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Abstract
Traditional direction of arrival (DOA) estimation methods based on sparse reconstruction commonly use convex or smooth functions to 
approximate non-convex and non-smooth sparse representation problems. This approach often introduces errors into the sparse representation 
model, necessitating the development of improved DOA estimation algorithms. Moreover, conventional DOA estimation methods typically 
assume that the signal coincides with a predetermined grid. However, in reality, this assumption often does not hold true. The likelihood of a 
signal not aligning precisely with the predefined grid is high, resulting in potential grid mismatch issues for the algorithm. To address the 
challenges associated with grid mismatch and errors in sparse representation models, this article proposes a novel high-performance off-grid 
DOA estimation approach based on iterative proximal projection (IPP). In the proposed method, we employ an alternating optimization strategy 
to jointly estimate sparse signals and grid offset parameters. A proximal function optimization model is utilized to address non-convex and non-
smooth sparse representation problems in DOA estimation. Subsequently, we leverage the smoothly clipped absolute deviation penalty (SCAD) 
function to compute the proximal operator for solving the model. Simulation and sea trial experiments have validated the superiority of the 
proposed method in terms of higher resolution and more accurate DOA estimation performance when compared to both traditional sparse 
reconstruction methods and advanced off-grid techniques.
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1  Introduction

The effectiveness of sonar in remotely detecting, locating, 

extracting, and recognizing target signals in underwater 
environments greatly depends on the signal processing tech‐
nology employed by underwater acoustic arrays. Among 
these technologies, DOA estimation plays a pivotal role in 
the realm of underwater acoustic array signal processing. 
In recent decades, there has been a proliferation of super-
resolution DOA estimation algorithms tailored for under‐
water detection. Notable examples include the multiple 
signal classification (MUSIC) method (Wagner et al., 2021) 
and the estimation of signal parameter via rotational invari‐
ance technique (ESPRIT) method (Li et al., 2020).

While subspace-based DOA estimation algorithms like 
MUSIC can achieve super-resolution DOA estimation, they 
are not without their limitations. For instance, these algo‐
rithms rely on eigenvalue decomposition of the data cova‐
riance matrix and the exhaustive search of all spatial angles, 
resulting in prohibitively high computational complexity 
(Guo et al., 2022). Furthermore, the majority of subspace-
based DOA estimation algorithms exhibit limited adapt‐
ability when confronted with scenarios involving small 
snapshots, low SNR, and correlated signals. In contrast, 
sparse reconstruction-based DOA estimation algorithms 
excel in adapting to such challenging conditions.

In recent years, the application of sparse signal represen‐
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tation (Chen et al., 2001; Donoho et al., 2006) and com‐
pressed sensing (Donoho, 2006) has emerged as a powerful 
mathematical tool in the realm of DOA estimation. Notably, 
Malioutov et al. (2005) introduced a groundbreaking sparse 
representation model based on the l1-norm penalty for DOA 
estimation, commonly known as the l1-SVD method. This 
method entails performing singular value decomposition 
(SVD) on the data matrix to reduce its dimensionality and 
subsequently solving it through a second-order cone (SOC) 
program. In parallel, Stoica et al. (2011) proposed the 
sparse iterative covariance basis estimation (SPICE) method 
for DOA estimation, centered around the minimization of 
covariance matching criteria. These sparse reconstruction-
based DOA estimation methods exhibit superior perfor‐
mance compared to traditional DOA estimation algorithms. 
However, a noteworthy limitation is their presumption that 
the DOAs of signals align precisely with predetermined 
angular grids, which is often overly idealistic. Consequently, 
these methods frequently encounter grid mismatch issues, 
leading to a reduction in DOA estimation accuracy.

