm has better searchability, which can reduce the 
possibility of the algorithm falling into the local optimum. 
Therefore, in the design of the algorithm proposed in this 
paper, the PSO and the SA algorithms were integrated to 
form the SA-PSO algorithm, which is used to solve the 
model.

4.1  Parameters and variables

In this paper, multilayer real-coded particles were used to 
represent the joint scheduling problem of hybrid processes. 
The coding method of the x task consists of a quay crane 
unloading q loads, as well as the l horizontal transport 
equipment carrying them horizontally and transporting 
them to the container area by theaARMG.

4.2  Fitness function

The present study aimed to minimize the completion 
time. Thus, in the SA-PSO algorithm, the objective func‐
tion formula (1) is directly used as the index of the fitness 
function to evaluate the superiority of particles.

4.3  Initial particle design

A quality scheduling solution maximizes individual 
machines to perform operations; where machine condi‐
tions are the same, the number of tasks performed by each 
machine should be roughly homogeneous. Based on the 
characteristics of the scheduling problem, the optimal 
scheduling solution has a relatively balanced distribution 
of tasks, which means that the number of jobs per device 
should be the same. To improve the quality of the initial 
particles and promote the convergence speed of the algo‐
rithm in the initial stage, the tasks are randomly and evenly 

allocated to each quay crane, wherein each horizontal trans‐
port equipment is under the condition of ensuring random‐
ness, as shown in Figure 2.

4.4  Acceptance criteria

In the operation of quay cranes and horizontal equip‐
ment, the number of horizontal transportation equipment is 
greater than the number of quay cranes. As such, if the ini‐
tial tasks of two quay cranes are handled by the same hori‐
zontal transportation equipment, both the quay crane and 
horizontal transportation equipment would be idle in the ini‐
tial stage, resulting in inferior solutions. Thus, the SA algo‐
rithm is integrated to accept inferior solutions and expand 
the iterative search range of the PSO algorithm. Based on the 
above analysis, the relationship between the two algorithms, 
PSO and SA, was established so that the two algorithms 
could be integrated as follows:
• After the PSO falls into a local optimum, the optimal 

particle loses the ability to guide the group to find a better 
solution, and other particles gather toward it, losing diver‐
sity. At this time, to search for the optimal solution in the 
neighborhood, the SA process is initiated, and the task of a 
quay crane is randomly inserted into the operation sequence 
of another quay crane (the insertion rules for horizontal 
transport equipment and ARMGs are the same). If it proves 
to be a better solution, the previous optimal particle is 
replaced; otherwise, the solution is accepted according to 
a certain probability and expands the search range.
• As the number of iterations increases, PSO tends to fall 

into local convergence. In this paper, the algorithm resources 
were set to gradually tilt toward SA, such that when PSO 
was transformed to SA, the iteration stop limit of PSO was 
gradually assigned to SA. As a result, SA was iterated 
more frequently.

4.5  SA-PSO process

The specific solution steps are as follows:
Step 1: Initialize the population, set up the related parame‐

ters, and obtain the quay crane allocation plan and the order 
of unloading containers from each quay crane;

Step 2: According to the Metropolis criterion, calculate 
and normalize the fitness value of each particle at the current 
temperature. Then, identify the global optimal solution as 
follows:

v( )2 = ω·v( )1 + c1·rand·( xLocalbest − x( )1 )
+c2·rand·( xGbest − x( )1 ) (17)

x( )2 = x( )1 + v( )2 (18)

Step 3: Update the speed and position using formula 
(17) and formula (18). Calculate the fitness value fx and 

update the global optimal position xGb.
Step 4: Temperature judgment: if the current tempera‐

ture is greater than the final temperature, go to Step 5 after 
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cooling; otherwise, go to Step 5 directly.
Step 5: If the termination condition is satisfied, output 

the optimal solution; otherwise, return to Step 2.
The specific flow chart is shown in Figure 3.

