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Abstract
The present work analyzes the interaction of oblique waves by a porous flexible breakwater in the presence of a step-type bottom. The physical 
models for both scattering and trapping cases are considered and developed within the framework of small amplitude water-wave theory. 
Darcy’s law is used to model the wave interaction with the porous medium. It is assumed that the varying bottom extends over a finite interval, 
connected by a finite length of uniform bottom near an impermeable wall, and a semi-infinite length of bottom in the open water region. The 
boundary value problem is solved using the eigenfunction expansion method in the uniform bottom regions, while a modified mild-slope 
equation (MMSE) is used for the region with the varying bottom. Additionally, a mass-conserving jump condition is employed to handle the 
solution at slope discontinuities in the bottom. A system of equations is derived by matching the solutions at interfaces. The reflection 
coefficient and force on the breakwater and impermeable wall are plotted and analyzed for various parameters, such as the length of the varying 
bottom, depth ratio, angle of incidence, and flexural rigidity. It is observed that moderate values of flexural rigidity and depth ratio significantly 
contribute to an optimum reflection coefficient and reduce the wave force on the wall and breakwater. Remarkably, the outcomes of this study 
are assumed to be applicable in the construction of this type of breakwater in coastal regions.
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1  Introduction

In recent decades, the mathematical study of the perfor‐
mance of breakwaters has received significant attention in 
order to protect coastal regions and attenuate wave energy. 
There has been a rise in interest in the use of flexible break‐

waters as an alternative to the more conventional rigid type 
breakwaters in coastal regions, particularly where a poor 
sea bed exists. However, it is necessary for the transmitted 
and reflected wave heights to be small, which is why porous 
structures can be used effectively to dissipate wave energy. 
Moreover, flexible breakwaters are reusable and cost-effec‐
tive for protecting marine structures from destructive waves. 
Additionally, these types of breakwaters generate fewer 
hydrodynamic forces. Therefore, the study of the perfor‐
mance of flexible porous breakwaters in predicting wave 
motion is of great importance in coastal engineering practice.

Meanwhile, fair developments have been made in both 
the theoretical and experimental investigation of the porous 
breakwater, with and without flexibility. Several mathe‐
matical tools have been formulated to deal with various 
shapes of porous barriers. A porous wave maker theory was 
developed by Chwang (1983) to study the small ampli‐
tudes of water waves raised by horizontal oscillations of a 
permeable barrier in uniform bottom. The hydrodynamic 
performance of submerged and surface-piercing permeable 
barriers in deep water was studied by Sahoo (1998) using 
logarithmic singular integral equations. Furthermore, Lee 
and Chwang (2000) used the least square method to analyze 
the effect of partial porous breakwaters of various configu‐
rations on the scattering of water waves. This analysis was 
extended by Sahoo et al. (2000), who studied the trapping 
and generation of normally incident water waves by con‐
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sidering an impermeable back wall. The trapping of water 
waves by two different kinds of porous flexible breakwaters, 
namely bottom standing and surface piercing, was studied 
by Yip et al. (2002). Williams and Wang (2003) investigated 
the hydrodynamics of flexible breakwaters to enhance the 
effectiveness of wetlands habitat restoration projects. Li 
et al. (2006) investigated the values of the porous effect 
parameter of thin porous breakwaters theoretically and exper‐
imentally. The problem of water wave scattering by a porous 
breakwater was converted to a second-kind hypersingular 
integral equation by Gayen and Mondal (2014) and ana‐
lyzed for finite and infinite depth water. Using Babinet’s 
principle, Manam and Sivanesan (2016) analyzed wave scat‐
tering by a porous barrier in deep water by demonstrating a 
connection between two wave potentials. Furthermore, a 
detailed study on oblique wave scattering and trapping 
was carried out by Koley et al. (2015) and Kaligatla et al. 
(2015) by converting the boundary value problem into a 
system of three Fredholm-type integral equations using 
Green’s function. Das and Bora (2018) analyzed the perfor‐
mance of reflection and transmission coefficients for two 
vertical unequal porous breakwaters. Krishna et al. (2023) 
studied the interaction of oblique waves with porous block 
in the presence of thin permeable breakwater. Recently, 
Krishnendu and Balaji (2020) conducted a numerical and 
experimental investigation on wave trapping by a porous 
breakwater placed in front of an impermeable rigid wall. 
Gupta et al. (2022) analyzed the scattering of water waves 
by two vertical porous flexible plates using Havelock’s theo‐
rems for water waves.

In the previously mentioned articles, hydrodynamics of 
water waves were analyzed in uniform water depth however 
significant changes in wave characteristics occur due to 
bottom variation. Hence, there is a need to understand the 
refraction diffraction effects caused by the varying bottom. 
The refraction diffraction effect induced by varying bottom 
is examined with the help of the mild-slope equation which 
was derived by Berkhoff (1973) by using vertical averaging 
technique. Next, Chamberlain and Porter (1995) derived a 
modified mild-slope equation by employing the variational 
principle. The study of water wave interaction with a break‐
water in the presence of varying bottoms is often important 
to understand the characteristics of waves to address more 
realistic physical problems. Suh and Park (1995) studied 
the reflection and transmission coefficients by porous break‐
water in the presence of step-type bottom. However, they 
did not ensure the conservation of mass at the bottom 
slope discontinuity. The mass conserving jump condition 
is deduced by Porter and Staziker (1995) by addressing the 
effect of evanescent mode in the study of Chamberlain and 
Porter (1995). The application of modified mild-slope 
equation along with jump condition can be seen in the article 
of Behra et al. (2015) who studied oblique wave trapping 
by porous breakwater in the presence of step-type bottom. 