In addressing the challenge of grid mismatch, researchers 
have introduced DOA estimation methods based on an 
off-grid model (Zhu et al., 2011; Gretsistas and Plumbley, 
2012; Jagannath and Hari, 2013; Tan et al., 2014; Wu et al., 
2018; Yang et al., 2013; Zhang et al., 2019). Zhu et al. 
(2011) employed the perturbation parameter method in 
DOA estimation, resulting in the development of a sparse 
total least squares method. Nevertheless, this method pres‐
ents difficulties in parameter selection. Yang et al. (2013) 
leveraged first-order Taylor expansion to construct an off-
grid model and introduced an off-grid sparse Bayesian 
inference (SBI) DOA estimation method. Tan et al. (2014) 
incorporated the structured error of the array manifold 
dictionary set into DOA estimation, proposing a model 
capable of jointly estimating sparse signals and grid offset 
errors. Zhang et al. (2019) adopted the iterative sparse pro‐
jection (ISP) model (Sadeghi and Babaie-Zadeh, 2016) as a 
sparse signal recovery model, coupling it with the first-order 
Taylor expansion off-grid model to create a high-perfor‐
mance DOA estimation method. Recently, Dai et al. (2024) 
introduced a second-order Taylor expansion off-grid model, 
demonstrating enhanced DOA estimation accuracy under 
low SNR conditions when compared to the first-order Taylor 
expansion off-grid model.

With the evolution of sparse signal recovery theory, 
there is potential to devise more advanced DOA estimation 
methods that exhibit superior performance. The sparse signal 
representation model introduced by Sadeghi and Babaie-
Zadeh (2016) lacks extrapolation steps and employs smooth‐
ing functions to address non-convex and non-smooth prob‐
lems, leaving room for enhancing its sparse signal represen‐
tation model. In this regard, Ghayem et al. (2018) adopted 
non-convex and non-smooth functions to portray the sparse 
signal model. They employed the IPP method to resolve the 

sparse signal representation model. The IPP method includes 
an extrapolation step, further augmenting its performance. 
Chen et al. (2020) applied the IPP method as a sparse signal 
representation model in the context of DOA estimation for 
monostatic Multiple-Input Multiple-Output (MIMO) radar, 
yielding commendable DOA estimation performance. 
However, it is worth noting that this method, as described, 
does not integrate with the off-grid model and consequently 
does not address grid mismatch issues.

In this study, we introduce the SCAD function as a non-
smooth sparse promotion function into the sparse represen‐
tation model for DOA estimation in underwater detection. 
The devised DOA estimation algorithm leverages the IPP 
method to solve the sparse representation model. Hence, 
the sparse signal recovery method employed in this study 
exhibits superior capability in recovering sparse signals, 
leading to a notable enhancement in DOA estimation accu‐
racy compared to ISP method employed in Zhang et al. 
(2019). Subsequently, we propose a novel off-grid DOA 
estimation algorithm by combining the sparse representation 
model with an off-grid model constructed through first-
order Taylor expansion. Simultaneously, the off-grid model, 
constructed through first-order Taylor expansion, effectively 
addresses the grid mismatch problem not accounted for in 
the framework proposed in Chen et al. (2020). This signifi‐
cantly contributes to the ultimate achievement of accurate 
DOA estimation.

2  Off-grid DOA estimation model

Assuming the presence of Q far-field narrowband signals, 
denoted as sq(t ) for q = 1, 2, ⋯, Q from Q distinct direc‐

tions (θ1, θ2, ⋯, θQ ), and incident upon a uniform linear 

array (ULA) consisting of M elements. In this ULA, the 
separation between adjacent elements is set to half the 
wavelength of the signal. The kth snapshot signal data 
vector received by the ULA can be expressed as:

x (k ) =∑
q = 1

Q

a (θq ) sq(k ) + n (k ) = A(θ ) s (k ) + n (k ) (1)

where x (k ) = [ x1(k ) , ⋯, xM(k ) ]T
 represents the kth snap‐

shot signal data vector received by ULA, θ = [θ1, θ2, ⋯,

]θQ

T

, and n (k ) signifies an independent identically distrib‐

uted Gaussian white noise signal with a zero mean. A(θ ) =

[a (θ1 ) , ⋯, a (θQ ) ] represents the array manifold matrix, 

where the qth steering vector of A(θ ) is denoted as a (θ1 ) =

[1, e− jπ sin θq, ⋯, e− j ( )M − 1 π sin θq ]T

.