5  Case analysis

5.1  Study parameters

This article took the data from the Xiamen YH terminal 
in China as an example. There were 8 container areas in 
the terminal, each equipped with an ARMG. The number 
of container tasks was 120. Furthermore, there were three 
single-trolley quay cranes and three double-trolley quay 
cranes, which were used with six container trucks and six 
AGVs, respectively. The speeds of container trucks and 
AGVs were set as randomly generated variables within a 
reasonable range, where the heavy-load speed was less than 
the no-load speed. Based on the data of the YH terminal, 
the single operation time of the main and gantry trolleys of 
the double-trolley quay crane was set as a fixed value, and 
the operation time β1 was set to 25 s. The single operation 
time β3 of a single-trolley quay crane was 60 s, while the 
ARMG unit operation time β4 was set to 55 s. In addition, 
l1, l2, and l3 were the horizontal and vertical distances of 
the horizontal transportation area of the wharf and the dis‐
tances of the yard operation area, which were 410, 674, and 
236 m, respectively. We set population size N = 60, dimen‐
sion D represented the number of tasks, in which the 
upper and lower bounds of particle position xmax were 200 
and −200, respectively, the maximum speed vmax of particle 
movement was 400, the learning factor was 1.2, and the 
annealing coefficient c was 0.99. The evaluation fitness 
function was also generated to find the global optimal posi‐
tion xGb. The configuration of the computing environment 
used in the experiment is shown in Table 2, while the spe‐
cific experimental parameters are shown in Table 3.

To verify the validity of the mathematical model designed 
for this problem, CPLEX Studio was used to transform the 
mathematical model to solve it. However, due to the high 
complexity of the problem, 30 container tasks were set to 
be solved. To verify the validity of the established mathe‐
matical model, the results were also compared with those 
obtained from the SA-PSO algorithm proposed in this paper. 
The solution results are shown in Table 4.

An analysis of the solution results of CPLEX and the 
algorithm designed in this paper for 30 container tasks 
shows a deviation rate of 0.17% in absolute value, indicat‐

ing that the optimal solution is similar. This means that the 
designed mathematical model is reasonable for the descrip‐
tion of the operational flow of the problem.

5.2  Example solution and comparative analysis

5.2.1 Example solution
The SA PSA was used to solve the collaborative sched‐

uling model of the hybrid process. The experiment was 
carried out 50 times. The optimal scheduling mode solution 
of the hybrid process was obtained, as shown in Figure 4 
and Table 5.

Based on the calculation results, the final completion 
time of the optimal scheduling result of the hybrid process 
obtained by the SA-PSO algorithm was 2 161 s, and the 
“single truck quay crane + container truck + ARMG” and 
“two truck quay crane + AGV + ARMG” processes com‐
pleted 60 containers each. The best task sequences are shown 
in Table 5. The solution algorithm program obtained the 
scheduling results within 30 s, thereby verifying the effec‐
tiveness of the algorithm we designed for this problem.

5.2.2 Comparative analysis of calculation examples
To verify the effectiveness of the hybrid process, a single 

loading and unloading process (single-trolley quay crane + 
container truck + ARMG, double-trolley quay crane + AGV + 
ARMG) was designed and compared with the hybrid pro‐
cess proposed in this paper. In the process of “single-trolley 
quay crane + container truck + ARMG,” 6 single-trolley 
quay cranes, 8 ARMGs, and 12 container trucks were set up, 
and the speed was randomly set within a reasonable speed 
range. In the process of “double-trolley quay crane + AGV + 
ARMG,” 6 double-trolley quay cranes, 8 ARMGs, and 12 
AGVs were set up, and the speed was also randomly set 
within a reasonable range. The SA-PSO algorithm was used 
to solve the problem, and the solution results are shown in 
Figures 5 and 6.