Further, their model was extended by Kaligatla et al. (2018) 
who investigated the oblique wave scattering by multiple 
porous breakwaters in the water of varying depth. Recently, 
Venkateswarlu and Karmakar (2020) examined the signifi‐
cance of variable step-type bottom characteristics on wave 
trapping by stratified porous breakwaters.

The objective of the present article is to investigate the 
wave trapping and scattering by flexible porous breakwater 
by taking into account the effect of the varying bottom. The 
porous breakwater is assumed to be fixed at the bottom 
and placed in front of impermeable wall. The problem is 
examined under the framework of small amplitude water 
wave theory and Darcy’s law is used to study flow past 
porous medium. The present physical problem is modeled 
by employing the MMSE of Chamberlain and Porter (1995) 
for the region of the varying bottom along with eigenfunc‐
tion expansion method for flat bottom. The obtained solu‐
tion in each region is matched at interface along with mass 
conserving jump condition at slope discontinuity. The system 
of algebraic equations is obtained and solved numerically 
to determine the unknown coefficients. Various physical 
quantities such as reflection coefficient, and wave force 
exerting on breakwater and wall are plotted and analyzed 
for several parameters. Moreover, several outcomes associ‐
ated with the present problem are analyzed, validated, and 
compared with the known results available in the literature.

2  Statement of the boundary value problems

In the present work, the interaction between oblique 
waves and thin flexible breakwater is studied in the presence 
of varying bottom. Oblique wave trapping and scattering 
by thin porous flexible breakwater is formulated through 
Cartesian coordinate system ( x, y, z ). The present Boundary 
Value Problem is modeled in the framework of small ampli‐
tude water-wave theory. The free surface is assumed to be 
undisturbed and lying on the xy−plane and z−axis being 
in a positive upward direction. The bottom of sea is assumed 
to be impermeable and varying bottom at z = − h2 ( x ) is 
spanned over 0 ≤ x ≤ L is connected by two uneven constant 
depth levels of z = − h1 and z = − h3 with h3 < h1. The flex‐
ible porous breakwater is fixed at z = − h3 at x = L + L1 with 
and without wall on the lee side. According to the geometry 
of problem, whole fluid region is divided into four sub-
regions as shown in Figure 1. The first region is defined as 
ΩI ={ −∞ < x < 0, −∞ < y <∞, − h1 ≤ z ≤ 0}, second region is 

ΩII ={0 ≤ x ≤ L, −∞ < y <∞, − h2 (x)≤ z ≤ 0}, third region is 

ΩIII ={L ≤ x ≤ L + L1, −∞ < y <∞, − h3 ≤ z ≤ 0} and the last 

region is ΩIV ={L + L1 ≤ x ≤∞, −∞ < y <∞, − h3 ≤ z ≤ 0} for 

scattering problem and ΩIV ={L + L1 ≤ x ≤ L + L1 + W, − ∞<

y <∞,−h3 ≤ z≤0} for trapping problem. The fluid in each 

region is assumed to be inviscid, incompressible and the 
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motion is irrotational and wave motion is assumed to be 
simple harmonic in time with angular frequency ω. With all 
these assumptions, fluid motion can be described in terms of 

velocity potential, Φr = Re{ϕre
− i ( μy y + ωt )} for r = I, II, III, IV 

with i = − 1 and μy = β0 sin θ, where β0 being the wave‐

number of incident wave.

The spatial velocity potential ϕr for r = I, II, III, IV satisfy 

the Helmholtz equation

( )∂2

∂x2
+
∂2

∂z2
− μ2

y ϕr = 0   for   r = I, II, III, IV (1)

In addition, ϕr has to satisfy the free-surface boundary 

condition in open water region:

∂ϕr∂z − Kϕr = 0   on   z = 0,  r = I, II, III, IV (2)

where K = ω2 /g and g is the gravitational constant. Now, 
boundary condition on flat bottom is given by

∂ϕr∂z = 0   on   z = − h1, − h3,  r = I, III, IV (3)

whilst the boundary condition on varying bottom yields

∂ϕII∂z +
dh2

dx
∂ϕII∂x = 0   on   z = − h2 (4)

Conditions at the interfaces between flat and varying 
bottom are given by

ϕI = ϕII   at   x = 0 (5)

ϕII = ϕIII   at   x = L (6)

The continuity of velocity at the interface of porous 
breakwater is given as

∂ϕIII∂x =
∂ϕIV∂x   at   x = L + L1 (7)

and boundary condition at x = L + L1 for porous barrier yields

∂ϕr∂x = iβ0G (ϕIII − ϕIV ) − iωζ   at   x = L + L1 (8)

for r = III, IV. Here, porous effect parameter denoted by 
G = ϵs / ( β0ds ( fs − iss ) ) is a complex number where ϵs is 
the porosity of barrier, ds is thickness of porous barrier, fs 
is the resistance force coefficient and ss is the inertial force 
coefficient. The motion of porous plate is analyzed in two-
dimensional as it is supposed to be uniform in the longitu‐
dinal direction. Further, plate deflection is assumed to small 
as compared to water depth and displacement of flexible 
plate in horizontal direction is measured with χ ( y, z, t ) =

Re{ζ ( z )e− i ( μy y + ωt )} where ζ ( z ) is the complex deflection 

amplitude. Thus, the equation of motion for flexible plate 
acted upon by fluid pressure is given by

EI ( )d2

dz2
− μ2

y

2

ζ + Q ( )d2

dz2
− μ2

y ζ − msω
2ζ

= iωρ (ϕIII − ϕIV )   at   x = L + L1 (9)

where flexural rigidity is denoted by EI, Q represents the 
uniform compressible force acting on porous plate, ms =
ρsds refers to the uniform mass per unit length with ρs is 
material density of flexible plate and ds denotes the thick‐
ness of porous plate which is assumed to be small, ρ being 
the density of water. The porous plate is assumed to be fixed 
at the lower end. Hence, vanishing of the plate deflection 
and slope of deflection at the edge ( z = − h3 ) are given by