The spatial range of [ ]−90°, 90°  is divided into a set of 
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search angles θ̄ = {θ̄1, ⋯, θ̄G} with equally spaced angular 

intervals denoted as ‘b’, where G≫Q signifies the number 
of grid points. In cases where the qth DOA of the signal 
does not precisely align with a grid point, that is, θq = θ̄gq +
βq ∉ θ̄ and θ̄gq ∈ θ̄, we employ first-order Taylor expansion 
to approximate the true steering vector of the qth signal. 
This approach enables us to:

a (θq ) ≈ a (θ̄gq ) + a'(θ̄gq ) βq (2)

where | βq |≤ b
2

 signifies the absolute value of the associated 

grid offset, with θ̄gq representing the nearest grid point to 
the DOA.

Let’s define Φ as a diagonal matrix, denoted as Φ =

diag ( β ), where β = [ β1, ⋯, βG ]T
. Furthermore, there is 

B (θ̄ )=[a'(θ̄1 ) , ⋯, a'(θ̄N ) ], and the resulting modified array 

manifold dictionary set matrix is then:

Â( β ) = A(θ̄ ) + B (θ̄ )Φ (3)

When the array receives data from K snapshots, the 
matrix representing the received data by the array can be 
expressed as:

X = Â( β ) S͂ + N (4)

where XϵCM × K, S͂ϵCN × K denotes the unknown sparse signal 
matrix, and NϵCM × K is the noise data matrix.

Here, we define an indicator function:

I (s) = {0, s = 0

1, others
(5)

and the mixed norm of  S͂
2,0

 is

 S͂
2,0

=∑
g = 1

G

I ( S͂g,:
2 ) (6)

It is evident that among all grid points, only Q grid points 
exhibit signal presence. As a result, S͂ constitutes a row-
sparse signal matrix, which can be reconstructed employing 
sparse signal recovery theory. In other words:

min
S͂, β

 S͂
2, 0

 s.t. X − [ ]A( )θ̄ + B ( )θ̄ Φ S͂
F

2 ≤ ε (7)

where ε represents the admissible noise threshold and 
 ∙

F
 stands for the Frobenius norm. It is well-recognized 

that minimizing the l0-norm poses an NP-hard problem. 
To address this challenge, various approaches have been 
employed, such as the use of smooth convex functions like 
the l1-norm or non-convex smoothing functions like the lp-
norm to approximate it (Elad 2010). However, employing 

convex or smooth functions to represent non-convex and 
non-smooth sparse signal recovery problems can introduce 
model inaccuracies. Fortunately, recent advances in sparse 
signal recovery have indicated that the selection of appro‐
priate non-convex and non-smooth sparse promotion func‐
tions can yield superior sparse recovery results compared 
to other relaxation techniques (Ghayem et al., 2018).

3  Proposed off-grid DOA estimation method 
for passive sonar detection based on IPP

In this section, we will employ the concept of alternating 
optimization iterations in conjunction with the IPP method 
to solve equation (7). Prior to commencing the i + 1th itera‐
tion, we have acquired (or set) the values of S͂i and βi. Subse‐

quently, we can determine the values of S͂i + 1 and βi + 1 for 
the i + 1th iteration through the following process:

S͂i + 1 = arg min
S̄i

 S̄ i 2,0
+

1
2  X − [ ]A( )θ̄ + B ( )θ̄ Φi S͂ i

2

F
(8)

and

βi + 1 = arg min
βi

 X − [ ]A( )θ̄ + B ( )θ̄ Φi S͂ i + 1

2

F
(9)

3.1  Restore the unknown sparse signal matrix

To attain the sparse solution as indicated in equation (8), 
the DOA estimation problem in passive sonar can be refor‐
mulated into an optimization problem involving the proximal 
function (Parikh and Boyd, 2014). This transformation yields:

min
S̄i, Z

H (Z ) + ΓAε( S̄ i )  s.t.  Z = S̄i (10)

where H (Z ) represents a non-convex and non-smooth 
sparse promotion function, while ΓΑε

 denotes the indicator 

function (Eftekhari et al., 2009) of set Αε ≜ {S̄ i:

 X − [ ]A( )θ̄ + B ( )θ̄ Φi S̄ i

2

F
≤ ε}. This leads to:

ΓAε
=

ì
í
î

0,        S̄i ∈ Aε

+∞,    others
(11)

By incorporating the norm penalty method (Nocedal and 
Wright, 1999) into the sparse signal representation model 
presented in equation (10), we have

min
S̄i, Z

H (Z ) + ΓAε( S̄ i ) +
1
2ν

 S̄ i − Z
2

F
(12)
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in which υ > 0 denotes a penalty parameter. The alternat‐
ing minimization method can solve (12), there is

ì

í

î

ï
ïï
ï

ï
ïï
ï

Z i + 1 = arg min
Z

νH ( )Z +
1
2
 S̄ i − Z

2

F

S̄ i + 1 = arg min
S̄i

ΓAε( )S̄ i +
1
2
 S̄ i − Zi + 1

2

F

(13)

In line with the proximal projection definition (Parikh 
and Boyd, 2014), equation (13) can be streamlined to:

ì
í
î

ïï

ïïïï

Z i + 1 = proxνH( )S̄ i

S̄ i + 1 = proxΓAε
( )Z i + 1

(14)

where proxυH( S̄i ) represents the proximal operator of 

υH (Z ). Furthermore, the inclusion of an extrapolation step 
(Nesterov, 2004) significantly enhances the performance 
of the IPP algorithm, resulting in:

S̄i = S͂i + a ( S͂ i − S͂i − 1 ) (15)

in which a ≥ 0 denotes a weighting constant. To express 
equation (14) in a more concise and compact form, we have:

S͂i + 1 = proxΓAε
(proxνH( S̄ i ) ) = ΡAε(proxνH( S̄ i ) ) (16)

where PΑε
 represents the projection of set Αε.

In a study by Ghayem et al. (2018), it was showcased 
that the fusion of the SCAD function (Fan and Li, 2001) 
as a sparse promotion function with IPP methods outper‐
forms other non-smooth functions in terms of performance. 
For computational convenience, we employ S̄ l2

i  to denote 
the column vector formed by the l2-norm of each row vector 
in matrix S̄i. Consequently, we have:

proxvH( S̄ l2
i ) = Fscad

τ, w ( S̄ l2
i ) (17)

in which the Ϝ scad
τ, w ( S̄ l2

i ) represents the proximal mapping of 

SCAD function. And there is

Fscad
τ,w ( S̄ l2

i ) ≜
ì

í

î

ï

ïï
ï
ï

ï

ï

ï
ïï
ï

ï

sign ( )S̄ l2
i ( )|| S̄ l2

i − τ
+
            || S̄ l2

i ≤ 2τ

( )w − 1 S̄ l2
i − sign ( )S̄ l2

i wτ
w − 2

 2τ < || S̄ l2
i ≤ wτ

S̄ l2
i                                                 || S̄ l2

i > wτ

(18)

in which w > 2, τ > 0 represents a threshold constant and 
(s) +

≜ max (s,0). Upon obtaining the sparse vector through 

the solution of equation (16), the DOAs of the target can be 
determined by locating the position of the spectral peak.

Considering that the primary emphasis of this article lies 
in the application of the IPP algorithm to devise DOA esti‐
mation methods with robust sparse signal recovery capabil‐
ities, and given that prior mathematical studies (Ghayem 
et al., 2018) have extensively detailed the utilization of the 
SCAD function and proximal operator for sparse signal 
recovery within the IPP algorithm, this paper places greater 
focus on the conclusive nature of employing the SCAD 
function and proximal operator.