As shown in the analysis and calculation results in Table 6, 
in terms of the optimal container scheduling results obtained, 
the optimal scheduling time of the hybrid process is 2 161 s, 
and the optimal scheduling time of the “single-trolley 
quay crane + container truck + ARMG” is 2 620 s. The 
optimal scheduling time of “double-trolley quay crane + 
AGV + ARMG” is 3 660 s. Compared with the mixed pro‐

Figure 2　Initial population
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cess, the single loading and unloading processes increased 
by 459 s and 1 499 s, respectively, indicating that the mixed 
process is more effective in the same scheduling problem. 
This finding proves the superiority of the mixed schedul‐
ing process of the automated terminal. Second, in terms of 

CPU time for running and solving, the CPU time required 
for the hybrid process solution is 30 s, the time required 
for the “single-trolley quay crane + container truck + AR‐
MG” is 80 s, and the time required for the “double-trolley 
quay crane + AGV + ARMG” is 130 s, the solution time of 

Figure 3　Flow chart of the simulated annealing particle swarm optimization (SA-PSO) algorithm
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the hybrid process is greatly improved compared with that 
of the single process. Finally, it can be seen from the con‐
tainer task scheduling Gantt charts (Figures 5 and 6) that 
the scheduling of the hybrid process is more concentrated, 
the task contact is carried out, and the task arrangement is 

more reasonable.

5.2.3 Algorithm comparative analysis
A PSO and a GA were designed for the comparative 

solutions to verify the effectiveness of the proposed SA-
PSA, and the data settings were the same as those of the 
SA-PSO algorithm.

After calculation and solution, the optimal scheduling 
time of the hybrid process obtained by the PSA is 2 438 s, 
and the CPU time for solving is 111 s. Compared with the 
SA-PSO algorithm, the optimal scheduling time and CPU 
time increased by 277 s and 81 s, respectively. Furthermore, 
as shown in the PSO optimal scheduling Gantt chart in 
Figure 7, the hybrid process scheduling scheme solved 
by the PSA is more scattered compared with the scheme 
obtained by the SA-PSO, along with greater equipment 
waiting time.

The optimal scheduling time of the hybrid process obtained 
by selecting the enhanced elite-preserving multichromosomal 
GA is 2 204 s, which is 43 s longer than the optimal sched‐
uling time of the SA-PSO algorithm. Thus, it takes a long 
CPU time to solve the problem using the GA. It can be seen 
from the optimal scheduling Gantt chart of the GA mixed 
process (Figure 8) that the scheduling results obtained by 
the GA are also more scattered compared with the scheduling 
results obtained by the SA-PSO algorithm. Furthermore, 
the equipment idle waiting time is long. Thus, in terms of 
the scheduling results, the performance of the device con‐
nection is not as good as that of the SA-PSO algorithm.

Figures 9 and 10 show the iterative speed of the algo‐
rithm It could be seen that the iterative convergence speed 
of the SA-PSO is faster, and the algorithm is more effi‐
cient. In terms of algorithm optimization, it can be seen 
from Figure 9 that in the initial stage of the algorithm solu‐
tion, SA-PSO has strong searchability, the solution gradi‐
ent descent is faster, and the optimal solution found is also 
better than that obtained using PSO alone.

The iterative process of solving the problem using the 
GA, the most commonly used solution to solve the sched‐
uling problem of automated container terminals, is shown 
in Figure 10.

As shown in Figure 10, the GA has better performance in 
the initial optimization and can quickly approach the approx‐
imate optimal solution. However, due to the complexity of 
the problem, the multichromosome real-number coding 
requires a considerable amount of computing resources, thus 
decreasing the iteration efficiency. The SA-PSO algorithm 
reached the approximate optimum after 40 iterations, while 
the GA reached the approximate optimum after 1 000 itera‐
tions. In terms of solution time, iteration times, and solu‐
tion results, the SA-PSO algorithm is superior to the PSO 
algorithm and the GA in the areas of iterative solution effi‐
ciency and superiority of the solution obtained.

The iterative convergence speed and running results of 
the SA-PSO, PSO, and GA are summarized in Table 7. 