ζ = 0   and   ζ ' = 0   at   x = L + L1 (10)

Figure 1　Depiction of wave trapping and scattering by a flexible 
porous breakwater in water of undulating bottom
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At the other end of porous plate, free edge conditions yield

( )d2

dz2
− νμ2

y ζ = 0   at   z = 0 (11)

ì
í
î
EI ( )d2

dz2
− (2 − ν ) μ2

y

d
dz

+ Q
d
dz

ü
ý
þ
ζ = 0   at   z = 0 (12)

where ν being the Poission’s ratio of flexible breakwater. 
Next, no-flow condition towards the wall is given as

∂ϕIV∂x = 0   at   x = L + L1 + W (13)

Finally, far-field conditions in the region ΩI and ΩIV are 
given by

ϕI = ( )I0eip0 x + R0e− ip0 x i􀱹 coshβ0 (z + h1 )
ω cosh β0h1

   as   x →  − ∞
(14)

ϕIV = T0eiq0 x i􀱹 cosh γ0 ( z + h3 )
ω cosh γ0h3

   as   x → ∞ (15)

where p0 = β2
0 − μ2

y  and q0 = γ2
0 − μ2

y  and, I0 is known and 

R0, T0 are unknown constants associated with the amplitude 
of incident, reflected and transmitted waves respectively in 
regions ΩI and ΩIV.

3  Method of solution

To tackle the solution to the present problem, eigenfunc‐
tion expansion method is used in the region of constant 
depth, and a modified mild-slope equation (Chamberlian 
and Porter, 1995) for oblique wave is applied in the region of 
the varying bottom. To achieve the full solution, the velocity 
potential for constant water depth is matched with the 
MMSE. The bottom profile from 0<x<L is assumed to be 
continuous and may have slope discontinuity at x = 0 and 
x = L. To handle these slope discontinuity, mass conserving 
jump conditions are applied at x = 0 and x = L (Porter and 
Staziker, 1995). The velocity potential ϕI in the region ΩI 
is expanded as

ϕI ( x, z ) = {I0eip0 x + R0e− ip0 x}U0 +∑
n = 1

∞

Rn e− ipn xUn (16)

where I0 is a known constant associated with the amplitude 
of the incident wave and Rn represents the unknown ampli‐
tudes of the reflected wave. Here, Un = ( i􀱹/ω ) cosh βn ( z +

h1 )/ coshβnh1 are the vertical eigenfunctions and pn= β 2
n−μ2

y  

for n = 0, 1, 2, …, N. Here, βn is a positive real zero for n = 0 
and a purely imaginary zero for n = 1, 2, 3, …, N of the 

dispersion equation β tanh βh1 − K = 0 in β. Further, the 
velocity potential ϕII in the region ΩII is written as Galerkin 
series

ϕII =∑
n = 0

∞

ψnVn (h2, z ) (17)

where ψn (x) are unknown functions and Vn (h2, z ) = (i􀱹/ω )
cosh kn ( z + h2 )/ cosh knh2, h2 (x) is the water depth and kn =
kn (x) being the local wave numbers for n = 0, 1, 2, …. The 
number of roots of dispersion equation k tanh kh2 − K = 0 
are infinite among which one is real and others are purely 
imaginary. The vertical eigenfunction Vn (h2, z ) is taken 
from the region of the flat bottom which is similar to that 
in Eq. (16). This is the basic key assumption for the devel‐
opment of the mild-slope equation. Next, velocity potential 
ϕIII and ϕIV in the regions ΩIII and ΩIV respectively, are given 
as

ϕIII =∑
n = 0

∞

( Aneiqn x + Bne− iqn x )Zn (18)

ϕIV =∑
n = 0

∞

Tn cos qn ( x − ( L + L1 + W ) ) Zn (19)

when wall is present.

ϕIV =∑
n = 0

∞

Tn eiqn xZn (20)

for the case of wave scattering. Zn = (i􀱹/ω ) cosh γn ( z + h3 )/

cosh γnh3 with qn = γ2
n − μ2

y  for n = 0, 1, 2, …. Here An, 

Bn and Tn are unknown constant and γn (n = 0, 1, 2, …) are 
roots of dispersion equation γ tanh γh3 − K = 0. It is noted 
that the infinite series are truncated after N to obtain the 
solution. Further, the unknown function ψn in region ΩII 
as in Eq. (17), satisfies the MMSE (as in Kaligatla et al. 
(2017)).

d
dx ( )an

dψn

dx
+(k 2

n −μ2
y )anψn

+∑
m=0

N é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú( )bmn−bnm ×

dh2

dx
dψm

dx
+
ì
í
î

ïï
ïï

ü
ý
þ

ïï
ïï

bmn

d2h2

dx2
+ cmn( )dh2

dx

2

ψm = 0

(21)

where

an (h2 ) = ∫− h2

0

V 2
n  dz, bmn (h2 ) = ∫− h2

0

Vn

∂Vm∂h2

  dz ,

cmn (h2 ) =
dbmn

dh2

− ∫− h2

0 ∂Vm∂h2

∂Vn∂h2

dz

for n = 0, 1, 2, …, N. Eq. (21) can be solved numerically 
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by selecting the different bottom profiles. Further, continuity 
of pressure at the interface boundaries are given by