3.2  Update grid offset β

In order to obtain the grid offset parameter βi + 1 after 
acquiring the sparse signal matrix S̄i + 1, we solve equation 
(9). This can be expressed as follows:

βi + 1 = arg min
βi

 X − [ ]A1 + B1Φi S͂ i + 1

2

F
(19)

in which A1 denotes A (θ̄ ), B1 represents B (θ̄ ). Let’s 

define

Π ( β i ) =  X − [ ]A1 + B1Φi S͂ i + 1

2

F
(20)

and (19) is equivalent to:

βi + 1 = arg min
βi

Π ( β i ) (21)

In (21), Π ( β i ) represents a convex function. In accor‐

dance with the principles of convex optimization theory, for 
a continuously quadratic differentiable and convex function 
Π ( β i ), its minimum value is attained when

ΔΠ ( β i ) = 0 (22)

where Δ (∙) denotes derivative symbol. And easy to obtain

βi + 1 =

Re
ì
í
î

é
ë
êêêêBH

1 B1 ∘ ( S͂ i + 1 S͂H
i + 1 ) Tù

û
úúúú
− 1

diag ( S͂ i + 1(X −A1 S͂ i + 1 )H
B1 )üýþ
(23)

in which Re (.) represents the operator for extracting the 
real part, with the symbol ∘ indicating the Hadamard product.

Table 1 presents a summary of the proposed off-grid 
DOA estimation method based on IPP. The key parameters 
outlined in Table 1 are as follows: a = 0.9, w = 30, I = 3, 

K = 0.9, τ0 = 5∙max | S͂0(:,l ) |, in which | S͂0(:,l ) | denotes 

the modulus vector comprising all elements in the lth col‐
umn vector of the matrix S͂0. It is crucial to note, as indicated 
in Table 2, the presence of an inner loop between the ith 
iteration and the i + 1th iteration. The steps involved in 

420



Z. H. Dai et al.: An Off-grid DOA Estimation Method for Passive Sonar Detection Based on Iterative Proximal Projection

this inner loop are outlined in Table 1.

4  Analysis of simulation results

In this section, a significant number of simulation exper‐
iments were conducted to assess the performance of the 
proposed DOA estimation algorithm and to compare it 
with several state-of-the-art algorithms, including l1-SVD 
(Malioutov et al., 2005), OGSBI (Yang et al., 2013), OG-ISP 
(Zhang et al., 2019), and IPP method (Chen et al., 2020). 
For all simulation experiments, an ULA with M = 18 sensors 
was employed to receive target signals. Unless otherwise 
specified, the number of signal snapshots in each simulation 
experiment was fixed at T = 100. Additionally, we consid‐
ered Q = 2 uncorrelated far-field narrowband signals inci‐
dent onto the ULA from angles of −10.3°and 10.3°, respec‐
tively. For all the simulation experiments, we maintained a 
grid spacing of b = 1° and conducted a total of MC=200 
Monte Carlo operations. To quantitatively assess the DOA 
estimation accuracy of various algorithms, the root mean 
square error (RMSE) was employed as a performance 
metric, which is

RMSE =
1

MC∑p = 1

MC 1
Q  θ̄( )p − θ( )p

2

2
(24)

where MC represents the number of Monte Carlo opera‐
tions, θ̄( )p  represents the estimated DOAs, and θ( )p  repre‐
sents the true DOAs in the pth experiment, respectively.

In Simulation 1, Figure 1 displays the normalized spatial 
spectrum of l1-SVD, OGSBI, OG-ISP and the proposed 
OG-IPP methods. For this simulation, we considered Q = 2 

uncorrelated far-field narrowband signals incident onto an 
ULA from angles of − 6.5°and 6.5°, respectively. The grid 
spacing was set to b = 1°, and the orientation of the target 
signal deviated by 0.5° from the nearest grid point. As illus‐
trated in Figure 1, the l1-SVD method exhibited the poorest 
performance due to its lack of integration with the off-grid 
model, resulting in a deviation of 0.5° from the true signal 
direction. In comparison, the OGSBI method showed im‐
proved performance, with an estimated target signal orien‐
tation deviating by 0.1° from the true orientation. Further‐
more, both the proposed method and OG-ISP accurately 
estimated the target orientation, aligning perfectly with the 
true orientation of the target signal, thereby demonstrating 
excellent DOA estimation performance.