Table 2　Experimental computing environment configuration

Project

Operating system

CPU

Running memory

Solver tool

Content

Windows 10 64位

Intel CORE i5 7th Gen

8.00 GB

MATLAB R2018b

Table 3　Calculation example parameter setting

Parameter

X

L

Q

A

β1 (s)

β2 (s)

β3 (s)

β4 (s)

l1 (m)

l2 (m)

l3 (m)

Experimental value

120

12

6

8

25

25

60

55

410

67

236

Table 4　Comparison of the CPLEX and SA-PSO solution results

Serial 
number

1

2

Algorithm 
type

CPLEX

SA-PSO

Number of 
mixing process 

equipment

6/12/8

6/12/8

Scheduling 
result/s

714.000

715.236

Solving for 
the absolute 

value of 
deviation

0.17%

Figure 4　SA-PSO for solving the mixing process scheduling
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As shown in the table, the SA-PSO algorithm has obvious 
advantages compared with the traditional PSO and GA under 
the three algorithm performance indicators of convergence 
speed, CPU calculation time, and scheduling result.

6  Conclusions

In this paper, a multi-equipment resource cooperative 
scheduling model was constructed for automated container 
terminals based on a hybrid process while considering the 
uncertainty of the speed of container trucks and AGVs. 
The single loading and unloading processes were com‐
pared with the hybrid loading and unloading processes pro‐
posed in this paper. The results of the improved SA-PSO 
algorithm were compared with the solution results of the 
PSO algorithm and the GA. As such, the effectiveness of 
the proposed hybrid process and the improvement method 
were verified.

As indicated by the results, the proposed hybrid process 
achieved superior scheduling results by comparison. Com‐
pared with the traditional single-process, automated con‐

Figure 7　Results of using the PSA for solving the mixing process 
scheduling problem

Figure 5　SA-PSO algorithm to solve a single-process (single-trolley 
quay crane + AGV + ARMG) dispatching

Table 5　Optimal scheduling solution for the mixing process

Process type

Single-trolley quay 
crane +container 
truck + ARMG

Double-trolley quay 
crane + AGV + 
ARMG

Scheduling

2→3→8→9→10→12→13→15→16→22→24→28→29→31→33→35→37→40→41→44→46→47→
48→49→50→53→55→56→57→59→60→62→67→69→70→71→73→78→80→81→83→84→85→

87→90→94→96→97→99→102→103→104→106→107→110→113→114→115→118→120

1→4→5→6→7→11→14→17→18→19→20→21→23→25→26→27→30→32→34→36→38→39→
42→43→45→51→52→54→58→61→63→64→65→66→68→72→74→75→76→77→79→82→86→

88→89→91→92→93→95→98→100→101→105→108→109→111→112→116→117→119

Completion 
time/s

2 161

Figure 6　SA-PSO algorithm to solve a single-process (double-trolley 
quay crane + AGV + ARMG) dispatching

Table 6　Optimal scheduling solutions for different processes

Process type

Hybrid process

Single trolley quay crane + 
container truck + ARMG

Double trolley quay crane + 
AGV + ARMG

Algorithm
 type

SA-PSO

SA-PSO

SA-PSO

Scheduling 
result/s

2 161

2 620

3 660

Running time 
of CPU/s

30

80

130
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tainer terminal equipment scheduling research under tradi‐
tional deterministic factors, the terminal equipment sched‐
uling under the hybrid process, which considers the uncer‐
tain factors established in this paper, improved the overall 
coordination of the automated container terminal and the 
terminal service quality. These findings provide a refer‐
ence for the improvement of the automatic terminal load‐
ing and unloading process as well as the improvement of 

scheduling efficiency.
In terms of limitations, the operation modes of loading 

and unloading were not included in the research, and there 
was a lack of consideration for the conflict of horizontal 
transportation equipment. Thus, in future research, the 
loading and unloading collaborative operation modes, the 
congestion of horizontal transportation equipment, and the 
uncertainty of container volume could be considered. In 
this way, the proposed model would be more in line with 
the actual operation of automated container terminals, and 
their operation efficiency could be effectively improved.
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