ì
í
î

ïï
ïï

ψ0 ( x ) = I0eip0 x + R0e− ip0 x

ψn ( x ) = Rne− ipn x
  at   x = 0+, n = 1, 2, …, N (22)

and

ψn ( x ) = Aneiqn x + Bne− iqn x

at   x = L ,  for   n = 0, 1, 2, …, N (23)

In addition, mass conserving jump condition at these 
interface boundaries at x = 0 are derived as

a0

dψ0

dx
+ ip0a0ψ0 + h2′∑

m = 0

N

bm0ψm = 2ip0a0 I0,   for   n = 0

(24)

an

dψn

dx
+ ipnanψn + h2′∑

m = 0

N

bmnψm = 0   for   n = 1, 2, …, N

(25)

and at x = L + L1

an

dψn

dx
− iqnanψn+h2′ ( x )∑

m=0

N

bmnψm

= −2ianqn Bne−iqn x   at   x=L−, n=0, 1, 2, …, N (26)

Next, complex amplitude of structural displacement of 
breakwater is derived by using Eq. (18) and (19) into 
Eq. (9)

ζ ( z )=
cosh N0 z
cosh N0h3

D1+
sinh N0 z
sinh N0h3

D2

+
cos N1 z
cos N1h3

D3+
sin N1 z
sin N1h3

D4

+M0∑
n=0

N

( )Aneiqn x +Bne−iqn x−Tn cos qn ( x−( L+L1+W ) )

×
cosh γn ( z+h3 )

cosh γnh3

                                                            (27)

where D1, D2, D3 and D4 are arbitrary unknown constant 

and, M0 = iρω/ ( )EI ( )γ2
n − μ2

y

2

+ Q ( )γ2
n − μ2

y − msω
2  and N0,

N1 are roots of equation EI ( )x2 − μ2
y

2

+ Q ( )x2 − μ2
y −msω

2 =

0 in x. Upon utilising the fixed conditions by Eq. (10) at 
the bottom of breakwater at x = L + L1 yields

D1 −D2 + D3 −D4

+M0∑
n = 0

N

( )Aneiqn ( L + L1 ) + Bne− iqn (L + L1 )− Tn cosqnW
1

cosh γnh3

= 0

                                            at   z = − h3                                        (28)

and

− N0 tanh N0h3 D1 + N0 coth N0h3 D2

+N1 tan N1h3 D3 + N1 cot N0h3  D4 = 0   at   z = − h3 (29)

Further, by using free edge conditions in Eqs. (11) and (12) 
at z = 0

N 2
0 − νμ2

y

cosh N0h3

D1 − N 2
1 + νμ2

y

cos N1h3

D3

+M0∑
n = 0

N (( )γ2
n − νμ2

y (Aneiqn ( L + L1 ) + Bne− iqn ( L + L1 )

))− Tn cos qnW = 0 (30)

and

EIN 3
0 + ( )Q − EI (2 − ν ) μ2

y N0

sinh N0h3

D2

− EIN 3
1 − ( )Q − EI (2 − ν ) μ2

y N1

sin N1h3

D4

+M0∑
n = 0

N (( )EIγ3
n + ( )Q − EI (2 − ν ) μ2

y γn (Aneiqn ( L + L1 )

))+Bne− iqn ( L + L1 ) − Tn cos qnW tanh γnh3 = 0 (31)

Now, by using the boundary conditions Eqs. (7) and (8) 
at the interface x = L + L1 are given as

∑
n = 0

N

( )iAneiqn ( L + L1 ) − iBne− iqn ( L + L1 ) − Tn sin qnW Xmn = 0

(32)

and

ω ∫− h3

0 cosh N0 z
cosh N0h3

 dzD1 + ω ∫− h3

0 sinh N0 z
sinh N0h3

dzD2   

+ω ∫− h3

0 cos N1 z
cos N1h3

 dzD3 + ω ∫− h3

0 sin N1 z
sin N1h3

 dzD4  

+∑
n = 0

N

{(qn − β0G + ωM0 )Aneiqn ( L + L1 )  

− (qn + β0G − ωM0 )Bne− iqn ( L + L1 )  

+( β0G − }M0ω )Tn cos qnW Xmn = 0   (33)

where Xmn = ∫− h3

0

ZnZm dz. The system of Equations (22)‒

(26) along with (28)‒ (33) can be solved numerically by 
using matrix method.

4  Results and discussion

In this section, numerical results are computed in MATH‐
EMATICA to analyze the effect of porosity and flexibility 
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of breakwater in the interaction of waves with a breakwater 
in the presence of step-type bottom. The modified mild-slope 
equation is solved by using the in-built function NDSolve 
and the system of algebraic equations from Eqs.(22)‒(25) 
along with (27)‒(32) are computed numerically in MATH‐
EMATICA. To validate the model, we have matched with 
the result of Krishnendu and Balaji (2020) and Behra et al. 
(2015) in the less general case of h3 /h1→ 1 for non-flexible 
breakwater for the case of trapping problem. The model is 
analyzed for the plane sloping bottom bed, rippled bottom, 
concave up and concave down type bottom as shown in 
Figure 2. In region ΩI, a fixed wavelength of plane gravity 
wave λ1 = 2π/β0 is used to denote physical parameters in 
non-dimensional form. Few parameters are fixed such as 
amplitude of incident wave I0 = 1, acceleration due to 
gravity 􀱹 = 9.81 m/s2, length of varying bottom L/λ1 = 1, 
distance between varying bottom and breakwater L1 /λ1 = 0.4, 
distance between breakwater and wall W/λ1 = 1, angle of 

incident wave θ = 30°, depth ratio h3 /h1 = 0.5, γs =
EI
ρh4

3

=

0.1, ms = 10, ν = 0.3 are kept fixed until it is mentioned. The 
compressible force Q of flexible breakwater is assumed to 
be zero throughout the numerical computation. The non-
dimensional reflection coefficient Kr and transmission coeffi‐
cient Kt is given by