In Simulation 2, the RMSE performance of l1-SVD, 
OGSBI, OGISP and the proposed OG-IPP methods under 
various input SNR is depicted in Figure 2 through Figure 5. 
In Figures 2 and 3, the number of snapshots for each algo‐
rithm was set to T=50, with corresponding array elements 
of M=18 and M=20, respectively. From the observations 
made in Figure 2 and Figure 3, it is evident that the l1-SVD 
algorithm inherently suffers from grid bias, leading to an 
inability to enhance DOA estimation accuracy as SNR in‐
creases. Conversely, off-grid DOA estimation methods can 
overcome grid mismatch issues, with RMSE approaching 
0 as SNR continues to rise. Notably, among the three off-
grid DOA estimation methods, the proposed method exhibits 
the lowest RMSE, indicating the highest DOA estimation 
accuracy. In Figures 4 and 5, each algorithm was provided 
with T=100 snapshots, and the corresponding number of 
array elements was M=18 and M=20, respectively. Similar 
to Figures 2 and 3, the proposed method consistently dem‐
onstrated the lowest RMSE among the three off-grid DOA 
estimation methods in Figure 4 and Figure 5. Across these 
four distinct conditions, involving varying input SNR, snap‐
shot number, and array element number, it can be concluded 
that the proposed method consistently exhibits the lowest 
RMSE curve, signifying superior DOA estimation accuracy.

In Simulation 3, Figure 6 illustrates the RMSE perfor‐
mance of the proposed method as a function of SNR with 
different numbers of array elements. For Simulation 3, the 
number of snapshots was set to T=50. As evident from 

Table 1　Off-grid DOA Estimation Based on IPP

1: Input: X, A1, B1, Q, τ0, a, w, I, K

2: Initialization: S͂0 = A+
1 X, τ = τ0, i = 0

3:　　  while i ≤ I do

4:             i = i + 1

5:              while τ > τf do

6:                 for n = 1, …, N do

7:                      S̄n = S͂n + a ( S͂n − S͂n − 1 )
8:                      S͂n + 1 = PAε(Ϝ scad

τ,w ( S̄ l2
n ) )

9:                 end for

10:                τ = K∙τ
11:              end while

12:              S͂i + 1 = S͂n + 1

13:              Closed form solution (23) of βi + 1

14:            end while

15: Output: S͂, β

Figure 1　 Normalized spatial spectral performance of different 
algorithms (SNR=0 dB)
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Figure 6, an increase in the number of array elements results 
in a gradual improvement in the DOA estimation accuracy 
of the proposed method. In essence, the greater the number 
of hydrophone arrays, the larger the array aperture that can 
be formed, leading to improved spatial resolution and, con‐
sequently, enhanced DOA estimation performance. This 
phenomenon can be attributed to the benefits of waveform 
diversity gain.

In Simulation 4, the RMSE performance of IPP DOA 
estimation method (Chen et al., 2020) and the proposed 
OG-IPP method under various input SNR is depicted in 
Figure 7. From Figure 7, it is evident that as the SNR in‐
creases, the accuracy of DOA estimation improves for both 
algorithms. Nonetheless, because the IPP method did not 
incorporate an off-grid model, the RMSE of DOA estimation 

remained constant even as the input SNR exceeded −8dB. 
In contrast, the proposed OG-IPP method, which integrates 
off-grid models, demonstrates a reduced RMSE and the 
capability to mitigate grid mismatch issues. With a continued 
increase in the input SNR, the RMSE of DOA estimation 
gradually converges towards 0.

5  Data processing

To validate the algorithm’s effectiveness, underwater 
target detection experiments were conducted in the South 
China Sea in September 2020. A fiber optic hydrophone 
array system, featuring an ULA comprising twenty sensors, 
was deployed on the seabed. The ULA has an array element 
spacing of 6.25 meters and was positioned at a depth of 
approximately 120 meters within the designated sea area. 
The observation range of the ULA extended from [−90°, 

]90° . According to GPS navigation data, the ship receiving 
the sound source is positioned at the azimuth of 65° relative 
to the array. Additionally, another type of experimental coop‐
erative target ship is located around the azimuth of 50° rela‐
tive to the array.