Kr =
|

|
|
||
| R0

I0

|

|
|
||
|
,   Kt =

|

|
|
||
| γ0 tanh γ0h3T0

β0 tanh β0h3 I0

|

|
|
||
|

(34)

respectively, and non-dimensional wave force on breakwater 
Kf and force on wall Kw are derived as

Kf =
|

|

|
||
|
|
| − iω

􀱹h2
1
∫− h3

0

(ϕIV ( x, z ) − ϕIII ( x, z ) ) dz
|

|

|
||
|
|
|
,

Kw =
|

|

|
||
|
|
| − iω

􀱹h2
1
∫− h3

0

(ϕIV ( x, z ) ) dz
|

|

|
||
|
|
|
  (35)

respectively. The bottom profiles used in this study are given 
by

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

h1 − (h1 − h3 )
ì
í
î

ïï ü
ý
þ

ïï
1 − α ( )1 − x

L

2

+ (α − 1) ( )1 − x
L

h3 + (h1 − h3 )
ì
í
î

ïï ü
ý
þ

ïï
1 + 2 ( )x

L

3

− 3( )x
L

2

− d ( )1 − cos
2sπx

L

                                          for   0 < x < L                                    (36 )

In the given Eq. (36), first bottom profile is used for 
plane sloping bottom, concave-up and concave-down type 
bottom whereas second bottom profile is used for sinusoidal 
bottom. The parameter α used in bottom profiles determines 
the shape of bottom such as α = 0 renders to plane sloping 

bottom, α > 0 provides concave down type bottom and α < 0 
corresponds to concave up type bottom. Also, second bottom 
profile in Eq. (36) is used for rippled type bottom, here d 
refers to ripple amplitude and L = sl, where l is the wave‐
length of rippled bottom and s denotes the number of ripples 
present in the bottom.

4.1  Wave trapping

In this subsection, the case of presence of impermeable 
wall at distance W from porous flexible breakwater is dis‐
cussed. Here, effect of bottom topography and wave absorb‐
ing nature of breakwater have been studied assuming rigid 
impermeable wall present in front of breakwater. Thus, we 
present reflection coefficient Kr, wave force on breakwater 
Kf and wall Kw when wave interacts with porous flexible 
breakwater in the presence of bottom undulation.

To validate the present model, the experimental results 

Figure 2　Bottom Profiles of seabed
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of Krishnendu and Balaji (2020) (Figure 9(a)) concerned 
with the trapping of normal wave incidents are compared 
with the present model as shown in Figure 3(a). In this 
figure, continuous lines represent the present theoretical 
results whereas discrete points are used to show the experi‐
mental values obtained in Krishnendu and Balaji (2020). 
The parametric values used in this figure are α = 0, θ = 0°, 
W = 1 and γs = 1. It is to noted that When h3 /h1 → 1 then 
step type bottom is converted to flat bottom and for non-
dimensional flexural rigidity γs ≥ 1 (as in Koley et al. (2015)), 
breakwater works as non-flexible porous breakwater. Figure 3 
is plotted to show the reflection coefficient, wave force on 
breakwater and wall as a function of chamber width W/λ1. 
The results from Krishnendu and Balaji (2020) obtained 
experimentally agrees well with the present theoretical 
estimates as shown in Figure 3(a). To ensure the accuracy 
of the present model, root mean square error (RMSE) is 
performed. It is found that RMSE for 20% porosity is 0.05, 
15% porosity is 0.024, 10% porosity is 0.024 and 5% 
porosity is 0.034. This RMSE values show the very good 
match for accuracy of the present model. It is evident from 
Figure 3(a) that reflection is less for higher porosity and 
corresponding wave force on breakwater is less whereas 
wave force on wall is high. It is evident from Figure 3(b) 
that wave force on breakwater decreases continuously with 
respect to non-dimensional distance between wall and 
porous breakwater W/λ1. Figure 4 is plotted to illustrates 
the variation of reflection coefficient as a function of chamber 
length W/λ1. The numerical values of parameters are taken 
as β0h1 = 1.3, α = 0, fs = 5, ϵs = 0.3, ss = 1 and ds /h1 =
0.05. Particularly, in Figure 4(a), the present problem is 
compared with the Figure 8 of Liu et al. (2007) concerning 
to wave trapping by thin porous breakwater in the presence 
of uniform bottom (h3 /h1 = 0.99). It is found that present 
result matches exaclty with the plot of Liu et al. (2007) in 
Figure 4(a). It is to noted that for flexural rigidity γs = 1, 
breakwater becomes non flexible and act as only porous 
without flexibility. In Figure 4(a), dotted line represents 
the result of Liu et al. (2007) when breakwater is assumed to 
be only porous and flexibility is absent (γs = 1). Moreover, 
when water depth ratio is varying, reflection coefficient 
increases as depth ratio decreases and periods of oscillations 
reduces which leads to shift in minima. In Figure 4(b), 
effect of flexural rigidity γs is studying when length of 
chamber is varying on x-axis with h3 /h1 = 0.35. It is observed 
that least reflection is observed for γs = 0.002 and high reflec‐
tion occurs for γs = 0.000 2 due to much flexibility in break‐
water. Hence, moderate values of flexural rigidity is prefer‐
able to attained tranquil region.

In Figure 5, reflection coefficient Kr, wave force acting 
on breakwater Kf and wall Kw versus non-dimensional length 
of varying bottom is plotted to study the effect of flexural 
rigidity γs. The numerical values of parameters used in this 
figure are T = 8 s, h3 /h1 = 0.25, G = 1 + i, W/λ1 = 0.4 and 

α = 1. A comparison of the present study is made in this 
figure with Behera et al. (2015) (Figure 3(a)) in which they 
analyzed wave interaction of non-flexible breakwater placed 
in front of an impermeable wall in the presence of step type 
bottom. The solid line represents the result of Behera et al. 
(2015) in Figure 5(a). It is observed from Figure 5(a) that 
higher reflection is observed for γs = 1 which may be due 
to rigid porous breakwater also, higher reflection is observed 
for γs = 0.000 02 as it allows more water to pass due to 
much flexibility of breakwater and reflected by imperme‐
able wall for the smaller length of varying bottom. On the 
other hand, less wave force is exerted on breakwater for 
smaller values of varying bottom and higher wave force is 
noticed on wall for γs = 0.000 02 which is evident from 
Figures 5(b) and 5(c) respectively. From Figure 5, it is con‐
cluded that less reflection is observed in the case of γs =
0.000 1 for L/λ1 ≥ 0.4 and more wave force exerts on break‐
water which results in less wave force on the wall.

Figure 3　Reflection coefficient Kr, force on breakwater Kf and force 
on wall Kw versus non-dimensional length W/λ1 for different porosity 
with T = 2.0
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Figure 6 shows the variation of reflection coefficient Kr, 
wave force acting on breakwater Kf and wall Kw versus 
non-dimensional length of a varying bottom for the different 
bottom profile as defined in Figure 2. The numerical values 
of parameters are same as in Figure 5. A similar pattern is 
observed for concave down, plane sloping and concave up 
type bottom. Further, the oscillatory pattern of these bottom 

profiles vanishes with increasing length of varying bottom 
L/λ1. Figure 6 shows that rippled bottom profile exhibits 
higher reflection and least waves transmitted through 
breakwater for the smaller length of varying bottom which 
causes less wave force exerting on the impermeable wall 
which may be a favorable situation to protect the harbor 
regions.

Figure 4　Reflection coefficient Kr versus non-dimensional length W/λ1 for different values of depth ratio h3 /h1 with γs = 1, and for different 
values of flexural rigidity γs with h3 /h1 = 0.35 and θ = 0°

Figure 5　Reflection coefficient Kr, force on breakwater Kf and force 
on wall Kw versus non-dimensional length L/λ1 for different values of γs

Figure 6　 Reflection coefficient Kr, force on breakwater Kf and 
force on wall Kw versus non-dimensional length L/λ1 for different 
bottom profiles with flexural rigidity γs = EI/ρh4

3 = 0.02
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Figure 7 is plotted to examine the changes in reflection 
coefficient Kr, wave force acting on breakwater Kf and 
wall Kw for different values of depth ratio h3 /h1 when non-
dimensional wavenumber is varying on the x-axis. An oscil‐
latory trend is observed with respect to wave number. 
Higher reflection occurs for flat bottom (h3 /h1 = 0.99) and 
amplitude of oscillation in reflection increases as depth ratio 
decreases. On the other hand, Force on breakwater and 
wall decreases as the wavenumber increases on x-axis as 
observed in Figures 7(b) and (c). Hence, shallow water 
waves exert high wave force on the breakwater as well as 
on wall. Also, as the depth ratio decreases wave force on 
wall decreases with more minima.

In Figure 8, reflection coefficient Kr, wave force acting 
on breakwater Kf, and wall Kw are studied as a function of 
the distance between breakwater and wall for different values 
of depth ratio h3 /h1. These coefficients are found to be peri‐
odic with respect to the length of chamber width. Parametric 

values used in this figure are G = 1 + i, β0h1 = 1, λs = 0.01 
and α = 0. From Figure 8(a), it is observed that the least 
wave is reflected for the depth ratio h3 /h1 = 0.75 which 
results in high force on breakwater as in Figure 8(b). The 
presence of flat bottom causes high wave force on wall and 
the least wave force exert on the wall due to smaller values 
of depth ratio. It is also observed that the number of minima 
increases with a decrease in depth ratio. A drift towards left 
side in minima of wave force on wall is noticed in Figure 8(c) 
for decreasing depth ratio h3 /h1.

Figure 9 demonstrates the effect of chamber width W/λ1 
on reflection coefficient, wave force on breakwater and wall 
for different values of flexural rigidity γs. The numerical 
values of parameters used in this figure are chosen as G =
1 + i, β0h1 = 1 and α = 0. It is observed that wave reflection 
and wave force on the wall is high for smaller values of 
flexural rigidity γs. Figure 9(a) illustrates that maximum 

Figure 7　 Reflection coefficient Kr, force on breakwater Kf and 
force on wall Kw versus non-dimensional wavenumber β0h1 for 
different values of depth ratio h3 /h1

Figure 8　 Reflection coefficient Kr, force on breakwater Kf and 
force on wall Kw versus non-dimensional chamber length W/λ1 for 
different values of depth ratio h3 /h1
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reflection is achieved for certain chamber width W/λ1 
which implies minimum force attained on breakwater as in 
Figure 9(b). It is noted that for certain chamber width mod‐
erate values of flexural rigidity, substantial less wave force 
exerts on breakwater and wall.