In this underwater target detection experiment, the pro‐
cessed data spanned a duration of 400 s, which was divided 
into 20 segments, each lasting 20 s. The dataset used in 
the experiment was gathered between 13:23 and 13:29 on 
September 24, 2020, during the midday hours. Throughout 
the data processing in the sea trial, a far-field narrowband 
signal model was employed to both describe and process the 
data. In the course of the experiment, the cooperative target 
ship at 50° transmitted a single-frequency signal with a signal 

Figure 2　The RMSE performance versus SNR (T=50, M=18)

Figure 3　The RMSE performance versus SNR (T=50, M=20)

Figure 4　The RMSE performance versus SNR (T=100, M=18)

Figure 5　The RMSE performance versus SNR (T=100, M=20)

Figure 6　 The RMSE performance of proposed method versus 
number of array elements

Figure 7　The RMSE performance versus SNR (T =100, M =20)
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frequency of 73 Hz. Consequently, the narrowband signal 
frequency chosen for processing was set to 73 Hz. The array 
receiving data was sampled at a rate of 32 000 Hz, necessi‐
tating FFT transformations every 32 000 data points. For 
DOA estimation purposes, the algorithm generated spatial 
spectra plots every 20 snapshots in the frequency domain 
and produced Bearing-Time Records (BTRs) every 2 s.

During the processing of the sea trial data, four DOA 
estimation methods—CBF, OGSBI, OG-ISP, and OG-IPP—
were employed to analyze and determine the DOAs of 
targets within the sea trial area. Figure 8 presents the results 
of CBF processing on the sea trial data. It is evident that 
the main lobe of the CBF spatial spectrum is excessively 
broad, allowing only a rough determination of the target’s 
azimuth range. This limitation makes it challenging to pre‐
cisely measure the direction of the target. Hence, the CBF 
algorithm is unable to differentiate between cooperative 
targets at 50° and ship targets receiving sound sources at 
65°. Furthermore, the CBF algorithm detected a non-coop‐
erative target in the vicinity of the −20 degrees orientation. 
Figures 9 to 11 display the BTRs generated by the OGSBI, 
OG-ISP, and OG-IPP algorithms, respectively. From Figures 9 
to 11, it becomes apparent that all three algorithms accurately 
detected the strong interference targets at − 20° and the 
sound source receiving ship targets at 65°. Moreover, they 
also successfully detected a weaker target at 50°, a task for 
which the CBF algorithm demonstrated subpar azimuth 
estimation accuracy, failing to detect any target at 50°. Fur‐
thermore, it is worth noting that the proposed algorithm’s 
target tracking trajectory appears the narrowest among the 
three algorithms, indicating the highest DOA estimation 
performance among them.

6  Conclusions

This paper introduces a novel high-performance off-grid 
DOA estimation method based on IPP. In the proposed 
method, an alternating optimization strategy is utilized to 
jointly estimate sparse signals and grid offset parameters. We 
employ a proximal function optimization model to address 
the non-convex and non-smooth sparse representation 
challenges in DOA estimation. Additionally, the SCAD 
function is employed to derive the proximal operator for 
solving the model. As a result, the proposed algorithm 
exhibits robust sparse signal recovery capabilities and 
delivers more accurate DOA estimation results. Through 
simulations and sea trial experiments, the proposed approach 
has demonstrated superior resolution and more precise DOA 
estimation performance in comparison to traditional sparse 
classification methods and advanced off-grid methods. 
While the proposed algorithm demonstrates high accuracy in 
DOA estimation, it comes with a high computational com‐
plexity. There remains a gap in achieving real-time pro‐
cessing for seamless integration into the detection system. 
Additionally, there is potential for improvement in the first-
order Taylor expansion off-grid model. A future direction 
could involve exploring the use of multi-order Taylor expan‐
sion terms to design off-grid models, aiming to further 
enhance the accuracy of DOA estimation.
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