In Figure 10, reflection coefficient Kr, wave force on 
breakwater Kf, and wall Kw are depicted against the angle 
of the incident for different values of depth ratio h3 /h1. 
The parameters chosen in this figure are G = 1 + i, β0h1 =
1, α = 0 and λs = 0.01. For the flat bottom (h3 /h1 = 0.99), 
higher reflection occurs as shown in Figure 10(a) which 
causes higher wave force on the wall as observed from 
Figure 10(c). On the other hand, less reflection occurs for 
the depth ratio h3 /h1 = 0.35 at an angle of incidence θ = 75° 
which implies more energy dissipation as high wave force 
on wall and breakwater does not exert. It is to note that 
full reflection is achieved for a certain angle of the inci‐
dent wave at which zero wave force exerts on the break‐

water. however, wave force on the wall is increasing as depth 
ratio h3 /h1 is increasing for the angle of incident θ ≥ 65°.

Effect of different flexural rigidity on reflection coeffi‐
cient Kr, wave force on breakwater Kf, and wall Kw are 
studied in Figure 11 when the angle of incident wave is 
varying on x-axis. In Figure 11, a similar pattern is observed 
as in Figure 10 that for a certain range of angle of incident 
50° ≤ θ ≤ 70°. Figure 11(a) demonstrates that the curve of 
reflection coefficient shows more oscillatory for the larger 
values of flexural rigidity γs. Also, it is to note that smaller 
values of flexural rigidity cause more deflection which result 
in less wave force on barrier and high wave force on the 
impermeable wall as observed in Figures 11(b) and 10(c) 
respectively.

In Figure 12, reflection coefficient Kr, wave force on 
breakwater Kf and wall Kw are illustrated with varying 
porous effect parameter G for different values of depth ratio 
h3 /h1. The numerical value of parameters are taken as α =
0, θ = 30°, β0h1 = 1, λs = 0.01 and W/λ1 = 1. Figure 12(a) 
depicts that there is large variation in reflection coefficient 
for porosity 0 ≤ G ≤ 2 and maximum reflection occurs for 

Figure 9　 Reflection coefficient Kr, force on breakwater Kf and 
force on wall Kw versus non-dimensional chamber length W/λ1 for 
different values of flexural rigidity γs = EI/ρh4

3

Figure 10　 Reflection coefficient Kr, force on breakwater Kf and 
force on wall Kw versus angle of incident θ for different values of 
depth ratio h3 /h1
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uniform bottom h3 /h1 = 0.99. Initially, the reflection coef‐
ficient decreases sharply as G increases then it increases 
for larger values of G and does not alter its pattern beyond 
a certain value of G as shown in Figure 12(a). Smaller values 
of porous effect parameter (G < 2) cause less wave force 
is exerting on breakwater whereas force on wall is high for 
the uniform bottom. Figure 12(b) and (c) reveals that least 
wave force is acting on breakwater and wall for the depth 
ratio h3 /h1 = 0.35. It is to note that wave energy is dissipated 
for G = 1.25 as the reflection coefficient is minimum at 
this point however there is no such variation in wave force 
on breakwater and wall. From these observations, porous 
effect parameter 0.5 < G < 2 may be preferable for dissi‐
pating wave energy for smaller depth ratio h3 /h1 = 0.5 
and 0.35.

Figure 13 is plotted to show the deflection of flexible 
porous plate ζ/h1 against z/h1 for different values of flexural 
rigidity γs and porous effect parameter G when the plat is 
fixed at the bottom edge. Some specific amount of parame‐
ters are fixed as h3 /h1 = 0.5, W/λ1 = 1, α = 0, θ = 30° and 
β0h1 = 1. From Figure 13(a), the plate is much deflected 

when flexibility γs is added to the breakwater which is an 
obvious phenomenon. Also for rigid breakwater G = 0, 
deflection is high as compared to porous flexible breakwater 
since it does not allow transmission of water as observed in 
Figure 13(b) which causes high wave force on breakwater 
as observed in Figure 12(b).

4.2  Wave scattering

In coastal regions or marinas, it is desirable to maintain 
healthy ecosystem and make harbour free from stagnating 
pollution. It is assumed that there are no fixed boundaries 
at far field, hence, in this subsection, we present scattering 
of waves by flexible porous breakwater in the presence of 
uneven bottom. In this case, a part of wave energy will 
be dissipated and some will be transmitted to lee side of 
breakwater. Thus, in this view point, we study reflection 
coefficient Kr and transmission coefficient Kt and wave 
force on wall Kf.

Figure 11　 Reflection coefficient Kr, force on breakwater Kf and 
force on wall Kw versus angle of incident θ∘ for different values of 
flexural rigidity γs = EI/ρh4

3

Figure 12　 Reflection coefficient Kr, force on breakwater Kf and 
force on wall Kw versus porous effect parameter G for different 
values of depth ratio h3 /h1
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Figure 14 demonstrates the influence of various bottom 
profiles with varying horizontal bottom length L/λ1 on reflec‐
tion, transmission and wave force on breakwater. The used 
parameters to plot these graph are as h3 /h1 = 0.25, γs =
0.02, G = 1 + i and T = 8 s. The observation received in 
this plot is similar to the case of trapping of waves as in 
Figure 6. The result demonstrates that each type of bottom 
shows higher reflection and oscillatory pattern for smaller 
length of bottom and curves variation diminish as its length 
increases except for the case of rippled bottom. It is observed 
from Figure 14 that most of the wave energy is reflecting 
due to presence of rippled bottom for small length of varying 
bottom which leads to least transmission and hence least 
hydrodynamic force exerts on flexible breakwater.

Further, to analyze the effect of depth ratio h3 /h1 and 
flexural rigidity γs of flexible porous breakwater on Bragg 
reflection which takes place in the presence of sinusoidal 
bottom. The phenomenon of Bragg resonance can be found 
in several articles such as Dalrymple and Kirby (1986), 
Tabssum et al. (2020) in the presence of structures. The 
ideal condition for Bragg resonance is 2l/λ1 = 1 at which 
reflection enhances significantly. In the present article, reflec‐
tion and transmission coefficients Kr, Kt and wave load on 
porous breakwater Kf are studied in Figure 15 and Figure 16 
as a function of frequency parameter 2l/λ1.

Figure 15 is presented to show the effect of depth ratio 
h3 /h1 on Bragg scattering coefficients. The fixed parameters 
for this figure are as G = 1 + i, γs = 0.02, L1 = 10, s = 6, 
l = 6.4 and d = 0.08. Figure 15(a) reveals that more Bragg 
resonance is pronounced near 2l/λ1 = 0.75 and reflection is 

high for depth ratio h3 /h1 = 0.35. Moreover, reflection 
coefficient decreases as depth ratio increases and resonance 
peak shifts towards right. It is seen that least transmission 
occurs at 2l/λ1 = 0.75 which may be favourable condition 
for creating calm zone near harbour region but variation 
with respect to different depth ratio is negligible. However, 
significant variation is noticed with respect to depth ratio. 
Least hydrodynamic force is exerting on porous flexible 
breakwater for depth ratio h3 /h1 = 0.35.

Figure 16 shows the influence of flexural rigidity γs on 
Bragg scattering coefficients. The parameters used to plot 
this figure are same as in Figure 15. From Figure 16(a), it 
exposes that least reflection is pronounced at 2l/λ1 = 0.9 
for smaller values of flexural rigidity which leads to higher 
transmission and less wave force as in Figures 16(b) and (c) 
respectively. It is observed that higher wave energy dissi‐
pation occurs for larger values of frequency parameter as 
zero reflection and wave force on breakwater is observed 
whereas transmission is less less for γs = 0.001 and 0.002.

Figure 13　Plate deflection ζ/h1 versus z/h1 for different values of  
γs with G = 1 + i and G with γs = 0.1

Figure 14　 Reflection coefficient Kr, transmission coefficient Kt 
and force on breakwater Kf versus length of varying bottom L/λ1 for 
different bottom profiles
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In Figure 17, deflection of the flexible porous breakwater 
is shown for different values of flexural rigidity γs = EI/ρhh4

1 
and porous effect parameter G. The parameters used in 
this plot are β0h1 = 1, α = 0, γs = 0.1 and G = 1 + i. From 
Figure 17(a), plate deflection is observed high for small 
values of flexural rigidity γs = 0.01 and less deflection for 

higher values as noticed in Figure 13(a). Deflection decreases 
as flexural rigidity increases. In Figure 17(b), highest deflec‐
tion occurs for impermeable breakwater for G = 0. How‐
ever, deflection is less as compare to the case of trapping 
in Figure 13 which may be due to absence of impermeable 
wall.

Figure 16　 Reflection coefficient Kr, transmission coefficient Kt 
and force on breakwater Kf versus 2l/λ1 for different values of 
flexural rigidity γs

Figure 17　Plate deflection for different values of flexural rigidity γs = EI/ρhh4
1 and porous effect parameter G

Figure 15　 Reflection coefficient Kr, transmission coefficient Kt 
and force on breakwater Kf versus 2l/λ1 for different values of depth 
ratio h3 /h1
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5  Conclusions

In the present study, the effect of bottom variation on the 
trapping and scattering of obliquely incident waves is ana‐
lyzed using a flexible porous breakwater. The study is car‐
ried out within the framework of linear water wave theory, 
and Darcy’s law is used to model the flow past the porous 
breakwater. To solve the physical problem, an eigenfunction 
expansion in the region of uniform bottom is coupled with 
the mild-slope equation for step-type bottom topography. 
The system of equations is obtained by imposing suitable 
boundary conditions at the interface, and mass-conserving 
jump conditions are applied at the slope discontinuities on 
the bottom edge. The present theoretical model is compared 
with the result of Krishnendu and Balaji (2020) in less gen‐
eral case of porous breakwater in the presence of uniform 
bottom. Further, the results are validated with the plot of 
Behera et al. (2015) and Liu et al. (2007) in a limiting case.

The study reveals that wave reflection increases and 
minima drags towards left as depth ratio decreases. Addi‐
tionaly, minimum reflection occurs for flexural rigidity γs =
0.002. Further, the breakwater reflects less wave energy 
and exerts less wave force on the wall for intermediate val‐
ues of the flexural rigidity γs. A large variation is observed 
for smaller values of the varying lengths of the bottom. 
However, a rippled type bottom profile may be more pref‐
erable for creating a tranquil environment, as it allows for 
more reflection and leads to the least force on the breakwater 
and wall for smaller lengths of varying bottom ( L/λ1 < 1.25). 
The oscillatory behavior of the reflection coefficient increases 
as the depth ratio decreases, and the amplitude of oscilla‐
tion reduces as the non-dimensional wavenumber increases. 
For a particular distance between the breakwater and wall, 
and angle of incidence, negligible force is acting on the 
breakwater. It is observed that smaller values of the flexural 
rigidity of the breakwater result in less wave force on the 
breakwater and higher force on the wall for an angle of inci‐
dence θ > 60°. Moreover, due to the presence of a step-type 
bottom, complete reflection occurs for large values of G, 
and the force on the breakwater diminishes, resulting in 
the least force exerted on the wall. Plate deflection is 
more pronounced for smaller values of the porous effect 
parameter.

In the case of wave scattering, higher reflection is noticed 
for a rippled bottom with a smaller length of varying bottom. 
A smaller depth ratio allows for higher reflection and least 
transmission. Bragg resonance is pronounced at 2l/λ1 =
0.75, which may be a favorable case for a tranquil region 
near the harbor. Wave energy dissipation is higher for larger 
frequency parameters. Less deflection is observed in the 
case of scattering compared to wave trapping.
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